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ABSTRACT. Recently, Hsu and Shiue [10] obtained a kind of
generalized Stirling number pairs with three free parameters
and proved some of its properties. Here, some properties analo-
gous to those of ordinary Stirling numbers are investigated, viz.
horizontal recurrence relations, vertical recurrence relations, ra-
tional generating function, and explicit formulas. Futhermore,
a kind of infinite sum which is useful in some combinatorial
applications of the generalized Stirling numbers, is evaluated.

1 Introduction

In a recent paper of Hsu and Shiue [10] it was shown that a kind of gen-
eralized Stirling number pair with three free parameters can be introduced
via a pair of linear transformations between generalized factorials, viz.

(t | a)n = ZS(T&, k; «, ﬁ) 7)(t - ' tB)k (1)
k=0

1= S(n ki =)t + | e @)
k=0

where n € N (set of nonnegative integers), a, 5, ¥ may be real or complex
numbers with (o, 8,v) # (0,0,0), and (¢ | a), denotes the generalized
factorial of the form

n—1
tla)a=[[Ct-da), n21, (tla)o=1
=0

and, in particular, (¢ | 1), = (t)n with (¢)o = 1. It was also mentioned that
various well-known generalizations could be obtained by special choices of
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the parameters o, 8, and v (c.f. [10]). Furthermore, the generalization of
some theorems of the classical Stirling numbers such as triangular recur-
rence relation, the vertical generating function, the congruence property,
the Dobinski-type formula and a kind of asymptotic expansion were inves-
tigated. However, there are still many properties of the generalized Stirling
numbers that are worthy of consideration.

Just like the classical Stirling numbers the generalized Stirling numbers
have also combinatorial and statistical applications for integral values of «,
B, and ~. In fact, we have found one such application which is discussed
in a separate paper entitled “Combinatorial and Statistical Applications
of Generalized Stirling Numbers” and will be submitted for publication
elsewhere.

The object of this paper is to give some new properties or theorems of the
generalized Stirling numbers. Throughout this paper we will use S'(n, k),
S%(n, k) to denote S(n,k;a, B,7) and S(n, k; B, @, —7), respectively. Take
note that relation (1) implies the following

5Y0,0)=1, S'(n,n)=1, S'(1,0)=4«

and as convention we assume S!(n,k) = 0 for k > n + 1. We use s(n, k)
and S(n, k) to denote the ordinary Stirling numbers of the first and second
kind, respectively.

2 Equivalence Theorem

A number of papers related to the generalization of Stirling numbers have
appeared in the literature. The ways of generalization are based on the use
of differences of generalized factorials, linear transformations between gen-
eralized factorials, triangular recurrence relation, and vertical generating
function. For instance, the joint paper of Charalambides and Koutras [5] is
based on the differences of generalized factorials, the joint work of Hsu and
Shiue [10] is based on the linear transformations between generalized facto-
rials with Stirling number pairs as connection coefficients, and the works of
Howard [8] and Carlitz [3], [4] about degenerate weighted Stirling numbers
are based on the vertical generating function, etc. Among the four, the
second approach is observed to be more simple and transparent in general-
izing Stirling numbers in the sense that it allows us to recognize easily some
implicative relations among Stirling-type numbers. The following theorem
asserts that these four approaches are equivalent to each other.

Theorem 1. The following are equivalent

(i) The generalized Stirling number S'(n, k) equals
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S, ) = s [A*BE+7 | @l oo = o - 144 () @iy e

j=0

(if) The following relation holds

(t I a)n = zs(n’: k; a, ﬁv’Y)(t - I ﬂ)k;

k=0

(iii) For the numbers S!(n, k), we have the triangular recurrence relation
S(n+1,k) = S(n, k — 1) + (kB — na + v)S(n, k)
where n > k > 1. In particular, S(n,0) = (7| @)n;
(iv) The vertical generating function for S'(n, k) is given by

8/ 11" n
(1+ o) [(lig__l] = k!gsl(n, k);—!.

Proof: To prove (i) « (ii), we make use of (i) with ¢ replaced by ft+~ and
a precise application of Newton’s interpolation formula [12], we obtain (ii),
and vice versa. For (ii) & (iii), (iii) = (iv), and (iv) = (iii) the reader may
see the respective references, [10, p. 370), [10, p. 372], and [11, p. 227)].

3 Recurrence Relations

Recurrence relations are useful in constructing tables of values. In Comtet’s
book [8], the ordinary Stirling numbers have three types of recurrence rela-
tions, namely, the triangular, horizontal, and vertical recurrence relations.
Among the three, only the first type was given a generalization. In this
section, the last two types will be extended to the general case.

First, let us consider the horizontal recurrence relation which is given in
two different forms.

Theorem 2. The first form of horizontal recurrence relation for S'(n, k)
is given by

n—k
S'(n,k) = 3 (1Y ((k+ DB —na+v| =B);S (n+ 1,k +35+1). (3)
j=0
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Proof: Using theorem 1(iv),

n—k
RHS of (3) = ) _(-1¥((k+ 1)B—na+7v| —B);5" (n, k + 1)
=0
n—k
+ Y (-1 ((k+1)B = ba+7 | —B)j18 (n, k +5 +1)
3=0
n—k
= D Pk + DB -na+y| =B)inS (mk+5+1)
j=-1
n—k
+ ) (=17 ((k+ DB =na+7| =B)jr15' (m k+5 +1)
j=0
= SY(n, k).
O
To see the usefulness of equation(3) we rewrite it in the form
n—k
Sl n+1,k+1)=SY(n,k) - Z(—l)j((k +1),8-na+v|-pB);
i=1

Stn+1,k+ji+1)

where k is evaluated from n down to 0.

Using the assignments (a, 8,7) = (1,0,0) and (e, 8,7) = (0, 1,0), Theo-
rem 2 will reduce to the horizontal recurrence relations for ordinary Stirling
numbers (c.f. [8], [6]). Moreover, the fact that Broder’s r-Stirling numbers
of the first and second kind can be obtained by choosing a = -1, 8 = 0,
vy=rand a =0, 8 =1, v =r, respectively with n replaced by n — r and
k by k — r, in particular,

k

using the above assignments Theorem 2 will give a kind of horizontal re-
currence relations for both kinds of r-Stirling numbers. Interested reader
may try to do the numerical test using the tables given in Broder’s paper
[1]. Furthermore, for (a, B7y) = (0,0,1) we have

()= () - Gra) + e (00)

Theorem 3. The second form of horizontal recurrence relation for S'(n, k)

n =S(n—-rk-r;-1,0,7), n =S(n-rk-r;0,1,7), (4)
. kSy
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is given by
k—1

1 . ; .
S'(n, k) = Rl [(ﬁk+7 |a)n— ) 4= O(k)jﬁ’S‘(n,J)] » B#0.
Proof: Recall the well-known reciprocal relation

o =k2::o () o= Dr4(Don Q

k=0
which is known as the inversion of binomial transforms. Applying this
inversion formalae (5) to Theorem 1(i) we easily obtain
K

k\ ., i .
E+71a)n =3 (5)i8'S ). ©)
vl
Thus, we get Theorem 3. O

One of the horizontal recurrence relations given in Comtet’s book (8] can
be obtained from Theorem 3 with = 0, # = 1, and v = 0. Using the
congruence relation (c.f. [10])

S'(p,4)=0 (modp), 2<j<p-1
and Theorem 3 with n being replaced by an odd prime number p, we find

(Be+vla)p=k(B+v|a)p+(1-k)(v|a), (modp).
Taking @ =0, 8 =1, and v = 0 we get kP = k (mod p). This is Fermat’s
Little Theorem.

Similar to that of the horizontal recurrence relation the vertical recur-
rence relation for S'(n, k) may be given in two different forms. However,
the second form is not as general as the first form since it applies only when
a = 0. The following theorem will give us the first form of this relation.

Theorem 4. The first form of vertical recurrence relation for S'(n, k) is
given by

n—1

es'mb= 2 () E-alan,msiGe-1 @

J=k—1

Proof: To prove equation (7) we need to recall the double generating
function for S!(n, k) (c.f. [10]) which is given by

o)=Y 8 K)ot

n,k>0

®)

Bla _

B
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Taking the partial derivative on both sides of (8) with respect to u, we have

Bl _
oD kS'(n, Ic)—u = 9(t,u) u(l'*'“t)—l]

k>1n>0 B

- Z ZS (n, k)’ (ﬁ/a) t"+‘ -y

n,k>0i>1

Replacing n + i with j, we get

Z ZkSl (n, k)—u

k>21n2>0

=X 2 (;7;) (B-ea|a)jn-15 (n,k~ 1);%11."'1

k21n2k-1j2n+1

j-1 . .
DD (;7;) (B-ca|a)j—n-15'(n,k ~ 1);7’!1&—1

k>13i2kn=k-1

= Z Z Z ( ) B-ala)-j-15'(j,k - 1)—u
>1n>k j=1-1
Comparing the coefficients of the term £;u*~!, we obtain (7). 0

The vertical recurrence relations for both kinds of ordinary Stirling num-
bers can be obtained by letting (e, 8,v) = (1,0,0) and (e, 8,7) = (0, 1,0).
Using the assignments given in (4), Theorem 4 will give the following re-
currence relations for both kinds of r-Stirling numbers

n—r 1 .
n n—-r\|n-3-1 o
[ ] = =0 (.7+1) [ k-1 :|r.7'v k#”:

[:]’_ =(r| -1)n-r

1SR ol g Ll B
),

Note that the structure of these relations is almost similar to that obtained
by Broder [1, p. 248]. It is verified that these formulas generate the same
values as those given in tables 1-3 in Broder’s paper. Moreover, using
Theorem 4, the two kinds of Howard’s degenerate weighted Stirling numbers

and
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[9] can be expressed as

n-—1
Sk A0 = 3 (7)A=01-Dasusilik=1,010), 0
kj=k—1 J
1 n—1 n )
SekA0=F 3 <j)(1—o|e>,._,-_1so,k—1,xlo), k£0

where Sy(n, k, A | 8) = S(n, k; —1,-0,A—0) and S(n, k, ) | §) = S(n, k; 0,1,
A). It is also verified that tables given in Howard’s paper can be generated
using these recurrence relations.

The next theorem is the rational generating function for S(n, k;0, 3,)
which is useful in proving the second form of vertical recurrence relation. It
is a generalization of the rational generating function for ordinary Stirling
numbers of the second kind (c.f. [8]).

Theorem 5. The S(n,k;0,8,v) have the following rational generating
function

tk
$(B,y) = ) _ S(n, k; 0,8, 7)t" = . 9
%(B8,7) '; (n, k;0,5,7) ol = G+ 70l (9
Proof: Consider the equation
1 u A; .
IT=oll — (B3 +7)4] _,;o 1-(Bi+7e )

Using the method of partial fractions, equation (10) may be rewritten in
the form

k j-1 k
Yol [[n-@i+md I - (ﬂj2+'Y)t]] =1

j=0 51=0 Ja=j+1

Taking t = (85 +)~!, we obtain

A= _ﬂ:_k!(_l)k—:' C‘) Bi+7)*, §i=0,1,2,...,k

Substituting this to equation (*), we have

ik & EDHRB
ol -G+ S Bk 1-(Bi + )t
k
=2 [Eéﬁ D (- (f) (B + 7)"*"] .
v2>0 T §=0
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Making use of Theorem 1(i) and replacing k + v with n, we get (9). O
It can easily be verified that for 8 =1, and v = 0 Theorem 5 will yield

i ¢
S(n, kW = —4—-—,
gc 8 ITi-o(1 - 5t)

which is the rational generating function for Stirling numbers of the second
kind (c.f. [8], [6]). Furthermore, the vertical generating function for r-
Stirling numbers of the second kind {7 }_ (c.f. [1, p. 248]) can also be
obtained from this theorem by lettingn=j -7, k=m—7r, 8 =1, and
v = r. More precisely, we have

tm

o0 j .
z {m},t:’ - AQ-rt)A-(+1)t)...(1 —mt)

J=m

Moreover, if welet 8 =0,y =1, and t = -%, we can easily obtain the
following interesting power series identity

i (:)2-("“) =1 (10)

n=k

Theorem 6. The second form of vertical recurrence relation for S(n, k; 0, 8,v)
is given by

S(n+1,k+1;,0,8,7) = SG, k0,87)(B(k+1) + ).
i=k

Proof: Usina equation (9) we obtain

Z S(ns k; 0’ ﬁ: 'Y)tn = t(l - (ﬁk + 7)t)~l¢k—l(ﬁ, 7)

n2k

=Y 3" S3G -1,k -1;0,8,7)(Bk + )" tFt™.

j2km20

Replacing 7 + m with n, we have

D5 k0, 8" =D 3" S — 1,k - 1;0,8,4)(Bk + y)" It

n>k jZzkn>j
n
=Y ") " SG -1,k - 1;0,8,7)(Bk + )" It".
n2k j=k
Comparing the coefficients of the term ¢", we obtain Theorem 6. a
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Fora =0, 8 =1, and 4 = 0. Theorem 4 will reduce to a vertical
recurrence relation for ordinary Stirling numbers of the second kind. One
may try to derive another form of vertical recurrence relation for the second
kind of r-Stirling numbers and verify that this generates the table given in
Broder’s paper. Furthermore, for @« = 0, 8 = 0, and 4 = 1, the theorem

L))

which is known to be the Chu-Shih-Chieh’s identity [7].

4 Explicit Formula for S*(n, k)

The explicit formula for S'(n, k) given in Theorem 1(i) will only work when
B # 0. The next theorem will give us a formula that is applicable whatever
the value of 8. We call this as Schlomilch-type formula.

Theorem 7. (Schlémilch-type Formula)

simb= 3 3 C0(2) (TR (2 k Yomman

m=k h=0
where (m, h) = Ql&aze 5 (1) () (alh = 5) | B)m-ksn, @ # 0, and
define 00 = 1.

Proof: Using the vertical generating function for S!(n, k) given in Theorem
1(iv), we have

> kS (n, k)—— [Z(ﬂa)n ] [Z k!S(n, k; a, B,0) ]

n>0 n>0 n>0

-y [z": (7| Qn-mt™ ™ KIS(m, k; a, B, O)t”‘]

gl ot (n—m)! m!

k! a)p—mS(m, k;, 5,0

=Z[Z (! )(n ng?m'aﬂ )J
n>0 =k

Comparing the coefficients of the term ¢", we have

n

Sk = Y- (7)1 Shn-mS(rm, i, 5,0) (12)

m=k
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From the paper of Hsu and Yu [11], S(m, k; , 8, 0) can be written as

=y +h-1\[ 2m—k
S(m —k+ h,h;B,2,0).

Substitute this to equation (12) and apply theorem 1(i) to S(m — k +
h, h; B, a,0), we obtain (11). 0

Note that if we let & =1, 8 = 0, and v = 0 equation (11) will reduce
to Schlémilch-type formula for Stirling numbers of the first kind (c.f. [8]).
We know that formula (11) will fail when a = 0. Hence, the two explicit
formulas (given in theorem 1(i) and equation (11)) are not applicable when
a = 8 =0. But using the basic relation (1) we can easily obtain

S(n, k;0,0,7) = (:)7"*. (13)

Moreover, for nonzero «, 8, ¥ Theorem 1(i) and the Schlémilch-type for-
mula can both give the exact value for S1(n, k).

The next result provides a formula that is useful to compute the exact
value of S(n, k;0, B,) for any B, and 4. Since the Schlémilch-type formula
is not applicable to the case when a = 0, we can say that Schlémilch-type
formula and the formula that follows are exactly supplementary to each
other.

Theorem 8. The following explicit formula holds

S(n, k;0,8,7) = Yoo B+ N@B+Y) . (k)

co+cy+-+ep=n—k

Proof: Using the rational generating function given in Theorem 4, we have

k
D S(n, k0,8, 1) * =] [E(ﬁj +7)°ft°f]
3=0

n2k c; 20

k
= Z [H(ﬂ] + 'y)"i] geoter+tex

coter+---+ex>0 | j=0

=Zl 2 f[(ﬁj+7)°’] £k,

n2k | cot+eyt-+ce=n—k j=0

Identifying the coeficients of the term t*~*, we obtain Theorem 8. a
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For =1 and v = 0, Theorem 8 will give
S(n,k) = > 19122 | ko,
cot+er+ e top=n—k

which is the explicit formula for ordinary Stirling numbers of the second
kind (c.f.[8, p. 207]). On the other hand, if we let =0, v = 1. we get

B)-.2

coteyteteg=n—k

which means that (}) counts the number of nonnegative integer solutions
¢; of the equation
cotei+--+er=n—k

Futhermore, for any v with 8 = 0, we have

S(n) k’ 0’ 0’ ‘Y) = Z ’Yco+61+’"+6k - (:) ’Yn_k

cote1+-tep=n—k

which is exactly equation (13).

5 Evaluation of Infinite Sum

Consider the following infinite sum

1
ak(a:) = ,.EZ;CSI(" - l,k - l)m

This kind of sum with & = 1 was first investigated by Charalambides and
Koutras [5]. Take note that in certain combinatorial applications of the
numbers S!(n, k) the evaluation of the sum o(z) is necessary. The follow-
ing lemma will help us to evaluate this sum.

Lemma. The infinite sum ox(z) has the following recurrence relation

(o) = s g1 @) (14)

1

where k = 2,3, and with initial condition oy(z) = =

Proof: Using the triangular recurrence relation for S*(n, k) and the fact
that
1 T —na

@[@)n @] Dnt1
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we have

(z — na)S'(n, k — l)leiT = [Bk=1) +)S'(n -1,k - 1)_( Ila)n

—-(n-1aS'(n—-1,k— 1)( | )

+Sn-1,k—-2)

(=| a)n.

Summing up both sidesover n = k—1,k,k+1,... we obtain the recurrence
relation (14). For the initial value oy (z), we have

o1(z) = Z (’Y | a)n— Z ( (v/@);

i (=] a),. z/a—1);
= %F(—'y/a, 1;—z/a+1;1)

where F(a, b; c; z) denotes the hypergeometric series for which

I'(c)['(c— a —b)

F(a, b;c;l) = m_—w

(15)

Note that I'(z) = [2¢7* [,5, [(1+ 2/n)e~*/"]] - Making use of (15), we
get
z/a T

Fl=v/enli —ofa+1;1) = zfa=vja z-7

Thus, oy(z) = z_,’ O
Theorem 9. The infinite sum ok(z) has the following explicit formula
1 1
ok(z)=) S'(n-1,k-1 = . 16
o) = 2 S' (e PRty R
Proof: Making use of the lemma, we can easily obtain (16). O

The number G(n, k; 8, v) defined in the joint paper of Charalambides and
Koutras [5] can be expressed in terms of Stirling numbers as

G(n,k; B,7) = B*S(n, k; 1, B,7).

In this case with z = By + v equation (16) will yield

1 1
ga(n ~ Lk =LA . = e
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which is the infinite sum obtained by Charalambides and Koutras. For the
case where (a, 8,v) = (0,0,1) and z = 2 in (16), we obtain the following

power series identity
X (n—=1\._n
> (k - 1)2 =1

n=k
which is precisely equivalent to (10).
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