Bounds on domination number of complete grid graphs

Rachid Chérifi* Sylvain Gravier† Ismaïl Zighem‡

Abstract

In a paper of Cockayne et al., the authors establish an upper and a lower bound for the dominating number of the complete grid graph $G_{n,n}$ of order n^2 . Namely, they proved a "formula", and cited two questions of Paul Erdős. One of these questions was "Can we improve the order of the difference between lower and upper bounds from $\frac{n}{5}$ to $\frac{n}{2}$?". Our aim here is to give a positive answer to this question.

1 Introduction

Let G be a simple graph (that is, without loops nor multiple edges), V(G) will denote its vertex set and E(G) its edge set. We denote by N(x) the neighborhood of x, and $N[x] = N(x) \cup \{x\}$.

We say that a set D of vertices in a graph G is dominating, if every vertex of G is either in D, or adjacent to at least one vertex of D. The domination number $\gamma(G)$ of a graph G is the smallest cardinality of such a set.

The Cartesian product of two graphs G and H is the graph denoted by $G \square H$, with $V(G \square H) = V(G) \times V(H)$ (where \times denotes the Cartesian product of sets) and $((u, u'); (v, v')) \in E(G \square H)$ if and only if u = v and $(u', v') \in E(H)$ or u' = v' and $(u, v) \in E(G)$.

The domination number of the Cartesian product of two paths $P_k \square P_n$ (called complete grid graph $G_{k,n}$) has intensively investigated. D.S Johnson [7] has attributed the (unpublished) proof of NP-completeness of the

^{*}GERAD and Département de mathématiques et de génie industriel Ecole Polytechnique de Montréal C.P. 6079, Succursale "Centre-ville" Montréal, Québec, Canada, H3C 3A7.

[†]C.N.R.S., Laboratoire Leibniz, 46 avenue Félix Viallet, 38031 Grenoble Cedex 1 (France) Email: sylvain.gravier@imag.fr.

[‡]Université Joseph Fourier, Laboratoire Leibniz, 46 avenue Félix Viallet, 38031 Grenoble Cedex 1 (France) Email: ismail.zighem@imag.fr.

decision version problem of the domination problem (that is, given a graph G and an integer m, is there a dominating set of G of size m or less?) for arbitrary grid graphs to F.T. Leighton. Nevertheless the complexity of determining the value of $\gamma(P_k \square P_n)$ remains unknown. Until now, only a few cases were settled when $k \leq 16$ ([6], [1] and [4]).

In [3], the authors gave the following bounds, for all $n \ge 8$:

$$\frac{n^2+n-3}{5} \le \gamma(P_n \square P_n) \le \left\lfloor \frac{n^2+4n-20}{5} \right\rfloor.$$

In the same paper, the authors mention two questions of Paul Erdős:

- Can we improve the order of the difference between the lower and upper bounds from $\frac{n}{5}$ to $\frac{n}{2}$?
- What can you say about 3-dimensional complete grid graphs?

In the next section we prove the following:

Theorem 1.1 For $n \ge k \ge 14$, we have :

$$\left\lceil \frac{kn + \frac{5}{4}(k+n) - 16}{5} \right\rceil \le \gamma(P_k \square P_n) \le \left\lfloor \frac{kn + 2(k+n) - 20}{5} \right\rfloor.$$

When $k = n \ge 14$, Theorem 1.1 give a positive answer to the first Erdős question.

For the second one, the reader can find in [5], the asymptotical values of domination numbers of d-dimensional complete grid graphs, for every $d \ge 2$.

2 Proof of the main result

We decompose the proof of Theorem 1.1 in two lemmas.

Lemma 2.1 (Lower bound) For any $n \ge k \ge 14$, we have :

$$\gamma(P_k \square P_n) \ge \left\lceil \frac{kn + \frac{5}{4}(k+n) - 16}{5} \right\rceil.$$

A similar proof to the one given in [3], raises:

Lemma 2.2 (Upper bound, [2]) For any $k \ge n \ge 8$, we have :

$$\gamma(P_k \square P_n) \le \left\lfloor \frac{(k+2)(n+2)}{5} \right\rfloor - 4. \ \square$$

The proof Lemma 2.1 proceeds by a refinement of the technique given in [3]. We need some additional definitions.

Let G = (V, E) be a graph of maximum degree Δ and let D be a subset of V. The redundancy of a vertex x is $|N[x] \cap D| - 1$ (that is, the number of extra times that the vertex x is dominated by D). The degree deficiency of a vertex x belonging to D is $\Delta - d(x)$. Finally, the deficiency of a vertex x is given by :

$$F_D(x) = \left\{ \begin{array}{l} \Delta - d(x) + |N(x) \cap D| \text{ if } x \in D \\ |N(x) \cap D| - 1, \text{ otherwise} \end{array} \right.$$

For any $X \subseteq V$, $F_D(X) = \sum_{x \in X} F_D(x)$.

Lemma 2.3 For any graph G = (V, E) and for any dominating set D of V, we have that

$$|D| = \frac{|V| + F_D(V)}{\Delta(G) + 1}.$$

Proof. Let Δ be the maximum degree of G. Give charge $\Delta+1$ to each vertex in D. So the total charge of G is $(\Delta+1)|D|$. Now, we redistribute the charge according to the following rule:

Every vertex in D sends charge 1 to each of its neighbors.

Any vertex x of G receives $|N(x) \cap D|$ charge. Any vertex x in D keeps $\Delta + 1 - d(x)$ charge.

Thus,
$$(\Delta+1)|D| = \sum_{x \notin D} (|N(x) \cap D|) + \sum_{x \in D} (|N(x) \cap D| + \Delta + 1 - d(x)) = |V - D| + \sum_{x \notin D} (|N(x) \cap D| - 1) + |D| + \sum_{x \in D} (|N(x) \cap D| + \Delta - d(x)) = |V| + F_D(V).$$

Lemma 2.4 Let G = (V, E) be a graph and let D be a dominating set of G. For any partition D_1, \ldots, D_r of D, we have :

$$F_D(V) \ge \sum_{i=1}^r F_{D_i}(N[D_i]).$$

Proof. For every i = 1, ..., r, let Δ_i be the maximum degree of the graph induced by $N[D_i]$. Since $D_1, ..., D_r$ is a partition of D, we have $|D| = \sum_{i=1}^r |D_i|$ and since D is a dominating set of G, we have $|V| \leq \sum_{i=1}^r |N[D_i]|$. Now, by Lemma 2.3 we obtain that

$$\frac{|V| + F_D(V)}{\Delta + 1} = |D| = \sum_{i=1}^r \frac{|N[D_i]| + F_{D_i}(N[D_i])}{\Delta_i + 1} \ge \frac{|V| + \sum_{i=1}^r F_{D_i}(N[D_i])}{\Delta + 1}. \square$$

Proof of Theorem 1.1 Let D be a dominating set of $P_k \square P_n$, for $n \ge k \ge 14$. Let D1 (resp. D4) be the set of vertices in D which are in the first 7 rows (resp. columns) and the n-7 first columns (resp. k-7 last rows) of $P_k \square P_n$. Let D2 (resp. D3) be the set of vertices in D which are in the last 7 rows (resp. columns) and the n-7 last columns (resp. k-7 first rows) of $P_k \square P_n$ (see Figure 1).

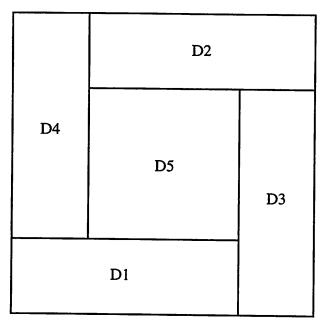


Figure 1. Partition of $P_k \square P_n$

We obtain a lower bound of $F_{Di}(N[Di])$. Let $D1_l$ be the set of vertices in D1 which are in the first l columns.

Using a computer, we can check that for all $m=2,\ldots,23$, we have $F_{D1_m}(N[D1_m]) \geq \lceil \frac{15m+9}{24} \rceil$ and that $F_{D1_{l+24}}(N[D1_{l+24}]) \geq 15+F_{D1_l}(N[D1_l])$. Hence, for all $m \geq 2$ we have :

$$F_{D1_m}(N[D1_m]) \ge \left\lceil \frac{15m+9}{24} \right\rceil.$$

Hence $F_{D1}(N[D1]) = F_{D1_{n-7}}(N[D1_{n-7}]) \ge \lceil \frac{15(n-7)+9}{24} \rceil$. Similarly, we can deduce a lower bound for $F_{Di}(N[Di]) \ \forall i=1,\ldots,4$. Let $D5 = D - (D1 \cup D2 \cup D3 \cup D4)$. Since D5 is a dominating set of N[D5]

then $F_{D5}(N[D5]) \ge 0$. By Lemma 2.4, we obtain

$$F_D(V(P_k \square P_n)) \geq \sum_{i=1}^5 F_{Di}(N[D_i])$$

$$\geq 2 \left\lceil \frac{15(n-7)+9}{24} \right\rceil + 2 \left\lceil \frac{15(k-7)+9}{24} \right\rceil \geq \frac{5(k+n)}{4} - 16.$$

Finally, by Lemma 2.3, we obtain:

$$|D| = \frac{kn + F_D(V(P_k \square P_n))}{5} \ge \frac{kn + \frac{5}{4}(k+n) - 16}{5}. \square$$

References

- [1] T.Y. Chang and W.E. Clark, The domination numbers of the $5 \times n$ and the $6 \times n$ grid graphs, J. Graph Theory (17)1 (1993), 81-107.
- [2] T.Y. Chang, Domination numbers of grid graphs, Ph.D. Dissertation, University of South Florida (1992).
- [3] E.J. Cockayne, E.O. Hare, S.T. Hedetniemi and T.W. Wimer, Bounds for the domination number of grid graphs, Congr. Numer. 47 (1985), 217-228.
- [4] D.C. Fisher, The domination number of complete grid graphs, preprint (1993).
- [5] S. Gravier and M. Mollard, On domination numbers of Cartesian product of paths, *Discrete Appl. Math.* 80 (1997), 247-250.
- [6] M.S. Jacobson and L.F. Kinch, On the domination number of products of a graph I, Ars Combin. 10 (1983), 33-44.
- [7] D.S. Johnson, The NP-completeness column: ongoing guide, J. Algorithms 6 (1985), 434-451.