Weak Exponent of Indecomposability of an Irreducible Boolean Matrix*

Zhou Bo

Department of Mathematics South China Normal University Guangzhou 510631 P.R. China

ABSTRACT. We provide upper estimates on the weak exponent of indecomposability of an irreducible Boolean matrix.

1 Introduction

A Boolean matrix is a matrix whose entries are 0 or 1; the arithmetric underlying the matrix multiplication and addition is Boolean, that is, it is the usual integer arithmetric except that 1+1=1.

Let B_n be the set of all $n \times n$ Boolean matrices, and let r be an integer with -n < r < n. A matrix $A \in B_n$ is r-indecomposable if it contains no $k \times l$ zero submatrix with $1 \le k$, $l \le n$ and k + l = n - r + 1. In particular, A is (1 - n)-indecomposable if and only if $A \ne 0$, while A is (n - 1)-indecomposable if and only if $A = J_n$, the all-1's matrix. A 1-indecomposable matrix is also said to be fully indecomposable, and a 0-indecomposable matrix is also called a Hall matrix.

A matrix $A \in B_n$ is reducible if there is a permutation matrix P such that

$$PAP^{-1} = (A)_1 0A_{21}A_2,$$

where A_1 and A_2 are nonvacuous square matrices; otherwise A is irreducible. In particular, the 1×1 matrix (0) is reducible and (1) is irreducible.

^{*}This work was supported by Guangdong Provincial Natural Science Foundation of China (990447).

Let IB_n be the set of all irreducible matrices in B_n . It is well known that

$$A + A^2 + \dots + A^n = J_n$$

for any $A \in IB_n$. Note that J_n is r-indecomposable for any r with -n < r < n. Hence, for any $A \in IB_n$ and any integer r with -n < r < n, there exists a minimum positive integer p such that $A + A^2 + \cdots + A^p$ is r-indecomposable; such an integer p is called the weak exponent of r-indecomposablity of A, and is denoted by $w_r(A)$.

In [1], Brualdi and Liu use $f_w(A)$, $h_w(A)$ for $w_1(A)$ and $w_0(A)$ and call them the weak fully indecomposable exponent and weak Hall exponent of A respectively.

In [2], Liu proved that $f_w(A) \leq \lfloor \frac{n}{2} \rfloor + 1$ and $h_w(A) \leq \lceil \frac{n}{2} \rceil$ for any $A \in IB_n$, where $\lfloor x \rfloor$ and $\lceil x \rceil$ denote the greatest integer $\leq x$ and the smallest integer $\geq x$ respectively.

In the present paper, the above results are extended to the general cases. We prove that

$$w_r(A) \leq \left| \frac{n+r+1}{2} \right|,$$

for any matrix $A \in IB_n$ and integer r with -n < r < n, and we also prove this upper estimate is best possible.

2 Preliminaries

To obtain our results, we need some notation and terminology (see [3] for basic results on matrices and directed graphs). For a matrix $A = (a_{ij}) \in B_n$, the directed graph of A, D(A), is the graph with vertex set $V(D(A)) = \{1, 2, ..., n\}$ and arc set $E(D(A)) = \{(i, j) : a_{ij} \neq 0\}$. It is well known that the (i, j) entry of A^k is nonzero if and only if there is a walk of length k from vertex i to vertex j in D(A).

Let $A \in B_n$ and let $X \subseteq V(D(A))$. By $R_t(A, X)$, we denote the set of all vertices reachable from a vertex in X via a walk of length t. Clearly, $R_1(A^i, X) = R_i(A, X)$.

By the definition of r-indecomposability, a matrix $A \in B_n$ is r-indecomposable if and only if, for each k such that $\max\{1, 1-r\} \le k \le \min\{n, n-r\}$, every $k \times n$ submatrix of A has at least k+r columns with nonzero entries. Equivalently, $A \in B_n$ is r-indecomposable if and only if, for each $X \subseteq V(D(A))$ with $\max\{1, 1-r\} \le |X| \le \min\{n, n-r\}$, $|R_1(A, X)| \ge |X| + r$.

We need the following lemma, which has appeared in [2], for completeness, however, a proof is included here.

Lemma 1. Suppose that $A \in IB_n$, $X \subseteq V(D(A))$, and $1 \le t \le n$. If

 $R_1(\sum_{i=1}^t A^i, X) \neq V(D(A))$, then

$$\left| R_1(\sum_{i=1}^t A^i, X) \right| \ge |R_1(A, X)| + t - 1.$$

Proof: The case t = 1 is trivial. Suppose t > 1. Let $V_1 = R_1(\sum_{i=1}^{t-1} A^i, X)$, $V_2 = V(D(A)) \setminus V_1$. Since $V_1 \neq V(D(A))$, we have $V_2 \neq \emptyset$. Note that $V_1 = \bigcup_{i=1}^{t-1} R_i(A, X)$.

Suppose $R_t(A,X) \cap V_2 = \emptyset$. Then $R_t(A,X) \subseteq V_1 = R_1(\sum_{i=1}^{t-1} A^i, X)$. Since $A \in IB_n$, D(A) is strongly connected. Hence there is a vertex $x \in V_2$ and a vertex $y \in V_1$ such that $(y,x) \in E(D(A))$, which implies that $x \in R_1(\sum_{i=1}^t A^i, X)$. Note that $x \notin R_1(\sum_{i=1}^{t-1} A^i, X)$. We have $x \in R_t(A, X)$, which is a contradiction. Thus $R_t(A, X) \cap V_2 \neq \emptyset$, and there is at least one vertex, say $x \in R_t(A, X)$ but $x \notin V_1$. We have

$$\left| R_1(\sum_{i=1}^t A^i, X) \right| = \left| \bigcup_{i=1}^t R_i(A, X) \right| = |V_1 \cup R_t(A, X)|$$

$$\geq \left| R_1(\sum_{i=1}^{t-1} A^i, X) \right| + 1,$$

which implies the desired result.

3 The result

We have

Theorem 1. For any matrix $A \in IB_n$, and any integer r with -n < r < n, we have

$$w_r(A) \leq \left\lfloor \frac{n+r+1}{2} \right\rfloor.$$

Proof: Let $X \subseteq V(D(A))$ with |X| = k, and $\max\{1, 1 - r\} \le k \le \min\{n, n - r\}$.

Case 1. $\frac{n-r+1}{2} < k \le \min\{n, n-r\}.$

Note that $R_1(A^i, X) = R_i(A, X)$, and |X| = k. Since D(A) is strongly connected, any vertex in V(D(A)) is reachable from a vertex in X by a walk of length at most n - k + 1. Hence

$$R_1(\sum_{i=1}^{n-k+1} A^i, X) = \bigcup_{i=1}^{n-k+1} R_i(A, X) = V(D(A)).$$

Since $n-k+1 \le n-\frac{n-r+2}{2}+1 = \frac{n+r}{2} < \frac{n+r+1}{2}$, we have

$$\left| R_1(\sum_{i=1}^{\lfloor (n+r+1)/2 \rfloor} A^i, X) \right| = |V(D(A))| = n \ge k+r.$$

Case 2. $\max\{1, 1-r\} \le k \le \frac{n-r+1}{2}$.

Case 2.1. $R_1(\sum_{i=1}^{k+r} A^i, X) = V(D(A))$. Since $k+r \leq \frac{n-r+1}{2} + r = \frac{n+r+1}{2}$ we have

$$\left| R_1(\sum_{i=1}^{\lfloor (n+r+1)/2 \rfloor} A^i, X) \right| = |V(D(A))| = n \ge k+r.$$

Case 2.2. $R_1(\sum_{i=1}^{k+r} A^i, X) \neq V(D(A))$.

It follows from Lemma 1 that

$$\left| R_1(\sum_{i=1}^{k+r} A^i, X) \right| = |R_1(A, X)| + (k+r) - 1.$$

Note that D(A) is strongly connected. We have $|R_1(A, X)| \geq 1$. Thus

$$\left| R_1(\sum_{i=1}^{\lfloor (n+r+1)/2 \rfloor} A^i, X) \right| \ge \left| R_1(\sum_{i=1}^{k+r} A^i, X) \right|$$

$$\ge 1 + (k+r) - 1 = k+r.$$

Combining Cases 1 and 2, we have

$$\left| R_1(\sum_{i=1}^{\lfloor (n+r+1)/2 \rfloor} A^i, X) \right| \ge k + r = |X| + r,$$

which implies that

$$w_r(A) \leq \left\lfloor \frac{n+r+1}{2} \right\rfloor.$$

The proof of the theorem is complete.

As a consequence of Theorem 1, we have

Corollary 1. If $A \in IB_n$, then $w_1(A) \leq \left|\frac{n}{2}\right| + 1$ and $w_0(A) \leq \left|\frac{n+1}{2}\right| =$ $\left[\frac{n}{2}\right]$.

Theorem 2. The upper estimate in Theorem 1 is best possible.

Proof: Let $A \in IB_n$ with D(A) = D, where $V(D) = \{1, 2, \ldots, n\}$ and $E(D) = \{(i, \left\lfloor \frac{n-r+1}{2} \right\rfloor + 1) \colon 1 \le i \le \left\lfloor \frac{n-r+1}{2} \right\rfloor \} \cup \{(i, i+1) \colon \left\lfloor \frac{n-r+1}{2} \right\rfloor + 1 \le i \le n\} \cup \{(n, i) \colon 1 \le i \le \left\lfloor \frac{n-r+1}{2} \right\rfloor \}$. If $t \le \left\lfloor \frac{n+r-1}{2} \right\rfloor$, it can be easily seen that all columns except columns $\left\lfloor \frac{n-r+1}{2} \right\rfloor + 1, \ldots, \left\lfloor \frac{n-r+1}{2} \right\rfloor + t$ are zero in rows $1, 2, \ldots, \left\lfloor \frac{n-r+1}{2} \right\rfloor$ of $A + A^2 \cdots + A^t$; hence $A + A^2 + \cdots + A^t$ contains a $\left\lfloor \frac{n-r+1}{2} \right\rfloor \times (n-t)$ zero submatrix with

$$\left\lfloor \frac{n-r+1}{2} \right\rfloor + (n-t) \ge \left\lfloor \frac{n-r+1}{2} \right\rfloor + n - \left\lfloor \frac{n+r-1}{2} \right\rfloor$$
$$\ge n + \left\lfloor \frac{n-r+1}{2} - \frac{n+r-1}{2} \right\rfloor = n-r+1,$$

which implies that $A + A^2 + \cdots + A^t$ is not r-indecomposable. By the definition of weak exponent of indecomposability, we have

$$w_r(A) \ge \left\lfloor \frac{n+r-1}{2} \right\rfloor + 1 = \left\lfloor \frac{n+r+1}{2} \right\rfloor.$$

By Theorem 1, $w_r(A) \leq \left| \frac{n+r+1}{2} \right|$. Thus we have proved

$$w_r(A) = \left\lfloor \frac{n+r+1}{2} \right\rfloor,$$

which means that the upper estimate in Theorem 1 can be achieved for every n and r. We complete the proof.

References

- R.A. Brualdi and B. Liu, Hall exponents of Boolean matrices, Czechoslovak Math. J. 40 (1990), 659-670.
- [2] B. Liu, Weak exponents of irreducible matrices, J. Math. Research & Exposition 14 (1991), 35-41.
- [3] R.A. Brualdi and H.J. Ryser, Combinatorial Matrix Theory, Cambridge Univ. Press, Cambridge, 1991.
- [4] J. Shen, D. Gregory and S. Neufeld, Exponents of Indecomposability, *Linear Algebra Appl.* 288 (1999), 229–241.
- [5] S. Schwarz, The semigroup of fully indecomposable relations and Hall relations, *Czechoslovak Math. J.* 23 (1973), 151-163.