Directed Bipartite Graphs Containing Every Possible Pair of Directed Cycles

Hong Wang*

Department of Mathematics The University of Idaho Moscow, ID 83844

ABSTRACT. Let $D=(V_1,V_2;A)$ be a directed bipartite graph with $|V_1|=|V_2|=n\geq 2$. Suppose that $d_D(x)+d_D(y)\geq 3n$ for all $x\in V_1$ and $y\in V_2$. Then, with one exception, D contains two vertex-disjoint directed cycles of lengths 2s and 2t, respectively, for any two positive integers s and t with $s+t\leq n$.

1 Introduction

We discuss only finite simple graphs and strict directed graphs. The terminology and notation concerning graphs is that of [4], except as indicated. A directed graph D is called a directed bipartite graph if there exists a partition $\{V_1, V_2\}$ of V(D) such that the two induced directed subgraphs $D[V_1]$ and $D[V_2]$ of D contain no arcs of D. We denote by $(V_1, V_2; A)$ a directed bipartite graph with $\{V_1, V_2\}$ as its bipartition and A as its arc set. Similarly, $(V_1, V_2; E)$ represents a bipartite graph with $\{V_1, V_2\}$ as its bipartition and E as its edge set. In [11], C. Little, K. Teo and H. Wang investigated two vertex disjoint directed cycles in D. To state the result, a directed bipartite graph B_n of order 2n for every integer $n \geq 2$ is constructed as follows. We use $K_{a,b}^*$ to denote the complete directed bipartite graph $(V_1, V_2; A)$ with $|V_1| = a$ and $|V_2| = b$ such that both (x, y) and (y, x) belong to A for all $x \in V_1$ and $y \in V_2$. Let $D_1 = (X_1, Y_1; A_1)$ and $D_2 = (X_2, Y_2; A_2)$ be two vertex-disjoint directed bipartite graphs such that D_1 is isomorphic to $K_{\lfloor n/2\rfloor,\lfloor n/2\rfloor}^*$ and D_2 is isomorphic to $K_{\lfloor n/2\rfloor,\lfloor n/2\rfloor}^*$. Then B_n consists of D_1 and D_2 and all arcs (u, v) and (x, y) for $u \in X_1$, $v \in Y_2$, $x \in Y_1$ and $y \in X_2$. C. Little, Kee Teo and H. Wang proved the following.

^{*}This research was supported by UIRC SEED GRANTS-KDY932.

Theorem A. [11] Let $D = (V_1, V_2; A)$ be a directed bipartite graph with $|V_1| = |V_2| = n \ge 2$. Suppose that $d_D(x) + d_D(y) \ge 3n$ for all $x \in V_1$ and $y \in V_2$. Then D contains two vertex-disjoint directed cycles of lengths $2n_1$ and $2n_2$, respectively, for any positive integer partition $n = n_1 + n_2$, unless n is even and D is isomorphic to B_n .

In this paper, we strengthen the above result, proving the following:

Theorem B. Let $D = (V_1, V_2; A)$ be a directed bipartite graph with $|V_1| = |V_2| = n \ge 2$. Suppose that $d_D(x) + d_D(y) \ge 3n$ for all $x \in V_1$ and $y \in V_2$. Then D contains two vertex-disjoint directed cycles of lengths 2s and 2t, respectively, for any two positive integers s and t with $s + t \le n$, unless n is even and D is isomorphic to B_n .

For convenience, we mention some terminology and notation. Let G be a graph and D a directed graph. We use V(G) and E(G) to denote the vertex set and the edge set of G, respectively. We denote |E(G)| by e(G). We use V(D) and A(D) to denote the vertex set and the arc set of D, respectively. For a vertex $x \in V(D)$, $N_D^+(x)$ is the set of all vertices y of D with $(x,y) \in$ A(D). We similarly define $N_D^-(x)$ and let $N_D(x) = N_D^+(x) \cup N_D^-(x)$. We also define $d_D^+(x) = |N_D^+(x)|$, $d_D^-(x) = |N_D^-(x)|$ and $d_D(x) = d_D^+(x) + d_D^-(x)$. For two vertices x and y of D, we say that x is joined to y in D if either (x,y) or (y,x) is an arc of D. For a vertex $u \in V(G)$ and a subgraph H of G, we define $d_G(u, H) = |N_G(u) \cap V(H)|$ where $N_G(u)$ denotes the set of vertices that are adjacent to u in G. Hence $d_G(u, G) = d_G(u)$, the degree of u in G. For a subset $U \subseteq V(G)$, G[U] is the subgraph of G induced by U. For a subset $X \subseteq V(D)$, D[X] is the directed subgraph of D induced by X. A graph or directed graph is said to be traceable if it contains a hamiltonian path or directed hamiltonian path, respectively. A graph or directed graph is called hamiltonian if it contains a hamiltonian cycle or directed hamiltonian cycle, respectively. For any two vertices x and y of G, we define $\epsilon(xy) = 1$ if xy is an edge of G and $\epsilon(xy) = 0$ otherwise. For any two vertices u and v of D, we define $\tau(u, v) = 1$ if u is not joined to v in Dand $\tau(u,v)=0$ otherwise. We set $\Delta^+(D)=\max\{d_D^+(x)\mid x\in V(D)\}$ and $\Delta^{-}(D) = \max\{d_{D}^{-}(x) \mid x \in V(D)\}.$

To conclude our introduction, we propose the following conjecture.

Conjecture C. Let $D=(V_1,V_2;A)$ be a directed bipartite graph with $|V_1|=|V_2|=n\geq 2$. Suppose that $d_D(x)+d_D(y)\geq 3n$ for all $x\in V_1$ and $y\in V_2$. If $H=(U_1,U_2;A')$ is a directed bipartite graph with $|U_1|=|U_2|=n, \Delta^+(H)\leq 1$ and $\Delta^-(H)\leq 1$, then D contains a directed subgraph isomorphic to H, unless n is even and D is isomorphic to B_n .

2 Lemmas

In the following, $G = (V_1, V_2; E)$ is a bipartite graph with $|V_1| = |V_2| = n \ge 2$.

Lemma 2.1. Let $P = x_1y_1 \dots x_ky_k$ be a path of G. Let $y \in V(G)$ be a vertex not on P such that $\{x_1, y\} \not\subseteq V_i$ for each $i \in \{1, 2\}$. Suppose that $d_G(x_1, P) + d_G(y, P) \ge k + 1$. Then G has a path P' from y to y_k such that $V(P') = V(P) \cup \{y\}$.

Proof: The condition implies that $\{x_iy, x_1y_i\} \subseteq E$ for some $i \in \{1, 2, ..., k\}$. Then the path $P' = yx_iy_{i-1}...x_2y_1x_1y_ix_{i+1}y_{i+1}...x_ky_k$ satisfies the requirement.

Lemma 2.2. [10] Let $P = x_1y_1 \dots x_ky_k$ be a path of G. Let $x \in V_1$ and $y \in V_2$ be vertices not on P. Then the following two statements hold:

- (a) If $d_G(x, P) + d_G(y, P) \ge k + 2 \epsilon(xy)$, then G contains a path P' from x_1 to y_k such that $V(P') = V(P) \cup \{x, y\}$.
- (b) If $d_G(x, P) + d_G(y, P) \ge k + 1 \epsilon(xy)$, then G contains a path P' such that $V(P') = V(P) \cup \{x, y\}$.

Lemma 2.3. [3] The following two statements hold:

- (a) Let $P = x_1y_1 \dots x_ky_k$ be a path of G with $k \geq 2$. If $d_G(x_1, P) + d_G(y_k, P) \geq k + 1$, then G has a cycle C such that V(C) = V(P).
- (b) If $d_G(x) + d_G(y) \ge n + 1$ for any two non-adjacent vertices x and y with $x \in V_1$ and $y \in V_2$, then G is hamiltonian.

Lemma 2.4. [9] If $d_G(x) + d_G(y) \ge n$ for all $x \in V_1$ and $y \in V_2$, then either G is traceable, or n is even and G is the vertex-disdoint union of two subgraphs isomorphic to $K_{n/2,n/2}$.

Lemma 2.5. [1,10] Let $C = x_1y_1...x_ky_kx_1$ be a cycle of G. Let $i, j \in \{1, 2, ..., k\}$. Suppose that $d_G(x_i, C) + d_G(y_j, C) \ge k + 2$. Then G has a path P from y_i to x_{j+1} such that V(P) = V(C), where subscripts are reduced modulo k.

Lemma 2.6. [10] Suppose that G has a hamiltonian path and for any two endvertices u and v of a hamiltonian path of G, $d_G(u) + d_G(v) \ge k$ holds, where k is an integer greater than n. Then for every $x \in V_1$ and every $y \in V_2$, $d_G(x) + d_G(y) \ge k$.

Let $V_1 = \{x_1, \ldots, x_n\}$ and $V_2 = \{y_1, \ldots, y_n\}$ be such that $d(x_1) \leq \cdots \leq d(x_n)$ and $d(y_1) \leq \cdots \leq d(y_n)$. Schmeichel and Mitchem [8] proved that if

n>3 and $d(x_k) \le k$ implies $d(y_{n-k}) \ge n-k+1$ for each $1 \le k \le n$, then G contains a cycle of length 2l for each $l \in \{2,3,\ldots,n\}$. As a corollary, we have the following.

Lemma 2.7. If $d(x) + d(y) \ge n + 1$ for each $x \in V_1$ and $y \in V_2$, then G contains a cycle of length 2k for each $k \in \{2, 3, ..., n\}$, unless n = 3 and G is a cycle of length 6.

3 Proof of Theorem B

Besides using the idea of [11], our proof also depends heavily on Lemma 2.7 and the following Lemma 3.1.

Let $D=(V_1,V_2;A)$ be a directed bipartite graph with $|V_1|=|V_2|=n\geq 2$ such that $d_D(x)+d_D(y)\geq 3n$ for all $x\in V_1$ and $y\in V_2$. Suppose, for a contradiction, that D does not contain two vertex-disjoint directed cycles of lengths 2s and 2t, respectively, for some positive integers s and t with $s+t\leq n$. Furthermore, D is not isomorphic to B_n when n is even. By Theorem A, $s+t\leq n$.

We construct a bipartite graph $G=(V_1,V_2;E)$ from D such that $xy\in E$ if and only if both (x,y) and (y,x) belong to A. Then G does not contain two vertex-disjoint cycles of lengths 2s and 2t, respectively. For each subgraph G' of G and each vertex $x\in V(G)-V(G')$, we let $d_D^+(x,G')=|N_D^+(X)\cap V(G')|$. Similarly, we define $d_D^-(x,G')$ and $d_D(x,G')$.

Lemma 3.1. Let p and q be two positive integers with p+q < n. Let F_1 be an induced subgraph of order 2p in G and $F_2 = G - V(F_1)$. Let m = n - p. Let $x_1yy_1, \ldots, x_{m-1}y_{m-1}$ be m-1 independent edges of F_2 and put $\{x_m, y_m\} = V(F_2) - \{x_i, y_i \mid 1 \le i \le m-1\}$. Suppose that F_1 is traceable and that $D[V(F_2 - x_i - y_i)]$ contains a directed cycle of length 2q for each $i \in \{1, 2, \ldots, m\}$. Then D contains two vertex-disjoint directed cycles of lengths 2(p+1) and 2q, respectively.

Proof: On the contrary, suppose that the assertion in the lemma is false. Let u and v be any two endvertices of a hamiltonian path of F_1 . Let r=m if $x_m y_m \in E(G)$ and otherwise r=m-1. Then

$$d_D(u, x_i y_i) + d_D(v, x_i y_i) \le 2 \text{ for all } i \in \{1, 2, \dots, r\}.$$

Thus

$$d_D(u, F_2) + d_D(v, F_2) \le 2r + \lambda$$

where $\lambda = 4$ if r = m - 1 and otherwise $\lambda = 0$. Consequently,

$$d_D(u, F_1) + d_D(v, F_1) \ge 3n - 2r - \lambda = 3p + m + 2(m - r) - \lambda.$$

This yields that $d_G(u, F_1) + d_G(v, F_1) \ge p + m + 2(m - r) - \lambda$. By the assumption of the lemma, we see that we can choose r = 2 if m = 2.

Thus we have that $d_G(u, F_1) + d_G(v, F_1) \ge p + 1$. By Lemma 2.3, F_1 is hamiltonian if $p \ge 2$. Let $C = u_1v_1 \dots u_pv_p$ be a hamiltonian path of F_1 such that $u_1v_p \in E$. Then $d_D(x_i, u_jv_j) + d_D(y_i, u_jv_j) \le 2$ for all $i \in \{1, 2, \dots, r\}$ and $j \in \{1, 2, \dots, p\}$ for otherwise we readily see that D contains two required directed cycles. Thus $d_D(x_i, F_1) + d_D(y_i, F_1) \le 2p$ for each $i \in \{1, 2, \dots, r\}$. Let I be the number of arcs of D between F_1 and F_2 . Then

$$I = \sum_{w \in V(F_1)} d_D(w) - 2|A(D[V(F_1)])| \ge 3np - 4p^2.$$
 (1)

We now break into the following two cases. Say $\{x_1, \ldots, x_m\} \subseteq V_1$. Case 1. r = m.

We clearly have that $I \leq 2pm$. Together with (1), this yields that $p \geq m$. We also see that, for each $i \in \{1, \ldots, m\}$, $4m \geq d_D(x_i, F_2) + d_D(y_i, F_2) \geq 3n - 2p = 3m + p$. It follows that $p \leq m$. Consequently, we obtain that $D[V(F_1)] \cong D[V(F_2)] \cong K_{n/2,n/2}^*$ and the lemma follows as $D \not\cong B_n$. Case 2. r = m - 1.

By Theorem A, $m \geq q+2$ and so $m \geq 3$. Let $F_2 = F_2 - x_m - y_m$. We clearly have that $I \leq 2p(m-1) + d_D(x_m, F_1) + d_D(y_m, F_1)$. As $d_D(x_m, F_1) + d_D(y_m, F_1) \leq 4p$, we see, together with (1), that $p \geq m-2$. Suppose that p=m-2. Then we must have that $D[V(F_1)] \cong K_{p,p}^*$ and $d_D(x_m, F_1) + d_D(y_m, F_1) = 4p$. Then we see that p=1 and $\tau(x_m, y_m) = 1$ for otherwise $D[V(F_1 + x_m + y_m)]$ is hamiltonian. Therefore m=3 and q=1. Then by the degree condition on D, it is easy to see that D contains two directed cycles of lengths 2 and 4, respectively. Hence $p \geq m-1$.

As $m \geq 3$, $p \geq 2$. Thus F_1 is hamiltonian. As $D[V(F_1 + x_m + y_m)]$ is not hamiltonian, we see that $d_G(x_m, F_1) + d_G(y_m, F_1) \leq p + \tau(x_m, y_m)$ by Lemma 2.2(a). Then $d_D(x_m, F_1) + d_D(y_m, F_1) \leq 3p + \tau(x_m, y_m)$. It follows that $d_D(x_m, F_2) + d_D(y_m, F_2) \ge 3m - \tau(x_m, y_m)$ and $d_G(x_m, F_2) + \tau(x_m, y_m)$ $d_G(y_m, F_2) \geq (m-1)+1$. This implies that there exists $i \in \{1, \ldots, m-1\}$, say i = 1, such that $\{x_1y_m, y_1x_m\} \subseteq E$. Then $\{x_2y_2, ..., x_{m-1}y_{m-1}, x_my_1, ..., x_my_m\}$ $y_m x_1$ is a perfect matching of F_2 . Hence $q \geq 2$ by Case 1. Thus $m \geq q+2 \geq 2$ 4. Since $p \geq m-1$ and $d_D(x_i, F_1)+d_D(y_i, F_1) \leq 2p$ for each $i \in \{1, \ldots, m-1\}$ 1), we can readily show that $4m \geq d_D(x_i, F_2) + d_D(y_i, F_2) \geq 3m + p \geq 3m + p$ 4m-1 and $d_G(x_i, F_2)+d_G(y_i, F_2) \geq 2m-1$ for each $i \in \{1, \ldots, m-1\}$. Then $d_G(x_i, F_2') + d_G(y_j, F_2') \ge 2(m-1) - 2 \ge (m-1) + 1$ for all $i, j \in \{1, \dots, m-1\}$ 1). By Lemma 2.3(b), F_2' is hamiltonian. Let $a_1b_1 \ldots a_{m-1}b_{m-1}a_1$ be a hamiltonian cycle of F_2' . As $d_G(x_m, F_2') + d_G(y_m, F_2') \geq (m-1) + 1$, we may assume w.1.o.g. that $\{a_1y_m, b_1x_m\}\subseteq E$. As $d_D(x_i, F_2)+d_D(y_i, F_2)\geq 1$ 4m-1 for each $i \in \{1, \ldots, m-1\}$, we see that x is joined to y in D for each $x \in \{x_1, \ldots, x_m\}$ and $y \in \{y_1, \ldots, y_m\}$ with $\{x, y\} \neq \{x_m, y_m\}$. As $q \leq$ m-2, we then see that each of $D[V(F_2-x_m-b_1)]$ and $D[V(F_2-y_m-a_1)]$

contains a directed cycle of length 2q, and $D[V(F'_2 - a_i - b_i)]$ contains a directed cycle of length 2q for each $i \in \{2, ..., m-1\}$. Thus we go back to Case 1 again. This proves the lemma.

We will divide our proof into two parts after the following four claims.

Claim 1. If C is a cycle of length 6, and x and y are two vertices not on C in G with $x \in V_1$ and $y \in V_2$ such that $d_G(x,C) + d_G(y,C) \ge 5$, then C + x + y has a perfect matching M such that C + x + y - V(e) contains a cycle of length 4 for all $e \in M$.

Proof of Claim 1: W.1.o.g., say $C = u_1v_1u_2v_2u_3v_3u_1$ such that $\{v_1, v_2, v_3\}$ $\subseteq N_G(x)$ and $\{u_1, u_2\} \subseteq N_G(y)$. We see that the claim is true by choosing $M = \{u_1v_1, u_3v_3, u_2y, v_2x\}$.

Claim 2. For all $x \in V_1$ and $y \in V_2$, $d_G(x) + d_G(y) \ge n + 2\tau(x, y)$.

Proof of Claim 2.: We have

$$d_G(x) + d_G(y) = d_D(x) + d_D(y) - (|N_D(x)| + |N_D(y)|)$$
 (2)

$$\geq 3n - (2n - 2\tau(x, y)) = n + 2\tau(x, y) \tag{3}$$

Let r=n-s. By Claim 2 and Lemma 2.4, either G is traceable, or $G=G'\cup G''$ with $G'\cong G''\cong K_{n/2,n/2}$. In the latter case, it is easy to see, by the condition on the degrees of D, that the theorem holds for D since D is not isomorphic to B_n . Therefore we may assume that G is traceable. Then we can choose two vertex-disjoint induced subgraphs of G, say $G_1=(A_1,B_1;E_1)$ and $G_2=(A_2,B_2;E_2)$, of orders 2s and 2r, respectively such that

both
$$G_1$$
 and G_2 are traceable. (4)

Subject to (4), we may further choose G_1 and G_2 such that

$$e(G_1) + e(G_2)$$
 is maximum. (5)

Claim 3. [10]. Let u and v be two endvertices of a hamiltonian path of G_1 and let x and y be two endvertices of a hamiltonian path of G_2 . Suppose that $uy \in E$ and $vx \in E$. Then

$$d_G(u, G_1) + d_G(v, G_1) + d_G(x, G_2) + d_G(y, G_2)$$

$$\geq d_G(u, G_2) + d_G(v, G_2) + d_G(x, G_1) + d_G(y, G_1). \tag{6}$$

Claim 4. [10]. Let u and v be two endvertices of a hamiltonian path of G_1 and let x and y be two endvertices of a hamiltonian path of G_2 such that

 $u \in V_1$ and $x \in V_1$. Let $G_1 = G_1 - u - v + x + y$ and $G_2 = G_2 - x - y + u + v$. If both G_1 and G_2 are traceable, then

$$d_{G}(u, G_{1}) + d_{G}(v, G_{1}) + d_{G}(x, G_{2}) + d_{G}(y, G_{2})$$

$$\geq d_{G}(u, G_{2}) + d_{G}(v, G_{2}) + d_{G}(x, G_{1}) + d_{G}(y, G_{1})$$

$$-2(\epsilon(uy) + \epsilon(vx)) + 2(\epsilon(uv) + \epsilon(XY))$$
(7)

In particular, if $d_G(u, G_2) + d_G(v, G_2) \ge r + 2$ and $d_G(x, G_1) + d_G(y, G_1) \ge s + 2$, then (7) holds.

Let $\{H_1, H_2\} = \{G_1, G_2\}$ and set $2n_1 = |V(H_1)|$ and $2n_2 = |V(H_2)|$. Then $\{n_1, n_2\} = \{s, r\}$. Let $P_1 = u_1v_1 \dots u_{n_1}v_{n_1}$ and $P_2 = x_1y_1 \dots x_{n_2}y_{n_2}$ be two hamiltonian paths of H_1 and H_2 , respectively. Furthermore, we choose P_2 with $d_G(x_1, H_2) + d_G(y_{n_2}, H_2)$ as small as possible. We may assume that $u_1 \in A_1$, $x_1 \in A_2$, $A_1 \cup A_2 = V_1$ and of course $B_1 \cup B_2 = V_2$. Since D does not contain two vertex-disjoint directed cycles of lengths 2s and 2t, respectively, we set H_1 and H_2 such that if $H_2 = G_1$ then H_2 does not contain a directed cycle of length 2s, and if $H_2 = G_2$ then H_2 does not contain a directed cycle of length 2t. Then we have the following.

$$N_D(x_1) \subseteq V_2 - \{y_s\}$$
 and $N_D(y_s) \subseteq V_1 - \{x_1\}$ if $H_2 = G_1$; (8)

$$N_D(x_1) \subseteq V_2 - \{y_t\}$$
 and $N_D(y_r) \subseteq V_1 - \{x_{r-t+1}\}$ if $H_2 = G_2$. (9)

By (2), (8) and (9), we obtain

$$d_G(x_1) + d_G(y_{n_2}) \ge n + 2. \tag{10}$$

We now divide our proof into the following two parts.

Part I. $d_G(x_1, H_2) + d_G(y_{n_2}, H_2) \leq n_2$.

By (10), we have

$$d_G(x_1, H_1) + d_G(y_{n_2}, H_1) \ge n_1 + 2. \tag{11}$$

When $H_2 = G_1$, it is easy to see that $\{(x_1, y_i), (y_{n_2}, x_i)\} \not\subseteq A$ and $\{(y_i, x_1), (x_i, y_{n_2})\} \not\subseteq A$ for all $i \in \{1, 2, ..., n_2\}$ for otherwise $D[V(G_1)]$ is hamiltonian. This implies that $n_2 \geq 2$, $d_D^+(x_1, H_2) + d_D^+(y_{n_2}, H_2) \leq n_2$ and $d_D^-(x_1, H_2) + d_D^-(y_{n_2}, H_2) \leq n_2$, and therefore $d_D(x_1, H_1) + d_D(y_{n_2}, H_1) \geq 3n - 2n_2 = 3n_1 + n_2$. It follows that

if
$$H_2 = G_1$$
, then $d_G(x_1, H_1) + d_G(y_{n_2}, H_1) \ge n_1 + n_2 \ge n_1 + 2$. (12)

Claim 5. For any two vertices u and v of H_1 with $u \in V_1$ and $v \in V_2$, $d_G(u, H_1) + d_G(v, H_1) \ge n_1 + 1$. Furthermore, if u and v are two endvertices of a hamiltonian path of H_1 and u is not joined to v in D, then $d_G(u, H_1) + d_G(v, H_1) \ge n_1 + 2$.

Proof of Claim 5: Suppose, for a contradiction, that the claim is not true. Then at least one of the two assertions is false. If the first assertion is false, then, by Lemma 2.6, there exist two endvertices u and v of a hamiltonian path of H_1 such that $d_G(u, H_1) + d_G(v, H_1) \le n_1$. If the first assertion is true and the second false, then there exist two endvertices u and v of a hamiltonian path of H_1 such that $d_G(u, H_1) + d_G(v, H_1) = n_1 + 1$ and u is not joined to v in D. In both cases, we may assume that $\{u, v\} = \{u_1, v_{n_1}\}$. Let $\tau = \tau(u_1, v_{n_1})$. By (3), we have

$$d_G(u_1, H_2) + d_G(v_{n_1}, H_2) = d_G(u_1) + d_G(v_{n_1} - d_G(u_1, H_1) - d_G(v_{n_1}, H_1)$$

$$> n + 2\tau - (n_1 + \tau) = n_2 + \tau.$$
(13)

If $\epsilon(u_1y_{n_2})+\epsilon(v_{n_1}x_1)=0$, then we see, using Lemma 2.2(b) and (11), that both H_1' and H_2' are traceable, where $H_1'=H_1-u_1-v_{n_1}+x_1+y_{n_2}$ and $H_2'=H_2-x_1-y_{n_2}+u_1+v_{n_1}$. Thus by Claim 4, we have $\epsilon(u_1y_{n_2})+\epsilon(v_{n_1}x_1)\geq 1$, a contradiction. Therefore $\epsilon(u_1y_{n_2})+\epsilon(v_{n_1}x_1)\geq 1$. By Claim 3, we then have $\epsilon(u_1y_{n_2})+\epsilon(v_{n_1}x_1)\geq 1$ for otherwise (6) is violated. Therefore $\epsilon(u_1y_{n_2})+\epsilon(v_{n_1}x_1)=1$. W.1.o.g., we may assume that $v_{n_1}x_1\in E$ and $u_1y_{n_2}\notin E$. If $d_G(u_1,H_2)+d_G(v_{n_1},H_2)\geq n_2+1+\tau$, then both H_1' and H_2' are traceable by Lemma 2.2, and then by Claim 4, we obtain a contradiction, that is, $n_2+n_1+\tau\geq (n_2+1+\tau)+(n_1+2)-2$. Hence we must have

$$d_G(u_1, H_1) + d_G(v_{n_1}, H_1) = n_1 + \tau \text{and}$$

$$d_G(u_1, H_2) + d_G(v_{n_1}, H_2) = n_2 + \tau.$$
(14)

By (2), (3) and (14), we obtain

$$N_D(u_1) = V_2$$
 and $N_D(v_{n_1}) = V_1$ if $\tau = 0$; (15)

$$N_D(u_1) = V_2 - \{v_{n_1}\}$$
 and $N_D(v_{n_1}) = V_1 - \{u_1\}$ if $\tau = 1$. (16)

By (11) and (14) and the hypothesis of Part I, we have either $d_G(u_1, H_2) + d_G(x_1, H_1) > d_G(u_1, H_1) + d_G(x_1, H_2)$, or $d_G(v_{n_1}, H_2) + d_G(y_{n_2}, H_1) > d_G(v_{n_1}, H_1) + d_G(y_{n_2}, H_2)$. We distinguish these two cases in the following. First, we note that $u_{n_1}y_{n_2} \notin E$ for otherwise we see, from (15) and (16), that $D[V(H_1 - v_{n_1} + y_{n_2})]$ is hamiltonian and $D[V(H_2 - y_{n_2} + v_{n_1})]$ contains a directed cycle of length 2t if $H_1 = G_1$ and $H_2 = G_2$, and otherwise $D[V(H_2 - y_{n_2} + v_{n_1})]$ is hamiltonian and $D[V(H_1 - v_{n_1} + y_{n_2})]$ contains a directed cycle of length 2t.

Case 1.
$$d_G(u_1, H_2) + d_G(x_1, H_1) > d_G(u_1, H_1) + d_G(x_1, H_2)$$
.

In this case, let $H_1'' = H_1 - u_1 + x_1$ and $H_2'' = H_2 - x_1 + u_1$. Then H_1'' is traceable and $e(H_1'') + e(H_2'') > e(H_1) + e(H_2)$. By (4) and (5), H_2'' should not be traceable. Therefore $u_1y_1 \notin E$ and $d_G(u_1, H_2) + d_G(y_{n_2}, H_2) = d_G(u_1, H_2 - x_1 - y_1) + d_G(y_{n_2}, H_2 - x_1 - y_1) + \epsilon(x_1y_{n_2}) \le n_2 - 1 + 1 = n_2$

by Lemma 2.1. Clearly, we have that either $N_D(u_1) \neq V_2$ or $N_D(y_{n_2}) \neq V_1$ for otherwise D contains two required directed cycles. Then by (2), $d_G(u_1) + d_G(y_{n_2}) \geq n+1$. Therefore $d_G(u_1, H_1) + d_G(y_{n_2}, H_1) \geq n_1+1$. By (14), $d_G(y_{n_2}, H_1) \geq d_G(v_{n_1}, H_1) + 1 - \tau$ and $d_G(v_{n_1}, H_2) \geq d_G(y_{n_2}, H_2) + \tau$. Furthermore, we have $d_G(u_1, H_1 - u_{n_1} - v_{n_1}) + d_G(y_{n_2}, H_1 - u_{n_1} - v_{n_1}) \geq n_1$ as $u_{n_1}y_{n_2} \notin E$, and therefore we see, by Lemma 2.1, that $H_1 - v_{n_1} + y_{n_2}$ is traceable. Clearly, $H_2 - y_{n_2} + v_{n_1}$ is traceable. This is in contradiction with (5) $e(H_1 - v_{n_1} + y_{n_2}) + e(H_2 - y_{n_2} + v_{n_1}) \geq e(H_1) + e(H_2) + 1$.

Case 2. $d_G(v_{n_1}, H_2) + d_G(y_{n_2}, H_1) > d_G(v_{n_1}, H_1) + d_G(y_{n_2}, H_2)$.

In this case, let $H_1'' = H_1 - v_{n_1} + y_{n_2}$ and $H_2'' = H_2 - y_{n_2} + v_{n_1}$. Then H_2'' is traceable and $e(H_1'') + e(H_2'') > e(H_1) + e(H_2)$. Therefore by (4) and (5), H_1'' should not be traceable. Then by Lemma 2.1, we see that $d_G(u_1, H_1 - u_{n_1} - v_{n_1}) + d_G(y_{n_2}, H_1 - u_{n_1} - v_{n_1}) \le n_1 - 1$. As $u_{n_1} y_{n_2} \notin E$, we obtain $d_G(u_1, H_1) + d_G(y_{n_2}, H_1) \le n_1$. By (2), (8) and (9), $d_G(u_1) + d_G(y_{n_2}) \ge n+1$. Therefore $d_G(u_1, H_2) + d_G(y_{n_2}, H_2) \ge n_2 + 1$. Together with (14), we see that $d_G(v_{n_1}, H_1) \ge d_G(y_{n_2}, H_1)$ and $d_G(y_{n_2}, H_2) \ge d_G(v_{n_1}, H_2)$. This is in contradiction with the assumption of this case. Thus Claim 5 holds. \square

By (11), $n_1 \geq 2$. By Claim 5 and Lemma 2.3, H_1 is hamiltonian. We may assume $C = P_1 + u_1v_{n_1}$ is a hamiltonian cycle of H_1 . Let $F_1 = H_2 - x_1 - y_{n_2}$ if $H_2 = G_1$ and otherwise $F_1 = G[\{y_1, x_2, \ldots, y_{t-1}, x_t\}]$. Set $F_2 = G - V(F_1)$. Clearly, $F_2 - \{x_1, y_{n_2}\}$ has a perfect matching. By Lemma 3.1, There exists an edge on C, say $u_1v_{n_1}$, such that if $H_2 = G_2$ then $F_2 - \{u_1, v_{n_1}\}$ does not contain a directed cycle of length 2s, and if $H_2 = G_1$ then either $F_2 - x_1 - y_{n_2}$ or $F_2 - \{u_1, v_{n_1}\}$ does not contain a directed cycle of length 2t. Let us first assume that $H_2 = G_1$ and $F_2 - x_1 - y_{n_2}$ does not contain a directed cycle of length 2t. As $H_1 = G_2$ and by Claim 5 and Lemma 2.7, we see that t = 2 and G_2 is a cycle of length 6. By (11), $d(x_1, G_2) + d(y_{n_2}, G_2) \geq 5$. By Claim 1 and Lemma 3.1, we are done. Thus $H_2 = G_2$. The following claim completes the rest of the proof in this part. Claim 6. For each edge $uv \in E(C)$, $D[V(H_1 - u - v + x_1 + y_{n_2})]$ is hamiltonian if $H_1 = G_1$ and otherwise $D[V(H_1 - u - v + x_1 + y_{n_2})]$ contains a directed cycle of length 2t.

Proof of Claim 6: Suppose that the claim is not true. We may assume w.1.o.g. that $D[V(H_1 - u_1 - v_{n_1} + x_1 + y_{n_2})]$ is not hamiltonian. Let $H = H_1 - u_1 - v_{n_1}$. Then $|V(H)| = 2(n_1 - 1)$. We distinguish two cases as follows.

Case 1. $dG(x_1, H) + d_G(y_{n_2}, H) \ge (n_1 - 1) + 2$.

In this case, we see that $n_1 \geq 3$. Suppose that D[V(H)] is hamiltonian. If $H_1 = G_1$, then by Lemma 2.2(a), $D[V(H + x_1 + y_{n_2})]$ is hamiltonian. If $H_1 = G_2$, we may assume that $d_G(x_1, H) \geq (n_1 + 1)/2$ and then it is easy to see that $D[V(H + x_1)]$ contains a directed cycle of length 2t as $t \leq n_1 - 1$, a contradiction. Therefore $d_G(v_1, H) + d_G(n_{n_1}, H) \leq n_1 - 1$ and v_1 is not

joined to u_{n_1} in D. Then we see that $d_G(v_1, H_1) + d_G(u_{n_1}, H_1) \leq n_1 + 1$. By Claim 5, we further obtain $d_G(v_1, H_1) + d_G(u_{n_1}, H_1) = n_1 + 1$ and H_1 has no hamiltonian path from v_1 to u_{n_1} . By Lemma 2.2(a), this implies that $d_G(u_1, H) + d_G(v_{n_1}, H) \leq n_1 - 1$ and consequently,

$$d_G(u_1, H_1) + d_G(v_{n_1}, H_1) = n_1 + 1 \tag{17}$$

Furthermore, we have

$$d_G(u_1, e) + d_G(v_{n_1}, e) \le 1$$
, for any edge $e \in E(P_1 - u_1 - v_{n_1})$. (18)

Let i_0 be the largest integer in $\{1,2,\ldots,n_1-1\}$ and j_0 the least integer in $\{2,3,\ldots,n_1\}$ such that $\{u_1v_{i_0},v_{n_1}u_{j_0}\}\subseteq E$. By (17) and (18), we see that $N_G(u_1,P_1)=\{v_1,v_2,\ldots,v_{i_0},v_{n_1}\}$ and $N_G(v_{n_1},P_1)=\{u_1,u_{j_0},u_{j_0+1}\ldots,u_{n_1}\}$ with $j_0=i_0+2$. We have $u_{i_0}v_j\not\in E$ for all $j\in\{j_0-1,j_0,j_0+1,\ldots,n_1-1\}$, for otherwise for some $j\geq j_0-1$ we see that

$$v_1u_2\ldots v_{i_0-1}u_{i_0}v_ju_jv_{j-1}\ldots u_{i_0+1}v_{i_0}u_1v_{n_1}u_{j+1}v_{j+1}u_{j+2}\ldots v_{n_1-1}u_{n_1}$$

is a hamiltonian path from v_1 to u_{n_1} in H_1 , a contradiction. Similarly, we must have $u_iv_{j_0} \notin E$ for all $i \in \{2,3,\ldots,i_0+1\}$. Moreover, if $i_0 \neq 1$ then $u_{i_0}v_{n_1} \notin E$, and if $j_0 \neq n_1$ then $u_1v_{j_0} \notin E$. In both cases, $d_G(u_{i_0},H_1)+d_G(v_{j_0},H_1) \leq n_1$, contradicting Claim 5. If $i_0=1$ and $j_0=n_1$, then $n_1=3$ and we verify immediately that $D[V(H_1-u_1-v_{n_1}+x_1+y_{n_2})]$ contains a desired directed cycle.

Case 2. $d_G(x_1, H) + d_G(y_{n_2}, H) \le n_1$.

In this case, by (11), we see that $\{x_1v_{n_1}, u_1y_{n_2}\}\subseteq E$, $d_G(x_1, H_1)+d_G(y_{n_2}, H_1)=n_1+2$ and $d_G(x_1, H)+d_G(y_{n_2}, H)=n_1$. Thus $d_G(x_1, H_2)+d_G(y_{n_2}, H_2)=n_2$ by (10). By (8), (9) and (10), we see that equality holds in (8), (9) and (10). Then $D[V(H_1-u_1+x_1)]$ contains a directed cycle of length 2s or 2t if $H_1=G_1$ or $H_1=G_2$, respectively. Therefore $\{y_1,\ldots,y_{n_2-1}\}\not\subseteq N_D(u_1)$ for otherwise we obtain two required cycles. Similarly, $\{x_2,\ldots,x_{n_2}\}\not\subseteq N_D(v_{n_1})$. By (2), $d_G(u_1)+d_G(v_{n_1})\geq n+2$. If $d_G(u_1,H_1)+d_G(v_{n_1},H_1)=n_1+1$, then $d_G(u_1,H_2)+d_G(v_{n_1},H_2)\geq n_2+1$, and by Claim 3, $n_1+1+n_2\geq n_1+2+n_2+1$, a contradiction. Hence $d_G(u_1,H_1)+d_G(v_{n_1},H_1)\geq n_1+2$ and thus $d_G(u_1,H)+d_G(v_{n_1},H)\geq (n_1-1)+1$. By Lemma 2.2(a), H_1 has a hamiltonian path from v_1 to u_{n_1} .

First, suppose that $H_2=G_1$. By (12), $n_2=2$. Then By (2) and (12), we obtain $N_D(x_1)=V_2-\{y_2\}$ and $N_D(y_2)=V_1-\{x_1\}$. Therefore $D[V(H_1-u_1-v_1-u_2+x_1)]$ contains a directed cycle of length 2t as x_1 is joined to $v_{n_1}-t+1$ in D and $D[\{u_1,v_1,u_2,y_2\}]$ is hamiltonian as y_2 is joined to u_2 in D, a contradiction.

Next, suppose $H_2=G_2$. Then we have that $N_D(x_1)=V_2-\{y_t\}$ and $N_D(y_{n_2})=V_1-\{x_{n_2}-t+1\}$. W.1.o g., say $(x_1,y_{n_2})\in A$. Suppose

that H has a hamiltonian path whose two endvertices, say $u \in V_1$ and $v \in V_2$, are joined in D. If $(u,v) \in A$, let $a_1b_1 \ldots a_{n_1-1}b_{n_1-1}$ be a hamiltonian path of H with $(a_1,b_{n_1-1}) \in E$ and $a_1 \in V_1$, and if $(v,u) \in A$, let $b_1a_2 \ldots a_{n_1-1}b_{n_1-1}a_1$ be a hamiltonian path of H with $(b_1,a_1) \in A$ and $a_1 \in V_1$. As $d_G(x_1,H)+d_G(y_{n_2},H)=n_1$, there exists $i \in \{1,2,\ldots,n_1-1\}$ such that $\{a_iy_{n_2},b_ix_1\} \subseteq E$. Thus

$$(a_i, b_{i-1}, \ldots, a_2, b_1, a_1, b_{n_1-1}, a_{n_1-1}, b_{n_1-2}, \ldots, b_i, x_1, y_{n_2}, a_i)$$

is a hamiltonian directed cycle in $D[V(H+x_1+y_{n_2})]$, a contradiction. Hence H does not have such a path. This implies that v_1 is not joined to u_{n_1} in D and $d_G(v_1, H) + d_G(u_{n_1}, H) \leq n_1 - 1$. By Claim 5, $d_G(v_1, H_1) + d_G(u_{n_1}, H_1) = n_1 + 1$. By (2), $d_G(v_1) + d_G(u_{n_1}) \geq n + 2$. Hence $d_G(v_1, H_2) + d_G(u_{n_1}, H_2) \geq n_2 + 1$. Since we already know that H_1 has a hamiltonian path from v_1 to u_{n_1} , we see, by Claim 3, that $\epsilon(x_1v_1) + \epsilon(y_{n_2}u_{n_1}) \leq 1$. By Lemma 2.2(b), $H_1 = H_1 - v_1 - u_{n_1} + x_1 + y_{n_2}$ and $H_2 = H_2 - x_1 - y_{n_2} + v_1 + u_{n_1}$ are traceable. By Claim 4, $\epsilon(x_1v_1) + \epsilon(y_{n_2}u_{n_1}) = 1$ and $d_G(v_1, H_2) + d_G(u_{n_1}, H_2) = n_2 + 1$. W.1.o.g., say $x_1v_1 \in E$. It follows from (2) that $N_D(v_1) = V_1 - \{u_{n_1}\}$. Then $D[\{x_1, y_1, \dots, x_{t-1}, y_{t-1}, x_t, v_1\}]$ is hamiltonian as $v_1x_1 \in E$ and v_1 is jointed to v_2 . We also see that $D[V(H_1 - v_1 + y_{n_1})]$ is hamiltonian since $u_1y_{n_2} \in E$ and y_{n_2} is joined to v_2 , a contradiction.

Part II. $d_G(x_1, H_2) + d_G(y_{n_2}, H_2) \ge n_2 + 1$.

By the minimality of $d_G(x_1, H_2) + d_G(y_{n_2}, H_2)$, we have that $d_G(x, H_2) + d_G(y, H_2) \ge n_2 + 1$ for any two endvertices x and y of a hamiltonian path of H_2 . By the choice of H_2 , Lemma 2.6 and Lemma 2.7, we see that H_2 must be a cycle of length 6. Moreover, t = 2 and $H_2 = G_2$. Then we see that $dD(z, G_2) = 4$ for all $z \in V(G_2)$. By (2), we obtain

$$d_G(x_i) + d_G(y_j) \ge n + 2 \text{ for all } i, j \in \{1, 2, 3\};$$
 (19)

$$d_G(x_i, G_1) + d_G(y_j, G_1) \ge s + 1 \text{ for all } i, j \in \{1, 2, 3\}.$$
 (20)

Claim 7. For any two vertices u and v of G_1 with $u \in A_1$ and $v \in B_1$, $d_G(u, G_1) + d_G(v, G_1) \ge s + 1$. Furthermore, if u and v are two endvertices of a hamiltonian path of G_1 and u is not joined to v in D, then $d_G(u, G_1) + d_G(v, G_1) \ge s + 2$.

Proof of Claim 7: Suppose, for a contradiction, that the claim is not true. Then at least one of the two assertions is false. If the first assertion is false, then, by Lemma 2.6, there exist two endvertices u and v of a hamiltonian path of G_1 such that $d_G(u, G_1) + d_G(v, G_1) \leq s$. If the first assertion is true and the second false, then there exist two endvertices u and v of a hamiltonian path of G_1 such that $d_G(u, G_1) + d_G(v, G_1) = s + 1$ and u is not joined to v in D. In both cases, we may assume that $\{u, v\} = \{u_1, v_s\}$.

Let $\tau = \tau(u_1, v_s)$. By (3), we have

$$d_G(u_1, G_2) + d_G(v_s, G_2) = d_G(u_1) + d_G(v_s) - d_G(u_1, G_1) - d_G(v_s, G_1)$$

$$> n + 2\tau - (s + \tau) = 3 + \tau.$$
(21)

Let us first assume that $d_G(u_1, G_2) + d_G(v_s, G_2) \ge 4 + \tau$. Together with (20), we see, by Claim 3, that for each edge $x_i y_j$ of G_2 , either $x_i v_s \notin E$ or $y_j u_1 \notin E$. W.1.o.g., say $x_1 v_s \notin E$. If $y_3 u_1 \notin E$, then both $G_1 - u_1 - v_s + x_1 + y_3$ and $G_2 - x_1 - y_3 + u_1 + v_s$ are traceable by Lemma 2.2(b). Then we obtain a contradiction by Claim 4. Hence we must have that $y_3 u_1 \in E$. Similarly, we must have that $y_1 u_1 \in E$ and $x_3 v_s \notin E$, and so $x_2 v_s \notin E$ and $y_2 u_1 \in E$, a contradiction. Therefore we must have, by (2) and (3), the following:

$$d_G(u_1, G_1) + d_G(v_s, G_1) = s + \tau \text{ and } d_G(u_1, G_2) + d_G(v_s, G_2) = 3 + \tau;$$
(22)

$$N_D(u_1, G_1) = V_2 - \{v_s\} \text{ and } N_D(v_s) = V_1 - \{u_1\} \text{ if } \tau = 1;$$
 (23)

$$N_D(u_1, G_1) = V_2 \text{ and } N_D(v_s) = V_1 \text{ if } \tau = 0.$$
 (24)

By (21), $s \ge 2$. First, suppose that $d(u_1, G_2) > 0$ and $d_G(v_s, G_2) > 0$. Then there exists an edge of G_2 , say x_1y_3 , such that $\{u_1y_3, v_sx_1\} \subseteq E$. By Claim 3, we must have that $d_G(x_1, G_1) + d_G(y_3, G_1) \le s + 1$. By (2), we must have that $N_D(x_1, G_1) = B_1$ and $N_D(y_3, G_1) = A_1$. Together with (22), (23) and (24), we see that both $D[V(G_1 - u_1 + x_1)]$ and $D[\{u_1, y_2, x_3, y_3\}]$ are hamiltonian, a contradiction.

Therefore we may assume w.1.o.g. that $d_G(v_s,G_2)=3$ and $d_G(u_1,G_2)=0$. Hence $\tau=0$. If s=2, then $x_1v_1u_2y_3x_1$ and $v_2x_2y_2x_3v_2$ are two vertex-disjoint cycles in G, a contradiction. Thus $s\geq 3$. Clearly, $D[\{u_1,v_1,u_2,v_2\}]$ is hamiltonian as u_1 is joined to v_2 . Therefore u_3 is not joined to any y_i (i=1,2,3) for otherwise $D[V(G)-\{u_1,v_1,u_2,v_2\}]$ contains a directed cycle of length 2t. By (2), $d_G(x_1)+d_G(y_3)\geq n+3$, and so $d_G(x_1,G_1-u_s-v_s)+d_G(y_3,G_1-u_s-v_s)\geq S$. By Lemma 2.2(a), $G_1-u_s-v_s+x_1+y_3$ has a hamiltonian path from u_1 to v_{s-1} . Since u_1 is joined to v_{s-1} in D, $D[V(G_1-u_s-v_s+x_1+y_3)]$ is hamiltonian. This is a contradiction since $v_sx_2y_2x_3v_s$ is a cycle of G. So the claim holds.

By Claim 7, it is easy to verify that there exist two required directed cycles in D if $s \in \{1,2\}$. So $s \geq 3$. By Lemma 2.3, G_1 is hamiltonian. W.1.o.g., say $u_1v_s \in E$. By Lemma 3.1, there exists an edge of $P_1 + u_1v_s$, say u_1v_s , such that $D[V(G_1 - u_1 - v_s + x_1 + y_3)]$ is not hamiltonian. Let $H = G_1 - u_1 - v_s$. We break into the following two cases.

Case 1.
$$d_G(x_1, H) + d_G(y_3, H) \ge (s-1) + 1$$
.

By Lemma 2.1(a), if D[V(H)] is hamiltonian, then $D[V(H+x_1+y_3)]$ is hamiltonian, a contradiction. Therefore v_1 is not joined to u_s in D and

 $d_G(v_1, H) + d_G(u_s, H) \leq s - 1$. Then $d_G(v_1, G_1) + d_G(u_s, G_1) = s + 1$ by Claim 7. Furthermore, G_1 does not have a hamiltonian path from v_1 to u_s for otherwise v_1 must be joined to u_s in D. This implies that $d_G(u_1, e) + d_G(v_s, e) \leq 1$ for all $e \in E(P_1 - u_1 - v_s)$. Then we define i_0 and j_0 as we did in the paragraph below (18) and repeat the argument with Claim 5, H_1 and n_1 replaced by Claim 7, G_1 and s, respectively. Consequently, we obtain a contradiction, unless s = 3. But when s = 3, G_1 must be a cycle of length 6 for otherwise $D[V(G_1)]$ contains a directed cycle of length 4 and we are done. In this case, we see that $d_D(x_1, H) + d_D(y_3, H) \geq 6$. Then it is easy to see that if x_1 is joined to v_1 and v_2 is joined to v_3 in D, then $D[V(H + v_1 + v_3)]$ is hamiltonian, a contradiction. Hence either $\tau(x_1, v_1) = 1$ or $\tau(y_3, u_3) = 1$. By (2), $d_G(x_1) + d_G(y_3) \geq n + 3 = 9$ and so $d_G(x_1, G_1) + d_G(y_3, G_1) \geq 5$. By Claim 1 and Lemma 3.1, D has two required directed cycles.

Case 2. $d_G(x_1, H) + d_D(y_3, H) \le s - 1$.

Then we must have that $d_G(x_1,G_1)+d_D(y_3,G_1)=s+1$ and $\{x_1v_s,y_3u_1\}\subseteq E$. By (2), $N_D(x_1,G_1)=B_1$ and $N_D(y_3,G_1)=A_1$. We can use any edge x_iy_j of G_2 to play the role of x_1y_3 is the above argument to show that $N_D(x_i,G_1)=B_1$ and $N_D(y_j,G_1)=A_1$. In particular, u_1 is joined to y_2 in D. Consequently, we see that both $D[V(G_1-u_1+x_1)]$ and $D[\{u_1,y_2,x_3,y_3\}]$ are hamiltonian. This completes the proof of the theorem.

References

- [1] D. Amar, Partition of a bipartite Hamiltonian graph into two cycles, *Discrete Mathematics* 58 (1986), 1-10.
- [2] D. Amar and A. Raspaud, Covering the vertices of a digraph by cycles of prescribed length, *Discrete Mathematics* 87 (1991), 111-118.
- [3] J.A. Bondy and V. Chvátal, A method in graph theory, Discrete Mathematics 15 (1976), 111-135.
- [4] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, The Macmillan Press, London, 1976.
- [5] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar. 14 (1963), 423– 439.
- [6] M. El-Zahar, On circuits in graphs, Discrete Mathematics 50 (1984), 227-230.
- [7] C. Little and H. Wang, On directed cycles in a directed graphs, The Australasian Journal of Combinatorics 12 (1995), 113-119.

- [8] Edward Schmeichel and John Mitchem, Bipartite graphs with cycles of all even lengths, *Journal of Graph Theory* 6 (1982), 429-439.
- [9] H. Wang, Partition of a bipartite graph into cycles, Discrete Mathematics 117 (1993), 287-291.
- [10] H. Wang, Charles Little and Kee Teo, Partition of a Directed Bipartite Graph into Two Directed Cycles, *Discrete Mathematics* 160 (1996), 283-289.
- [11] Charles Little, Kee Teo, and Hong Wang, On a conjecture on directed cycles in a directed bipartite graph, *Graphs and Combinatorics* 13 (1997), 267–273.