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ABSTRACT. Let D = (W4, Va; A) be a directed bipartite graph
with |Vi| = |Vz| = n > 2. Suppose that dp(z) + dp(y) 2
3n for all z € V; and y € V2. Then, with one exception, D
contains two vertex-disjoint directed cycles of lengths 2s and 2¢,
respectively, for any two positive integers s and ¢ with s+t < n.

1 Introduction

We discuss only finite simple graphs and strict directed graphs. The termi-
nology and notation concerning graphs is that of [4], except as indicated. A
directed graph D is called a directed bipartite graph if there exists a parti-
tion {V4, Va} of V(D) such that the two induced directed subgraphs D[V1]
and D[V of D contain no ares of D. We denote by (V1, V2; A) a directed bi-
partite graph with {V, Va} as its bipartition and A as its arc set. Similarly,
(W1, Va; E) represents a bipartite graph with {Vj, V,} as its bipartition and
E as its edge set. In [11], C. Little, K. Teo and H. Wang investigated two
vertexdisjoint directed cycles in D. To state the result, a directed bipartite
graph B, of order 2n for every integer n > 2 is constructed as follows. We
use K, to denote the complete directed bipartite graph (V, Va; A) with
[Vi| = a and |V3| = b such that both (z,y) and (y,z) belong to A for
allzeViandy € Vo. Let Dy = (Xl,Yl;A]_) and Dy = (Xz,Yz;Az) be
two vertex-disjoint directed bipartite graphs such that D, is isomorphic to
K{n/2).ins2) 3nd D is isomorphic to Kto/2.in/21- Then By consists of Dy
and D, and all arcs (u,v) and (z,y) foru € X;,ve Yz, z €Y1 and y € Xo.

C. Little, Kee Teo and H. Wang proved the following.
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Theorem A. [11] Let D = (V4,V3; A) be a directed bipartite graph with
V1] = |Va| = n = 2. Suppose that dp(z) + dp(y) = 3n for all z € V; and
y € Va. Then D contains two vertex-disjoint directed cycles of lengths 2n;
and 2nj, respectively, for any positive integer partition n = ny +na, unless
n is even and D is isomorphic to B.

In this paper, we strengthen the above result, proving the following:

Theorem B. Let D = (V}, V»; A) be a directed bipartite graph with |V;| =
|Va| = n > 2. Suppose that dp(z) + dp(y) 2 3n forall z € V; and y € Va.
Then D contains two vertex-disjoint directed cycles of lengths 2s and 2t,
respectively, for any two positive integers s and t with s+t < n, unless n
is even and D is isomorphic to B,

For convenience, we mention some terminology and notation. Let G be a
graph and D a directed graph. We use V(G) and E(G) to denote the vertex
set and the edge set of G, respectively. We denote |E(G)| by e(G). We use
V(D) and A(D) to denote the vertex set and the arc set of D, respectively.
For a vertex z € V(D), N} (z) is the set of all vertices y of D with (z,y) €
A(D). We similarly define Np,(z) and let Np(z) = Nj(z) U Np(z). We
also define df(z) = |N}(2)], dp(z) = INp(2)| and dp(z) = d}(2)+dp(a).
For two vertices z and y of D, we say that z is joined to ¥ in D if either
(z,y) or (y,z) is an arc of D. For a vertex u € V(G) and a subgraph H of
G, we define dg(u, H) = |Ng(uw) N V(H)| where Ng(u) denotes the set of
vertices that are adjacent to v in G. Hence dg(u, G) = dg(u), the degree
of u in G. For a subset U C V(G), G[U] is the subgraph of G induced by
U. For a subset X C V(D), D[X] is the directed subgraph of D induced
by X. A graph or directed graph is said to be traceable if it contains a
hamiltonian path or directed hamiltonian path, respectively. A graph or
direcded graph is called hamiltonian if it contains a hamiltonian cycle or
directed hamiltonian cycle, respectively. For any two vertices z and y of G,
we define e(zy) =1 if zy is an edge of G and e(zy) = 0 otherwise. For any
two vertices u and v of D, we define 7(u,v) = 1 if  is not joined to v in D
and 7(u,v) = 0 otherwise. We set A*(D) = max{df(z) | z € V(D)} and
A~ (D) = max{d,(z) | x € V(D)}.

To conclude our introduction, we propose the following conjecture.
Conjecture C. Let D = (V4,V5; A) be a directed bipartite graph with
[Vi] = |V2| = n > 2. Suppose that dp(z) + dp(y) > 3n for all z € V;
and y € Va. If H = (Uy,Us; A’) is a directed bipartite graph with |Uy| =
|Uz| =n, At(H) < 1and A~(H) < 1, then D contains a directed subgraph
isomorphic to H, unless n is even and D is isomorphic to By,.
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2 Lemmas

In the following, G = (V4,Vz; E) is a bipartite graph with |Vj| = V| =
n > 2.

Lemma 2.1. Let P = z,y;...zxyx be a path of G. Let y € V(G) be a
vertex not on P such that {z,y} € V; for each i € {1,2}. Suppose that

dg(z1, P) + dg(y, P) > k+ 1. Then G has a path P’ from y to yj such
that V(P') = V(P)U {y}.

Proof: The condition implies that {z;y,z1y:} C E for somei € {1,2,...,k}.
Then the path P’ = yz;yi—1... o1 T1¥iTir1%i+1 - - - Tkyx Satisfies the re-
quirement. O

Lemma 2.2. [10] Let P = zy; ... Zxyx be a path of G. Let z € V; and
y € V, be vertices not on P. Then the following two statements hold:

(a) If dg(z, P) + dg(y, P) > k+ 2 — ¢(zy), then G contains a path P’
from xz1 to yy such that V(P') = V(P)U {z,y}.

(b) If dg(z, P) + de(y, P) > k + 1 — e(zy), then G contains a path P’
such that V(P') = V(P)U {z,y}.

Lemma 2.3. [3] The following two statements hold:

(a) Let P = zyy;...zxyx be a path of G with k > 2. If dg(z, P) +
de(yk, P) > k+1, then G has a cycle C such that V(C) = V(P).

(b) If de(z) + de(y) = n+ 1 for any two non-adjacent vertices z and y
with z € V; and y € V3, then G is hamiltonian.

Lemma 2.4. [9] If dg(z) +dg(y) > n for all z € V; and y € Va, then
either G is traceable, or n is even and G is the vertex-disdoint union of two
subgraphs isomorphic to Ky /3 n/2.

Lemma 2.5. [1,10] Let C = z9;...ZkyxT1 be a cycle of G. Let i,j €
{1,2,...,k}. Suppose that dg(z:,C) + dg(y;,C) > k + 2. Then G has
a path P from y; to z;;, such that V(P) = V(C), where subscripts are
reduced modulo k.

Lemma 2.6. [10] Suppose that G has a hamiltonian path and for any two
endvertices u and v of a hamiltonian path of G, dg(u) + dg(v) > k holds,
where k is an integer greater than n. Then for every = € Vi and every
y € Va, do(z) +da(y) > k. :

Let Vi = {z1,...,z,} and Vo = {y1,...,yn} be such that d(z;) < --- <
d(z,) and d(y;) < -+ < d(yn). Schmeichel and Mitchem [8] proved that if
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n > 3 and d(zx) < k implies d(yn—x) 2 n— k +1 for each 1 < k < n, then
G contains a cycle of length 2! for each ! € {2,3,...,n}. As a corollary, we
have the following.

Lemma 2.7. If d(z) +d(y) > n+1 for each x € V; and y € Va, then G
contains a cycle of length 2k for each k € {2,3,...,n}, unlessn =3 and G
is a cycle of length 6.

8 Proof of Theorem B

Besides using the idea of [11], our proof also depends heavily on Lemma
2.7 and the following Lemma 3.1.

Let D = (W4, V2; A) be a directed bipartite graph with [V}| = |[V2| =n > 2
such that dp(z) + dp(y) > 3n for all z € V; and y € V5. Suppose, for a
contradiction, that D does not contain two vertex-disjoint directed cycles
of lengths 2s and 2t, respectively, for some positive integers s and ¢ with
s+t < n. Furthermore, D is not isomorphic to B,, when n is even. By
Theorem A, s+t < n.

We construct a bipartite graph G = (V}, V5; E) from D such that zy € E

if and only if both (z,y) and (y,z) belong to A. Then G does not con-
tain two vertex-disjoint cycles of lengths 2s and 2¢, respectively. For each
subgraph G’ of G and each vertex z € V(G) — V(G’), we let df(z,G') =
INE(X)NV(G’)|. Similarly, we define dj(z,G’) and dp(z, G').
Lemma 3.1. Let p and q be two positive integers with p+ q < n. Let
F) be an induced subgraph of order 2p in G and F = G — V(F;). Let
m=n—p. Let zyyy1,...,Zm—1ym—1 be m — 1 independent edges of F>
and put {zm,ym} = V(F3) — {zi,3: | 1 £ 1 < m - 1}. Suppose that F; is
traceable and that D[V (F; — z; — y;)] contains a directed cycle of length
2q for each i € {1,2,...,m}. Then D contains two vertex-disjoint directed
cycles of lengths 2(p + 1) and 2gq, respectively.

Proof: On the contrary, suppose that the assertion in the lemma is false.
Let » and v be any two endvertices of a hamiltonian path of Fy. Let r =m
if Z,,ym € B(G) and otherwise r = m — 1. Then

dpu,ziy:) +dp(v,ziy:) <2 foralli € {1,2,...,7}.

Thus
dp(u, F3) + dD(v, ) <2r4+

where A =4 if r = m — 1 and otherwise A = 0. Consequently,
dp(u, 1) +dp(v,F1) 23n—=2r=A=3p+m+2(m—r) - A
This yields that dg(u, F1) + dg(v, F1) 2 p+m + 2(m —r) — A. By the

assumption of the lemma, we see that we can choose r = 2 if m = 2.
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Thus we have that dg(u, F;) + de(v, F1) 2 p+ 1. By Lemma 2.3, Fy
is hamiltonian if p > 2. Let C = u;v;...u,v, be a hamiltonian path
of Fy such that ujv, € E. Then dp(zi,u;v;) + dp(¥i,u;v;) < 2 for all
i€ {1,2,...,7} and j € {1,2,...,p} for otherwise we readily see that D
contains two required directed cycles. Thus dp(z;, Fi1) + dp(%i, F1) < 2p
for each i € {1,2,...,7}. Let I be the number of arcs of D between F; and
F,. Then

I= Y dp(w)-2/ADV(M)) 2 3np-4p> 1)
weV(F)
We now break into the following two cases. Say {z1,...,Zm} C V1.

Case 1. r =m.

We clearly have that I < 2pm. Together with (1), this yields that p > m.
We also see that, for each i € {1,...,m}, 4m > dp(z;i, F2) + dp(vi, F2) >
3n — 2p = 3m + p. It follows that p < m. Consequently, we obtain that
DV (Fy)) = DIV(F)] = K}, )5 ./ and the lemma follows as D % B,,.
Case 2. r=m-—1.

By Theorem A, m > g+ 2 and so m > 3. Let F = F; = Zyy — Y. We
clearly have that I < 2p(m—1)+dp(Zm, F1)+dp(ym, F1). Asdp(Tm, F1)+
dp(ym, F1) < 4p, we see, together with (1), that p > m — 2. Suppose that
p =m —2. Then we must have that D[V (F1)] = K, and dp(Zm, F1) +
dp(ym, F1) = 4p. Then we see that p =1 and 7(zm, ym) = 1 for otherwise
D[V (F1 + Zm + Ym)] is hamiltonian. Therefore m = 3 and g = 1. Then by
the degree condition on D, it is easy to see that D contains two directed
cycles of lengths 2 and 4, respectively. Hence p > m — 1.

As m > 3, p > 2. Thus F,; is hamiltonian. As D[V(F; + zm + yYm.)]
is not hamiltonian, we see that dg(zm, F1) + da(ym, F1) < p + 7(Zm,Ym)
by Lemma 2.2(a). Then dp(zm, F1) + €p(¥m, F1) < 3p + 7(Tm, ym). It
follows that dp(z.m, F2) + dp(Ym, F2) = 3m — 7(Tm, ym) and dg(Zm, F2) +
dG(ym, F2) > (m—1)+1. This implies that there exists i € {1,...,m—1},
say i = 1, such that {,ym,¥1Zm} € E. Then {Z2y, ..., Tm—1Ym-1, Tm¥1,
ymZ1} is a perfect matching of F3. Hence ¢ > 2by Case 1. Thusm > ¢+2 >
4. Sincep > m—1 and dp(z;, F1)+dp(yi, 1) < 2pforeachie€ {1,...,m—
1}, we can readily show that 4m > dp(zi, F2) + dp(yi, F2) > 3m +p 2>
4m—1 and dg(z;, Fo)+de(yi, F2) > 2m—1foreachi € {1,...,m—1}. Then
de(zi, Fy)+da(y;, F3) > 2(m—1)-22 (m-1)+1foralli,j € {1,..., m—
1}. By Lemma 2.3(b), Fj is hamiltonian. Let a1b;...am—-1bnm-1a1 be a
hamiltonian cycle of F}. As dg(zm, F3) + de(ym, F3) 2 (m —1) + 1, we
may assume w.1.0.g. that {a1ym,b1Zm} C E. As dp(z;, F2) +dp(y:, F2) >
4m—1 for each i € {1,...,m—1}, we see that z is joined to y in D for each
z € {z1,...,Zm} and y € {y1,...,Ym} With {z,3} # {Tm,ym}. As g <
m —2, we then see that each of D[V (Fy —z,, —b,)] and D[V (F2 —ym —a31)]
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contains a directed cycle of length 2¢, and D[V (F; — a; — b;)] contains a
directed cycle of length 2¢ for each i € {2,...,m —1}. Thus we go back to
Case 1 again. This proves the lemma. O
We will divide our proof into two parts after the following four claims.
Claim 1. If C is a cycle of length 6, and z and y are two vertices not on
C in G with z € V; and y € V; such that dg(z,C) + de(y, C) > 5, then
C + z + y has a perfect matching M such that C + z + y — V(e) contains
a cycle of length 4 for all e € M.
Proof of Claim 1: W.1.0.g., say C = u;v;u3v2uzvau, such that {v1,v2,v3}
© € Ng(z) and {u;,u2} C Ne(y). We see that the claim is true by choosing
M = {uyv1, ugvs, ugy, voz}. O
Claim 2. For all z € V; and y € V3, do(z) + dg(y) 2> n+ 27(z,y).
Proof of Claim 2.: We have

dg(z) + de(y) = dp(z) + dp(y) ~ (INp(z)| + INp(¥)|) )
2 3n— (2n - 21(z,y)) = n+27(z,y) 3)
O

Let r = n —s. By Claim 2 and Lemma 2.4, either G is traceable, or
G = G'UG” with G’ = G” = Kp/3,/2. In the latter case, it is easy
to see, by the condition on the degrees of D, that the theorem holds for
D since D is not isomorphic to B,. Therefore we may assume that G is
traceable. Then we can choose two vertex-disjoint induced subgraphs of
G, say Gy = (A1, B1; E1) and Gy = (A, By; E,), of orders 2s and 2r,
respectively such that

both G; and G5 are traceable. 4)
Subject to (4), we may further choose G; and G» such that
e(G1) + e(G2) is maximum. (5)

Claim 3. [10]. Let u and v be two endvertices of a hamiltonian path of G,
and let z and y be two endvertices of a hamiltonian path of G3. Suppose
that uy € F and vz € E. Then

dg(u, G1) + dg(v, G1) + do(z, G2) + da(y, G2)
2dg(u, G2) + dg(v, G2) + de(z, G1) + de(y, Gh). (6)

Claim 4. [10]. Let » and v be two endvertices of a hamiltonian path of G,
and let z and y be two endvertices of a hamiltonian path of G5 such that
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ve€Viandz e V). Let Gy =G ~u—v+z+yand Gy = Go—z—y+u+v.
If both G, and G, are traceable, then

dg(u, G1) + dg (v, G1) + de(z, G2) + dg(y, G2)
2dg(u, G2) + dg(v, G2) + da(z, G1) + da(y, G1)
— 2(e(uy) + €(vz)) + 2(e(uv) + (XY)) (M

In particular, if dG(‘U., GZ)+dG('U, G?) 2r+2and dG(z’ Gl)+dG(y: Gl) 2
s+ 2, then (7) holds.

Let {Hy, H2} = {G1,G2} and set 2n; = |V(H;)| and 2np = |V (H?)|.
Then {ni,n2} = {s,7}. Let P; = u1v;...Un, vy, and Po = 23 .. TnyYn,
be two hamiltonian paths of H; and Hj, respectively. Furthermore, we
choose P, with dg(z1, H2) + dg(yn,, H2) as small as possible. We may
assume that u; € A, z, € Aj, A; U Ay =V and of course B; U By = V.
Since D does not contain two vertex-disjoint directed cycles of lengths 2s
and 2¢, respectively, we set H; and Hz such that if Hy = G, then H, does
not contain a directed cycle of length 2s, and if Hy = G5 then Hs does not
contain a directed cycle of length 2¢. Then we have the following.

Np(z1) € V2 - {ys} and Np(ys) C Vi — {z1} if Hy = Gy; (8)
Np(z1) € Va2 — {5} and Np(yr) C Vi — {zr—eq1} if Ha = G2, (9)

By (2), (8) and (9), we obtain
de(z1) + de(yn,) 2 n + 2. (10)

We now divide our proof into the following two parts.
Part 1. dg(zl, HQ) + dG(yng, Hg) < ng.
By (10), we have

dg(21, H1) + dg(yny, H1) 2 m1 + 2. (11)

When Hj = Gy, it is easy to see that {(z1,%:), (yn,,2:)} € A and {(w, 1),
(ziryn,)} € A for all i € {1,2,...,n2} for otherwise D[V(G})] is hamil-
tonian. This implies that ny > 2, dj,(z1, H2) + d};(yn,, H2) < n2 and
dp(z1, H2) + dp(yn,, H2) < na, and therefore dp(z1, Hy) + dp(Yn,, H1) >
3n — 2ny = 3n, + ns. It follows that

if Hy = G\, then dg(z1, H1) + dg(Yny, H1) 2 11 + 12 2 0y + 2. (12)

Claim 5. For any two vertices u and v of H; with u € V; and v €
Vo, dg(u, Hy) + dg(v, H1) > ny + 1. Furthermore, if » and v are two
endvertices of a hamiltonian path of H; and u is not joined to v in D, then
de(u, Hy) + dg(v, Hy) > ny + 2.
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Proof of Claim 5: Suppose, for a contradiction, that the claim is not true.
Then at least one of the two assertions is false. If the first assertion is false,
then, by Lemma 2.6, there exist two endvertices u and v of a hamiltonian
path of H; such that dg(u, H,) + dg(v, H1) < ny. If the first assertion is
true and the second false, then there exist two endvertices u and v of a
hamiltonian path of H; such that dg(u, H;) +dg(v, H1) =n;1+ 1 and u is
not joined to v in D. In both cases, we may assume that {u,v} = {u;,vn,}.
Let 7 = 7(u1, vn, ). By (3), we have

dg(uy, Hy) + dg(vn,, Ha) = dg(u1) + dg(vn, — dg(u1, Hy) — dg(vn,, H1)
Sn+2r—(m+7)=m+T (13)

If €(u1Yn;) + €(¥n,71) = 0, then we see, using Lemma 2.2(b) and (11),
that both H} and H} are traceable, where H] = Hy —uj —vp, +Z1 +Yn,
and H = Ha — 1 — Yn, + U1 + vn,. Thus by Claim 4, we have e(u1yn,) +
€(vn,z1) > 1, a contradiction. Therefore €(uiyn,) + €(vn,z1) 2 1. By
Claim 3, we then have €(uyn,) + €(vn,z1) > 1 for otherwise (6) is violated.
Therefore €(u1Yn,)+€(vn,z1) = 1. W.1.0.g., we may assume that v,, z1 € £
and wyyn, € E. If dg(u1, H2) + dg(vn,, H2) 2 n2 + 1 4 7, then both Hi
and H) are traceable by Lemma 2.2, and then by Claim 4, we obtain a
contradiction, that is, ng +n; +7 > (n2 + 1+ 7) + (n1 + 2) — 2. Hence we
must have

dg(ul,Hl) + dG(’U,“, Hl) =n,; + 7and
dg(uy, H2) + dg(vn,, H2) =na + 7. (14)

By (2), (3) and (14), we obtain

Np(uy) = Veand Np(vn,) =V if 7= 0; (15)
Np(uy) = Vo — {vn,} and Np(vp,) = Vi — {w } if 7= 1. (16)

By (11) and (14) and the hypothesis of Part I, we have either dg (u1, H2)+
de(zy, Hy) > de(u, Hi) + do(zy, Ha), or dg(vn,, H2) + da(yn,, H1) >
dg(vn,, Hi) +da(yn,, H2). We distinguish these two cases in the following.
First, we note that u,, yn, € E for otherwise we see, from (15) and (16), that
DI[V(H; — vn, + ¥n,)] is hamiltonian and D[V (Hz — yn, + vn,)] contains
a directed cycle of length 2t if H; = G; and H = G3, and otherwise
D[V (Hz — Yn, + vn, )] is hamiltonian and D[V (H1 — vn, + yn,)] contains a
directed cycle of length 2t¢.

Case 1. dg(u1, Ha) + de(z1, H1) > do(u1, Hi) + de(z1, Ha).

In this case, let HY = Hy —uy +z1 and Hj = Hy —z1 +u;. Then H{ is
traceable and e(H!) + e(HY) > e(H,) + e(Hz). By (4) and (5), Hy should
not be traceable. Therefore vy, € E and dg(u1, H2) + dg(yn,, H2) =
do(uy, H2 — 21 — 1) + d6(Ynys Hz — 21 —y1) +€(@1yn,) Sn2 -1+ 1=m
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by Lemma 2.1. Clearly, we have that either Np(u1) # V2 or Np(yn,) #
V; for otherwise D contains two required directed cycles. Then by (2),
dg(u1)+dg(yn,) > n+1. Therefore dg(u1, H1)+da(yn,, H1) 2 n1+1. By
(14), dg(yny, H1) = dg(vn,, H1)+1—7 and dg(vn,, H2) 2 de(yn,, H2) +7.
Furthermore, we have dg(u1, H1—%n, —¥n,)+dc(¥ng, H1—tm; —¥n,) 211
as Un,Yn, ¢ F, and therefore we see, by Lemma 2.1, that Hy — vp, + ¥n,
is traceable. Clearly, Hs — y,, + vn, is traceable. This is in contradiction
with (5) e(H1 — ¥, + Yn,) + €(H2 — Yny + vn,) > e(H1) + e(Hz) + 1.
Case 2. dG('U.," ’ H2) + dG(yn:s Hl) > dG(Unl ’ Hl) + dc(y'n:: H2)'

In this case, let H = Hy —vp, +Yn, and HY = Hy —yn, +Vn,. Then HY
is traceable and e(H{') +e(HY) > e(H1) +e(Hj). Therefore by (4) and (5),
H! should not be traceable. Then by Lemma 2.1, we see that dg(u1, H1 —
Un, — Uny) + 4G (Ynyy H1 — Un, — Un,) S 11 = 1. AS Up, Yn, € E, we obtain
dc(u1, Hy) + dg(yn,, H1) < n1. By (2), (8) and (9), de(u1) + de(¥n,) =
n+1. Therefore dg(u1, H2) +dg(yn,, H2) > no+1. Together with (14), we
see that dG(’Unl, Hl) 2 dG(ynza Hl) and dG(yn;, H2) 2 dG(’Un1rH2)' This
is in contradiction with the assumption of this case. Thus Claim 5 holds. (I

By (11), n; > 2. By Claim 5 and Lemma 2.3, H; is hamiltonian. We
may assume C = P; + ujv,, is a hamiltonian cycle of H;. Let F; =
Hy — 1 — yn, if Hy = G; and otherwise F} = G[{yhmg,...,yg_l,zt}].
Set F, = G — V(Fy). Clearly, F; — {Z1,¥n,} has a perfect matching. By
Lemma 3.1, There exists an edge on C, say 419y, , such that if Hp = G2 then
Fy—{uj,vp, } does not contain a directed cycle of length 2s, and if H2 = G
then either Fp —x; —yn, or Fo — {u1,vn,} does not contain a directed cycle
of length 2¢t. Let us first assume that H; = G; and F; — z; — y,, does
not contain a directed cycle of length 2t. As H; = G; and by Claim 5
and Lemma 2.7, we see that ¢ = 2 and G is a cycle of length 6. By (11),
d(z1, G2) +d(yn,, G2) = 5. By Claim 1 and Lemma 3.1, we are done. Thus
Hy = G5. The following claim completes the rest of the proof in this part.
Claim 6. For each edge uwv € E(C), D[V(Hy —uw —v + z1 + ¥n,)] is
hamiltonian if H; = G, and otherwise D[V (H; —u—v+z; +¥n, )] contains
a directed cycle of length 2t.

Proof of Claim 6: Suppose that the claim is not true. We may assume
w.l.o.g. that D[V(H; — uy — vn, + Z1 + Yn,)] is not hamiltonian. Let
H = Hj —uy —vy,,. Then |V(H)| = 2(n; —1). We distinguish two cases as
follows.

Case 1. dG(z1,H) + de(yn,, H) 2 (1 — 1) + 2.

In this case, we see that n; > 3. Suppose that D[V (H)] is hamiltonian.
If H; = G4, then by Lemma 2.2(a), D[V (H + z1 + yn,)] is hamiltonian. If
H, = G3, we may assume that dg(z1, H) > (n; +1)/2 and then it is easy
to see that D[V (H +z,)] contains a directed cycle of length 2t as ¢ < n;—1,
a contradiction. Therefore dg(vy, H) + dg(nn,, H) < n; — 1 and v; is not
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joined to uy, in D. Then we see that dg(vy, Hy) + dg(un,, H1) < ny + 1.
By Claim 5, we further obtain dg(vy, H1) + dg(un,, Hy) = n; +1 and H,
has no hamiltonian path from v, to u,,. By Lemma 2.2(a), this implies
that dg(ui, H) + dg(vn,, H) < n1 — 1 and consequently,

de(uy, Hy) +da(vn,, H)) =ny +1 (17)
Furthermore, we have
dg(u1,e) + dg(vn,,€) < 1, for any edge e € E(Py —uj —vp,). (18)

Let ig be the largest integer in {1,2,...,7n1 —1} and jo the least integer in
{2,3,...,m,} such that {u;v;,,vn,u5} C E. By (17) and (18), we see that
Ng(u1, Pr) = {v1,v2,...,%,,Vn, } and Ng(vn,, P1) = {81, %jo, Ujo41 - ., Un, }
with jo = i9+2. We have u;,v; € E for all j € {jo—1,J0, 50 +1,...,n1—1},
for otherwise for some 7 > jo — 1 we see that

VU2 .. . Vig—-1Ui ViU V-1 - . . ug°+1‘v,'°’u.1’vnlUj+11)j+1uj+2 ceeUny—1Un,

is a hamiltonian path from v, to u,, in H;, a contradiction. Similarly, we
must have uv;, € E for all i € {2,3,...,4p + 1}. Moreover, if ig # 1 then
UiyUn, € E, and if jo # n; then u,v;, € E. In both cases, dg(ui,, H1) +
da(vjy, H1) < ny, contradicting Claim 5. If ip = 1 and jo = n;, thenn; =3
and we verify immediately that D[V (H; — u1 — vn, + Z1 + yn,)] contains a
desired directed cycle.

Case 2. da(zl, H) + dc(y,.,, H) <n,.

In this case, by (11), we see that {zivn,,w1yn,} C E, dg(z1,H1) +
dc(Yna, H1) = n1+2 and dg(z1, H) +dg(yn,, H) = n1. Thus de(zy, H2) +
dc(yn,, H2) = ng by (10). By (8), (9) and (10), we see that equality
holds in (8), (9) and (10). Then D[V(H; — u; + z1)] contains a directed
cycle of length 2s or 2¢ if Hy = G; or H; = G3, respectively. There-
fore {y1,...,Yn,—1} € Np(u1) for otherwise we obtain two required cycles.
Similarly, {z3,...,Zn,} € Np(vn,). By (2), de(u1) + de(vn,) 2 n+2. If
dg(uy, H1)+dg(vn,, Hy) = n1+1, then dg(uy, Hz) +dg(vn,, Hz) > na+1,
and by Claim 3, n; + 14 n3 > n; + 2+ no + 1, a contradiction. Hence
dg(u1, Hy) + dg(vn,, H1) 2> ny + 2 and thus dg(u, H) + dg(vn,, H) >
(r1—1)+1. By Lemma 2.2(a), H; has a hamiltonian path from v; to u,.

First, suppose that H, = G;. By (12), no = 2. Then By (2) and
(12), we obtain Np(z1) = Va — {y2} and Np(y2) = Vi — {z1}. Therefore
D[V(H; — u; — v1 — ug + z1)] contains a directed cycle of length 2t as z,
is joined to v,, —¢+1 in D and D[{u1, v, ug, y2}] is hamiltonian as y, is
joined to ug in D, a contradiction.

Next, suppose Hy = G,. Then we have that Np(z;) = Vo — {%:} and
Np(yn,) = Vi — {zn, —t +1}. W.l0 g., say (z1,yn,) € A. Suppose
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that H has a hamiltonian path whose two endvertices, say u € V; and
v € Vs, are joined in D. If (u,v) € A, let a;b, ve+@n,_1bp, 1 be a hamil-
tonian path of H with (a1,bn,~1) € E and e, € V4, and if (v,u) € A, let
biay...an,—1bs,_1a; be a hamiltonian path of H with (b1,a1) € A and
a1 € V1. Asdg(z1, H)+dg(yn,, H) = ny, there exists i € {1,2,...,n1-1}
such that {aiyn,,b;z1} C E. Thus

(ai: bi—ly <.y @2, bln ai, bn]—la Qny—1y bru-—Z: e ’bivml)ynzt ai)

is a hamiltonian directed cycle in D[V(H + z, + ¥n,)], & contradiction.
Hence H does not have such a path. This implies that v; is not joined to
Un, in D and dg(v1, H) + dg(un,, H) < n; — 1. By Claim 5, da(v1, Hy) +
dg(un,, H1) = ni+1. By (2), dg(v1)+dg(un,) > n+2. Hence dg(vy, Hp)+
dg(un,, Hy) > ny + 1. Since we already know that H; has a hamiltonian
path from v; to u,,, we see, by Claim 3, that €(T1v1) + €(Yn,un,) < 1.
By Lemma 2.2(b), H; = H; — v, — Un, + 21+ Yn, and Hy = Hy — z; ~
Yna + V1 + un, are traceable. By Claim 4, ¢(z1v1) + €(yn,un,) = 1 and
de(v1, Hz) + dg(tn,, Ha) = ng + 1. W.l.o.g., say z;v; € E. It follows
from (2) that Np(v1) = Vi - {un,}. Then Dl{z1,91,..., 21, Ye—1,2¢, 91 }]
is hamiltonian as v;z; € E and v, is jointed to z,. We also see that
D[V(H, — v1 + yn,)] is hamiltonian since U1Yn, € £ and yp, is joined to
ug, a contradiction. a

Part II. dG(xl1H2) +dG(yn2)H2) Zng + 1.

By the minimality of dg(z1, H2)+ dg(yn,, Hy), we have that dg(z, Hy)+
de(y, Ha) > ny + 1 for any two endvertices z and y of a hamiltonian path
of Hy. By the choice of Hy, Lemma 2.6 and Lemma 2.7, we see that H,
must be a cycle of length 6. Moreover, ¢t = 2 and H; = G,. Then we see
that dD(z,G2) = 4 for all z € V(G,). By (2), we obtain

da(x:) + do(y;) > n+2 for all 4,5 € {1,2,3); (19)
do(zi,G1) + de(y;, G1) 2 s+ 1 for all 4,5 € {1,2, 3). (20)

Claim 7. For any two vertices u and v of G with v € A, and v € By,
de(u,G1) +dg(v,G1) > s+ 1. Furthermore, if u and v are two endvertices
of a hamiltonian path of G; and w is not joined to » in D, then dg(u,G,)+
dG('v,G'l) >s+2.

Proof of Claim 7: Suppose, for a contradiction, that the claim is not true.
Then at least one of the two assertions is false. If the first assertion is false,
then, by Lemma 2.6, there exist two endvertices  and v of a hamiltonian
path of Gy such that dg(u, G;) + de(v, G1) < s. If the first assertion is
true and the second false, then there exist two endvertices u and v of a
hamiltonian path of G; such that de(u,G1) +de(v,G1) = s+1 and u is
not joined to v in D. In both cases, we may assume that {z,v} = {uy,v,}.
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Let 7 = 7(u1,95). By (3), we have

d(u1, G2) + de(vs, G2) = da(u1) + da(vs) — do(u1, G1) — de(vs, G1)
>n+2r—(s+7)=3+T. (21)

Let us first assume that dg(u1, G2) + dg(vs, G2) 2 4+ 7. Together with
(20), we see, by Claim 3, that for each edge z;y; of Ga, either z;v, & E or
yjur € E. W.lo.g, say 217, ¢ E. If yau, ¢ E, then both G} —u; — v, +
z1 +ys and G2 — =1 — y3 + u1 + v, are traceable by Lemma 2.2(b). Then
we obtain a contradiction by Claim 4. Hence we must have that y3u; € E.
Similarly, we must have that 3,11 € E and z3v,; € E, and so z2v; € F and
you; € E, a contradiction. Therefore we must have, by (2) and (3), the
following:

da(u1,G1) + da(vs, G1) = s + 7 and dg(u1,G2) + d(vs, G2) =3+ 7;

(22)
Np(u;,G1) = Vo — {vs} and Np(vs) = Vi —{w} if r=1; (23)
Np(u1,G1) = V2 and Np(v,) = V1 if 7=0. (24)

By (21), s > 2. First, suppose that d(uy,G2) > 0 and dg(vs, G2) > 0.
Then there exists an edge of G2, say T1¥s, such that {u1y3,vsz1} C E. By
Claim 3, we must have that dg(z1, G1)+dc(ys, G1) < s+1. By (2), we must
have that Np(z;,G1) = By and Np(ys, G1) = A;. Together with (22), (23)
and (24), we see that both D[V(G1 — u1 + z1)] and D[{u1, 2,23, y3}] are
hamiltonian, a contradiction.

Therefore we may assume w.1.0.g. that dg(vs, G2) = 3 and dg(u1,G2) =
0. Hence 7 = 0. If s = 2, then z,v u9y3z; and vaZ2y2Z3v; are two vertex-
disjoint cycles in G, a contradiction. Thus s > 3. Clearly, D({uy,v1,u2,v2}]
is hamiltonian as u, is joined to v,. Therefore ug is not joined to any y;
(i = 1,2, 3) for otherwise D[V (G)— {uy,v1,uz,v2}] contains a directed cycle
of length 2t. By (2), de(z1) + dg(y3) 2 n+ 3, and so dg(z1,G1 — us —
vg) + de(y3, G1 —us — vs) > S. By Lemma 2.2(a), G1 —us —vs + 1 + V3
has a hamiltonian path from u; to vs;—1. Since u; is joined to v, in D,
DV(Gy—us—vs+z1+ ys)] is hamiltonian. This is a contradiction since
v,ToYy2Z3Y; is a cycle of G. So the claim holds. O

By Claim 7, it is easy to verify that there exist two required directed
cycles in D if s € {1,2}. So s > 3. By Lemma 2.3, G4 is hamiltonian.
W.l.0.g., say uyv, € E. By Lemma 3.1, there exists an edge of Py + uyv,,
say u1s, such that D[V(G; —uy —vs + 21+ ys)] is not hamiltonian. Let
H = G, —u1 — v,. We break into the following two cases.

Case 1. dg(zy, H) + de(ys, H) 2 (s-1)+1.

By Lemma 2.1(a), if D[V(H)) is hamiltonian, then D[V(H + 1 + y3))

is hamiltonian, a contradiction. Therefore v; is not joined to u, in D and
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dg(vy, H) + dg(us, H) £ s - 1. Then dg(v1,G1) + dc(u,,Gl) =s+1by
Claim 7. Furthermore, G; does not have a hamiltonian path from v; to u,
for otherwise v; must be joined to u, in D. This implies that dg(u1,€) +
dg(vs,e) < 1 for all e € E(P, — u; — v5). Then we define ip and jo as
we did in the paragraph below (18) and repeat the argument with Claim
5, H; and n; replaced by Claim 7, G; and s, respectively. Consequently,
we obtain a contradiction, unless s = 3. But when s = 3, G; must be a
cycle of length 6 for otherwise D[V(G,)] contains a directed cycle of length
4 and we are done. In this case, we see that dp(zy, H) +dp(ys, H) > 6.
Then it is easy to see that if z; is joined to v; and ys is joined to u3 in
D, then D[V(H + y; + y3)] is hamiltonian, a contradiction. Hence either
7(x1,v1) = 1 or 7(ys,u3) = 1. By (2), da(z1) + de(y3) 2 n+3 =9 and
so dg(z1,G1) + dg(ys, G1) = 5. By Claim 1 and Lemma 3.1, D has two
required directed cycles.

Case 2. dg(z1,H) +dp(y3, H) < s—1.

‘Then we must have that dg(z;,G1)+dp(ys, G1) = s+1 and {z1v,,y3u1} C
E. By (2), Np(z1,G1) = By and Np(y3,G1) = A;. We can use any
edge z;y; of G to play the role of z1y3 is the above argument to show
that Np(z:,G:) = By and Np(y;,G1) = Ai. In particular, v, is joined
to y2 in D. Consequently, we see that both D[V(G) — vy + z1)] and
D[{uy, y2,%3,¥3}] are hamiltonian. This completes the proof of the the-
orem.
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