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Abstract

The convex polyhedron of all real-valued monotone functions de-
fined on a finite poset is an unbounded variant of the order polytope
described by Stanley. If the undirected covering graph of the poset
is acyclic, then the lattice of non-empty faces of this polyhedron is a
Boolean lattice. In every other case both semimodularity and dual
semimodularity fail.

For a finite partially ordered set (poset) P, we consider the set of all real-
valued monotone functions on P, i. e. functions f : P — R such that

z<yin P= f(z) < f(y) inR. (1)

As a subset of the real vector space R (the space of all real-valued func-
tions on P), the monotone functions constitute a convex cone, because the
sum of any two monotone functions is monotone, and any non-negative
scalar multiple of a monotone function is monotone. Indeed this cone is a
polyhedral cone. One description by inequalities is as follows. Write & < b
if b covers a in P, i. e. a < b and there is no z € P such that a < z < b.
Let H be the covering relation (also called the covering diagram) of P, i. e.

H ={(a,b):a < b}.

Obviously a function f : P — R is monotone if and only if it satisfies all
these inequalities (for all (a, b) € H), which are finite in number. We there-
fore call the set of all real-valued monotone functions on P the monotone
polyhedron of P, and we denote it by M(P).
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We are interested here in the inclusion-ordered set of non-empty faces of
M(P), which is a lattice. For the basic facts about unbounded polyhedra
we refer to part III of Schrijver [3], and for lattice-theoretical notions to
Crawley and Dilworth [1].

We note that the monotone polyhedron of P is related to, but clearly dis-
tinct from, the order polytope of P studied by Stanley in [4]: this latter
consists of all monotone functions whose range is contained in [0,1]. (For
a recent reference on related questions, see Pitman and Stanley [2].) The
monotone polyhedron is not a polytope, since it is obviously unbounded.
The monotone polyhedron has no vertices, because it contains the infinite
line C formed by all real-valued constant functions on P. It is in fact the
unique Minkowski sum of this line C and the polyhedral cone M* of all
non-negative monotone functions with zero minimum, i.e. ofall f : P - R
such that (1) holds and

;rtréig f(x) =0.

In other words, f € M(P) if and only if there is a constant function f; € C
and an f; € M* such that f = f; + f,, and then f; and f, are obviously
unique. The cone M+ is the convex hull of a finite number of rays, where
each ray consists of the non-negative scalar multiples of the characteristic
function of some upper section of P (recall that U C P is an upper section
ifz <y,z € Uimpliesy € U, and its characteristic function 1y is given by
ly(z) =1 for z € P,1y(z) = 0 otherwise).

This is somewhat analoguous to the description of the vertices of the order
polytope in Stanley [4]. However, for the order polytope the correspon-
dence between vertices and upper sections of P is bijective, while the cor-

respondence we have described above establishes a bijection between upper
sections and extreme rays only if P has a maximum.

Consider now the lattice F of non-empty faces of the monotone polyhedron
M(P). We have seen that M(P) is the set of solutions of the system of
inequalities

fla) - f(b) <0 (a,0) € H

where H is the covering relation of P. It follows that the non-empty faces
are the solution sets of the various systems

fla) - f(b) = 0 (a,b)€S, (2)
fla) - f(®) < 0 (a,b)€ H\S, )

where S C H. Every subset S of H defines a system (2) - (3) and defines
thus a non-empty face, but different subsets S may define the same face.
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We can, however, describe a bijective correspondence between non-empty
faces and certain subsets of H. This may be viewed as a variation on the
correspondence described by Stanley [4] between faces of the poset polytope
and certain partitions of P.

Any S C H is called a subdiagram. We denote by K(S) the set of connected
blocks of the relation S on P, i. e. the set of equivalence classes of the
smallest equivalence relation containing S. Let H/S denote the relation on
K(S) defined by

H/S={(A,B)€ K(S)*:3a € Abe B,(a,b) c H\ S}.

Informally speaking, H/S is obtained from H by contracting the couples
(a,b) in S. We say that S is a closed subdiagram if H/S is irreflexive,
antisymmetric and acyclic. Closed subdiagrams are related to the ”con-
nected compatible partitions” of P considered by Stanley [4] as follows. If
partitions are viewed as equivalence relations on P (i. e. subsets of P2),
then each connected compatible partition arises from a unique closed sub-
diagram S (recall that $ C H C P?) as the smallest equivalence relation
on P containing S, and the correspondence is bijective since each closed
subdiagram is the intersection of H with a unique connected compatible
partition. Connected compatible partitions and closed subdiagrams consti-
tute two isomorphic lattices. We prefer to work with subdiagrams because
the intersection of two closed subdiagrams is a closed subdiagram, while
this property does not hold for connected compatible partitions.

The following variant of Theorem 1.2 of Stanley [4] (reported by L. Geissinger,
see [4]) is then not difficult to verify:

Lemma. Every non-empty face of the monotone polyhedron of a poset P
is defined by a unique closed subdiagram S of the covering relation H of P,
via the system (2) - (8). The lattice of non-empty faces of the monotone
polyhedron is dually isomorphic to the lattice of closed subdiagrams. In the
lattice of closed subdiagrams, the meet of two closed subdiagrams is their
intersection. 0

Consider the covering graph of a poset P, i. e. the undirected graph obtained
from the covering relation by replacing couples (a, b) by edges {a, b}. If this
graph is acyclic (i. e. a forest), then every subdiagram of the covering rela-
tion H is closed, and the lattice of closed subdiagrams is simply the power
set lattice P(H). This is a Boolean lattice, and thus the non-empty face
lattice of M(P) is Boolean if the covering graph is acyclic. (Note that this
is not true for the order polytope described by Stanley [4].) We show below
that acyclicity is also necessary for that face lattice to be Boolean, and in
the rather strong sense that if acyclicity fails, then already semimodularity
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as well as dual semimodularity must fail. (Note that face lattices of general
polyhedra can be semimodular without being Boolean or even modular.)

Recall that a lattice is semimodular if for all elements z,y
TANy<z=y<zVy.

The converse implication is referred to as dual semimodularity. Both of
these conditions are weaker than modularity, and much weaker than the
distributivity required in the case of Boolean lattices.

Theorem. Let P be a finite poset and let L be the lattice of non-empty faces
of the polyhedron of real-valued monotone functions on P. The following
conditions are equivalent:

(i) the undirected covering graph of P is acyclic (i. e. it is a forest),
(it) L is a Boolean lattice,
(#t) L is a modular lattice,
(iv) L is semimodular,

(v) L is dually semimodular.

Proof. Based on the foregoing discussion, it is enough to prove that if the
covering graph G of P is not a forest, then (iv) and (v) fail.

The fact that G is not a forest means that G contains some cycles. For
any simple cycle C (one without self-intersection), a node z of C is called a
peak if both neighbors of z in C are below z in P, and it is called a valley if
both neighbors are above z in P. Let us call the total number of peaks and
valleys the change number of C. This is an even number, since the number
of peaks must equal the number of valleys, and obviously it is at least 2.

Let us consider a simple cycle C with smallest possible change number,
and among all such cycles let us suppose that the order-convex hull [C] of
the set of vertices of C is minimal with respect to set inclusion. We shall
distinguish two cases, but first let us introduce some notation and make
some observations. For a < bin P, theset of allz € P witha <z < b s
denoted by [a,b]. The restriction of the covering relation H of Pto[a,blis
denoted by Hia,b]. Thus

Hlo,b) = {(z.9) :a <z <y < b}.

It is easy to verify that H]a, ] is a closed subdiagram.
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Case 1. The change number of C is 2. Let a be the unique valley and b
the unique peak of C. Then H]a,b| is the union of n > 2 pairwise disjoint
directed paths Py, Ps, ..., P, from a to b, each P; of length at least 2, say

P, = {(a,c)...(di, b)}.

Moreover, for i # j P; and P; have only a and b as common vertices, due
to the minimality assumption on the order-convex hull [C).

Clearly, the subdiagrams @, {(a,c1)} — denoted ac; for short, H{cy, b} and
Hla, b] are closed. Further, it can be seen that

K = Hle;, b U {(d2, b)}
is closed as well. In the lattice of closed subdiagrams we have

aCl/\H[Cl,b] = 0,
ac1 V Hiey, b] Hla,b).

Observe that ac; covers @, but H|a, b] does not cover Hcy, b] because
Hley, bl C K C Hla,b].

This shows that the lattice of closed subdiagrams is not semimodular, i. e.
that (v) fails.

The subdiagrams
I= {(a: c1)9 (0,02), veey (a7cn)}r
J = Hla,b]\ I = H[e1,b] U H[cz, b]U ... U H[cn, b]
are also closed. We have

IANT = 0,
IVvJ = Hia,b.

Now J is covered by H{a, b, but I does not cover ) because
§cCacCl.

This shows that the lattice of closed subdiagrams is not dually semimodular,
i. e. that (%) fails.

Case 2. The change number of C is greater than 2. In this case the
subdiagram
K ={(z,y) e H:{z,y} € C}
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is closed. Choose one of the two circular enumerations of the vertices of
C. Let K, consist of those members (z,y) of K for which y immediately
follows z in this circular enumeration, and let K = K \ K3. Clearly each
K; has at least two members. Choose a € Ky, € K, arbitrarily.

The subdiagrams 9, o, K1 — e, K1 — a + f are closed, and we have

a/\(Kl—a) = 0,
aV(Ky-a) = C.

Now 0 is covered by a, but (K — @) is not covered by C because
(Ki1-a)C(Ki—a+pB)cC.

Thus the closed subdiagram lattice is not semimodular and (v) fails.

The subdiagrams {a, 8} and C \ {a, 8} are also closed. We have

{a,ﬁ}/\(C\{a,ﬂ}) = 0:
{a,8}v(C\{a,8}) = C.

Clearly, C\{a, B} is covered by C, but 0 is not covered by {a, 8}. Therefore
the closed subdiagram lattice is not dually semimodular and (iv) fails. O
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