A Problem on Linear Functions and Subsets of a Finite Field

W.S. Ng

Institute of Mathematical Sciences
University of Malaya
50603 Kuala Lumpur
Malaysia

E-mail: ng_wei_shean@hotmail.com

Abstract

Let $g: \mathbb{F}^m \to \mathbb{F}$ be a linear function on the vector space \mathbb{F}^m over a finite field \mathbb{F} . A subset $S \subseteq \mathbb{F}$ is called g-thin iff $g(S^m) \subseteq \mathbb{F}$. In case \mathbb{F} is the field \mathbb{Z}_p of odd prime order, if S is g-thin and if m divides p-1, then it is shown that $|S| \leq \frac{p-1}{m}$. We also show that in certain cases S must be an arithmetic progression, and the form of the linear function g can be characterized.

In this paper, some properties of subsets of finite fields are investigated. The results of Vosper and Cauchy-Davenport [1],[2] are applied in the proofs of some of the theorems. For several notations and definitions concerning a finite field and subsets of abelian group, see also [3]. For a set S, we shall use the notation S^m to represent

$$\underbrace{S \times \cdots \times S}_{m \text{ times}} = \{(x_1, \cdots, x_m) \mid x_i \in S, i = 1, \cdots, m\}.$$

Definition 1 Let $g: \mathbb{F}^m \to \mathbb{F}$ be a linear function on the vector space \mathbb{F}^m over a finite field \mathbb{F} . A subset $S \subseteq \mathbb{F}$ is called g-thin iff $g(S^m) \subseteq \mathbb{F}$.

We note that in the case where S is a sum-free subset of \mathbb{Z}_p , the linear function

$$g:S^3\to S$$

defined by

$$g(x_1, x_2, x_3) = x_1 + x_2 - x_3$$

has the property that $g(S^3) \subseteq \mathbb{Z}_p$. Thus sum-free subsets of \mathbb{Z}_p are g-thin. In fact, interest in the work presented in this paper came about from studying generalizations of sum-free sets. To be more precise, a subset S of \mathbb{Z}_p is said to be of type (k,l) if the equation $x_1 + x_2 + \cdots + x_k - x_{k+1} - \cdots - x_{k+l} = 0$ has no solution in the set S. Thus if S is a subset of \mathbb{Z}_p of type (k,l) and the linear function

$$q:S^{k+l}\to S$$

is defined by

$$g(x_1, \dots, x_{k+1}) = x_1 + \dots + x_k - x_{k+1} - \dots - x_{k+1},$$

then $g(S^{k+l}) \subset \mathbb{Z}_p$.

In this note, we consider the case where \mathbb{F} is the field \mathbb{Z}_p of odd prime order and obtain an upper bound for the cardinalities of g-thin subsets of \mathbb{F} . It is shown that under certain conditions, g-thin subsets of \mathbb{Z}_p are in arithmetic progression. A characterization of the forms of linear functions are also given in certain cases.

In order to prove the first theorem, the following lemma, which is a result of Cauchy-Davenport, is needed. The lemma is stated as follows:

Lemma 2 (Cauchy-Davenport)[1],[2] If $S, T \subseteq \mathbb{Z}_p$ and |S+T| < p where p is an odd prime, then $|S| + |T| - 1 \le |S+T|$.

In what follows, the notation S^m shall be used to represent

$$\underbrace{S \times \cdots \times S}_{m \text{ times}} = \{(x_1, \cdots, x_m) \mid x_i \in S, i = 1, \cdots, m\}.$$

Theorem 3 Let p be an odd prime and $f:(\mathbb{Z}_p)^m\to\mathbb{Z}_p$ such that

$$f(x_1,\ldots,x_m)=c_1x_1+\cdots+c_mx_m$$

where $x_i \in \mathbb{Z}_p$ and $c_i \in \mathbb{Z}_p \setminus \{0\}$ for all $i = 1, ..., m \quad (m \ge 2)$. If S is f-thin, then $|S| < \frac{p-1}{m} + 1$. In particular, if $m \mid (p-1)$, then $|S| \le \frac{p-1}{m}$.

Proof: Let $S_i = c_i \cdot S$, $i = 1, ..., m \quad (m \ge 2)$. Since $f(S^m) \subset \mathbb{Z}_p$, so

$$f(S^m) = S_1 + \cdots + S_m \subseteq \mathbb{Z}_p$$

Hence, $|S_1 + S_2 + \cdots + S_m| < p$ and also $|S_1 + S_2 + \cdots + S_{i-1}| < p$, for $2 \le i \le m$. By letting $T' = S_1 + S_2 + \cdots + S_{i-1}$, $S' = S_i$ and applying Lemma 2, we have

$$|T' + S'| \ge |T'| + |S'| - 1 = |S_1 + S_2 + \dots + |S_{i-1}| + |S_i| - 1.$$

We get

$$p > |S_1 + \dots + S_m|$$

$$\geq |S_1 + \dots + S_{m-1}| + |S| - 1$$

$$\geq |S_1 + \dots + S_{m-2}| + 2|S| - 2$$

$$\vdots$$

$$\geq |S_1 + S_2| + (m-2)|S| - (m-2)$$

$$\geq m \cdot |S| - (m-1)$$

so that $m \cdot |S| and hence <math>|S| < \frac{p-1}{m} + 1$. In particular, if $m \mid (p-1)$, then

$$|S| \leq \frac{p-1}{m}.$$

In other words if a set S is f-thin for a linear function in m variables with all nonzero coefficients then the cardinality of S is bounded above by $|S| < \frac{p-1}{m} + 1$.

We say that S is an arithmetic progression of steplength d if $\exists a, d \in \mathbb{Z}$ such that

$$S = \{a, a+d, \ldots, a+(s-1)d\}.$$

Lemma 4 (Vosper)[1],[2] Let $S, T \subseteq \mathbb{Z}_p$, |S+T| < p-1. If |S+T| = |S|+|T|-1, then $\exists a,b,d \in \mathbb{Z}_p$ such that S and T are arithmetic progressions with the same steplength,

$$S = \{a, a + d, \dots, a + (s - 1)d\};$$
$$T = \{b, b + d, \dots, b + (t - 1)d\}$$

with s = |S| and t = |T|. In this case, S+T also is an arithmetic progression with the same steplength d.

Lemma 5 Let $S \subseteq \mathbb{Z}_p$ and let $S_i = c_i \cdot S$ with $c_i \in \mathbb{Z}_p \setminus \{0\}$ such that

$$|S_1+S_2+\cdots+S_m|\leq p-2$$

holds. If S is not an arithmetic progression, then we have

$$|S_1 + S_2 + \cdots + S_m| \ge m \cdot |S|.$$

Proof: By applying Lemma 4, (m-1) times,

$$|S_{1} + S_{2} + \dots + S_{m}| \geq |S_{1}| + |S_{2} + S_{3} + \dots + S_{m}|$$

$$\geq |S_{1}| + |S_{2}| + |S_{3} + \dots + S_{m}|$$

$$\vdots$$

$$\geq |S_{1}| + |S_{2}| + \dots + |S_{m-2}| + |S_{m-1} + S_{m}|$$

$$\geq |S_{1}| + |S_{2}| + \dots + |S_{m-1}| + |S_{m}|$$

$$= m \cdot |S|.$$

For the next theorem, again let $f:(\mathbb{Z}_p)^m \to \mathbb{Z}_p$ be a linear function of the form

$$f(x_1,\ldots,x_m)=c_1x_1+\cdots+c_mx_m$$

with $c_i \in \mathbb{Z}_p \setminus \{0\}$ for all $i = 1, \ldots, m (m \geq 2)$.

Theorem 6 If

$$|f(S^m)| \le p - 2$$

and if $|S| \ge \frac{p-1}{m}$, then the set S is an arithmetic progression.

Proof: Assume that S is not an arithmetic progression. We have

$$f(S^m) = S_1 + S_2 + \cdots + S_m.$$

By Lemma 5, we get

$$p-2 \ge |f(S^m)| = |S_1 + S_2 + \cdots + S_m| \ge m \cdot |S| \ge p-1,$$

a contradiction. Therefore S is an arithmetic progression.

Theorem 7 If $|f(S^m)| \leq p-m$ and $|S| \geq \frac{p-1}{m}$, then $\exists k \in \mathbb{Z}_p \setminus \{0\}$ such that for all $i = 1, \ldots, m \ (m \geq 2), c_i = \pm k$.

Proof: We use a similar argument as in the proof of Theorem 3 and Lemma 5.

$$f(S^m) = S_1 + S_2 + \dots + S_m$$

$$p-m \geq |f(S^{m})|$$

$$= |S_{1} + S_{2} + \dots + S_{m}|$$

$$\geq |S_{1}| + |S_{2} + \dots + S_{m}| - 1$$

$$\geq |S_{1}| + |S_{2}| + |S_{3} + \dots + S_{m}| - 2$$

$$\vdots$$

$$\geq |S_{1}| + |S_{2}| + \dots + |S_{m-2}| + |S_{m-1} + S_{m}| - (m-2)$$

$$\geq |S_{1}| + |S_{2}| + \dots + |S_{m-2}| + |S_{m-1}| + |S_{m}| - (m-1)$$

$$= m \cdot |S| - (m-1)$$

$$\geq p - 1 - m + 1$$

$$= p - m.$$

Hence, we must have equality in each step of the chain of inequalities, so that $|S_{m-1} + S_m| = |S_{m-1}| + |S_m| - 1$. By Lemma 4, S_{m-1} and S_m are both arithmetic progressions with the same steplength. By Theorem 6, let $S = \{a, a+d, \ldots, a+(s-1)d\}$ with the steplength $d \neq 0$ and $S_i = c_i \cdot S$ for all $i = 1, \ldots, m$. Then,

$$S_{m-1} = \{c_{m-1}a, c_{m-1}a + c_{m-1}d, \ldots, c_{m-1}a + (s-1)c_{m-1}d\}$$

and

$$S_m = \{c_m a, c_m a + c_m d, \ldots, c_m a + (s-1)c_m d\}.$$

Hence, by applying Lemma 2.4 (p.53) of [2] to $S_{m-1}(=A)$, $S_{m-2}(=B)$, we see that

$$c_m d = c_{m-1} d$$
 or $c_m d = -c_{m-1} d$.
 $\Rightarrow c_m = \pm c_{m-1}$.

Now by induction for all $i=m-2,m-3,\ldots,1$, we get $c_i=\pm c_{i-1}$. Therefore, $\exists k\in Z_p\setminus\{0\}$ such that $c_i=\pm k$ for all $i=1,\ldots,m$.

Remarks 8 If $s = \frac{p-1}{m}$, in general on ly some positive integers n with $p-2 \ge n \ge p-m$ can occur as $n = |f(S^m)|$ for some set S, which by Theorem 6 must be in arithmetic progression.

Example.

Let p = 19, m = 6 and s = 3. Let $S = \{0, 1, 2\}$. In this case n = 13, 15, 17 are the only values.

For n = 13, by Theorem 7 $c_i = \pm k$.

For n = 15, computation shows that $c_i = \pm k$ and at most one $c_j = \pm 2k$.

For n = 17, computation shows that $c_i = \pm k$ and at most two $c_j = \pm 2k$ or at most one $c_j = \pm 3k$.

References

- H. Mann, "Addition Theorems: The Addition Theorems of Group Theory and Number Theory", Interscience Tracts in Pure and Applied Mathematics, No. 18, John Wiley, New York/London/Sydney, 1965.
- [2] M. B. Nathanson, "Additive Number Theory: Inverse Problems and the Geometry of Sumsets", GTM 165, Springer, New York/Berlin/Heidelberg 1996
- [3] A. P. Street, "Sum-Free Sets", Springer Lecture Notes in Math. 292 (1972), 123-272.