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Abstract

Let g : ™ — F be a linear function on the vector space F™ over
a finite field F. A subset S g T is called g-thin iff g(S™) g FF. In case

F is the field Z, of odd prime order, if S is g-thin and if m divides
p—1, then it is shown that |S| < 2=1. We also show that in certain
cases S must be an arithmetic progression, and the form of the linear
function g can be characterized.

In this paper, some properties of subsets of finite fields are investigated. The
results of Vosper and Cauchy-Davenport {1],[2] are applied in the proofs of
some of the theorems. For several notations and definitions concerning a
finite field and subsets of abelian group, see also [3]. For a set S, we shall

use the notation S™ to represent

SX---x8={(z1," -, zm) | T €8,i=1,---, m}.

m times
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Definition 1 Let g : F™ — F be a linear function on the vector space F™
over a finite field F. A subset S g T is called g-thin iff g(S™) gIF

We note that in the case where S is a sum-free subset of Z;, the linear
function
g:5*—8

defined by

9(z1, %2, T3) = T2 + T2 — 23

has the property that g(S°%) g Z,. Thus sum-free subsets of Z, are g-
thin. In fact, interest in the work presented in this paper came about from
studying generalizations of sum-free sets. To be more precise, & subset S
of Zy, is said to be of type (k,1) if the equation 1+ 22+ -+ + Tk — T4+1—
-+- — 241 = 0 has no solution in the set S. Thus if S is a subset of Z; of
type (k,!) and the linear function

g: S 8
is defined by
g(Z1, -y Tep) =Ty + o+ T — Tied1 — 0 — Tkl
then g(S*+!) g Z,.

In this note, we consider the case where F is the field Z, of odd prime
order and obtain an upper bound for the cardinalities of g-thin subsets of
F. It is shown that under certain conditions,g-thin subsets of Z, are in
arithmetic progression. A characterization of the forms of linear functions
are also given in certain cases.

In order to prove the first theorem, the following lemma, which is a
result of Cauchy-Davenport, is needed. The lemma is stated as follows:

Lemma 2 (Cauchy-Davenport)[1],[2] If S, T C Z, and |S +T| < p where
p is an odd prime, then |S| +|T| —1<|S+T).
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In what follows, the notation S™ shall be used to represent

Sx- - x§={(@, -, zm) | €Si=1,-,m).

m times

Theorem 3 Let p be an odd prime and f : (Zp)™ — Z, such that
f(xl, ceey zm)=clz1+.“+c'nzm

where x; € Zp, and ¢; € Z,\ {0} foralli=1,....m (m>2). IfS is
f-thin, then |S| < 2% +1. In particular, if m | (p— 1), then |S} < 221

Proof: Let S; =¢;-S,i=1,...,m (m>2). Sincef(S"")gZ,,,so
f(Sm)=Sl+"'+Sm§ZP

Hence, |S1 +S2+ -+ Sm| < p and also |Sy + Sz + --- + Si—1] < p, for
2<i<m BylettingT' =85, +S5,+---+85;_;, & = S; and applying

Lemma 2, we have
T+ 8> |T[+1S'|-1=|S1+Sa+---+Sia| +|Si| - 1.
We get

p > |Si+-+8nl

> |Si+--+Sm-1|+]|S] -1

> |Si+-+-+Sm-2| +2|5| -2

> |S1+ 82| +(m—2)|S| - (m—2)
2 m-|S|-(m-1)

so that m - |S| < p+m — 1 and hence |S| < 221 +1.
In particular, if m | (p— 1), then

IS} < p—1
m
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In other words if a set S is f-thin for a linear function in m variables
with all nonzero coefficients then the cardinality of S is bounded above by
IS| < 22t 41, a

We say that S is an arithmetic progression of steplength d if Ja,d € Z
such that
S={e,a+d,...,a+(s—1)d}.

Lemma 4 (Vosper)(1],(2] Let S,T CZ,, |S+T|<p—1. If|S+T| =
|S|+|T}—1, then 3a,b,d € Z, such that S and T are arithmetic progressions
with the same steplength,

S={a,a+d,...,a+(s—1)d};

T={bb+d,....,b+(—1)d}
with s = |S| andt = |T|. In this case, S+T also is an arithmetic progression
with the same steplength d.
Lemma 5 Let S C Zy, and let S; = ¢; - S with ¢; € Z,, \ {0} such that
{S14+8+---4+ S| <p-2
holds. If S is not an arithmetic progression, then we have
ISi+ 82+ +Sn|>m-|S|.
Proof: By applying Lemma 4, (m — 1) times,

{S1 +S 44+ S| > |51|+132+53+"'+Sm{

> |81+ 1S +1S3+ - + Sl
> |Si]+ S|+ + |Sm—2| + |Sm1 + Sm|
> S|+ 1Sl + -+ |Sma1] + |Sm]

If

m-|S|.

250



For the next theorem, again let f : (Z,)™ — Z, be a linear function of
the form
f(xl1 saey xm) =Clx1+...+crnxm

with¢; € Z, \ {0} foralli=1,...,m{(m >2).
Theorem 6 If
F(s™ <p-2
and if |S| > ?%1, then the set S is an arithmetic progression.
Proof: Assume that S is not an arithmetic progression. We have
fE™)=51+S2+--+Sm.

By Lemma 5, we get

p—22|f(S™) =181+ S+ -+ Sm|2m-|S| 2 p—-1,
a contradiction. Therefore S is an arithmetic progression. O

Theorem 7 If|f(S™)| < p—m and |S| > &=L, then Ik € Z, \ {0} such
that foralli=1,...,m(m>2), ¢; = tk.

Proof: We use a similar argument as in the proof of Theorem 3 and Lemma
5.

f(Sm)=Sl+Sz+"'+Sm
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p—m 2> |f(S™)
= |Si+Sa+-+ Sl
> S| +[S2 4+ +8m] -1
> IS+ 1S +1S3+- -+ Sn| -2
> 181 +1Se| 4+ + |Sm—2] + |Sm-1 + Sm| — (m - 2)
> S|+ S|+ -+ [Sm—2| +1Sm-a| + |Sm| - (m—1)
= m-|§|-(m-1)
> p—1-m+1
= p—m.

Hence, we must have equality in each step of the chain of inequalities, so
that [Sm—1 + Sm| = |Sm—1| + |Sm| — 1. By Lemma 4, Spn_y and Sp, are
both arithmetic progressions with the same steplength. By Theorem 6, let
S={a,a+d,...,a+(s—1)d} with the steplength d # 0 and Si=¢-S
foralli=1, ..., m. Then,

Sm_1 = {€m-18,6m—18 + cm—1d, ..., Cm—10 + (s — 1)em—1d}

and
Sm = {tm@,Cma + Ccmd, ..., cma + (s — 1)emd}.
Hence, by applying Lemma 2.4 (p.53) of [2] to Sm~1(= A), fim—2(= ﬁ), we
see that ’
cmd = cp—1d Or Cnd = —Cy—1d.
= cm =Zxcm-1.

Now by induction for all i = m —2,m —3, ..., 1, we get ¢; = *¢;—1.
Therefore, 3k € Z, \ {0} such that ¢; = tkforalli=1,..., m. 0O
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Remarks 8 If s = %‘, in general on ly some positive integers n with
P—22mn 2> p—m can occur as n = |f(S™)| for some set S, which by
Theorem 6 must be in arithmetic progression.

Ezample.

Let p=19,m = 6ands =3. Let S = {0,1,2}. In this case n = 13,15,17
are the only values.

For n =13, by Theorem 7 ¢c; = k.

For n = 15, computation shows that ¢; = +k and at most one c; = +2k.
For n =17, computation shows that ¢; = £k and at most two c; = +2k or
at most one c; = *3k.
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