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Let T be a spanning tree of a graph G. This paper is concerned with
the following operation : we remove an edge e € E(T) from T, and then
add an edge f € E(G) — E(T) so that T — e + f is a spanning tree of G.
We refer to this operation of obtaining T'— e + f from T as the transfer
of e to f. We prove that if G is a 2-connected graph with |V(G)| > 5,
and if 71 and T> are spanning trees of G which are not stars, then T}
can be transformed into T> by repeated applications of a transfer of a
nonpendant edge (an edge zy of a tree T is called a nonpendant edge of
T if both of z and y have degree at least 2 in T').

1. INTRODUCTION

We consider finite undirected graphs without loops or multiple edges.
Transformation of edges in a spanning tree is studied and used by various
authors. For example, there are researches on spanning trees the num-
ber of whose endvertices is specified; in particular, Heinrich and Liu (3]
gave a bound on the number of spanning trees with a specified number of
endvertices. For other works, see [4], [2] or [1].

We are concerned with the following operation : we remove an edge
e € E(T) from T, and then add an edge f € E(G) — E(T) joining the two
components of T' — e (note that the resulting graph, T' — e + f, is again a
spanning tree of G). We refer to this operation of obtaining T — e + f from
T by saying that we transfer e to f (in T). A vertex z of a tree T is called
an endvertex of T if z has degree 1 in T. An edge zy of a tree T is called
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a pendant edge of T if z or y is an endvertex of T; otherwise it is called a
nonpendant edge of T'.

The following two facts are already known (see Exercise 6.7 of [1]).

(i) Let Ty and T> be spanning trees of a connected graph G. Then T
can be transformed into T3 by repeated applications of a transfer of
an edge.

(i) Let G,T1,T» be as in (i), and suppose G is 2-connected. Then T}
can be transformed into T by repeated applications of a transfer of
a pendant edge.

In this paper, we consider a transfer of nonpendant edges, and prove the
following theorem.

Theorem 1. Let G be a 2-connected graph with | V(G) |2 5. Let Ty and
T be spanning trees of G which are not stars. Then Ty can be transformed
into Ty by repeated applications of a transfer of a nonpendant edge.

In the theorem, we cannot drop the assumption that | V(G) |> 5. Also
Theorem 1 does not generally hold for a connected graph which is not 2-
connected. In fact the following corollary holds (for a spanning tree T of a
connected graph G and for a block B of G, we let T'| g denote the spanning
tree of B defined by E(T|g) = E(T)N E(B)).

Corollary 2. Let G be a connected graph. Let Ty and Ty be spanning
trees of G. Then Ty can be transformed into T> by repeated applications
of a transfer of a nonpendant edge if and only if one of the following five
conditions is satisfied:
@ V(G2
(ii) | V(G) |= 3 and T1 = T2,'
(iii) G is 2-connected and | V(G) |= 4, and {e | e is a pendant edge of
Ty} = {f | f is a pendant edge of Tp};
(iv) G is 2-connected and | V(G) |> 5, and either Ty and T are not stars
or Ty =T5; or
(v) G is not 2-connected and | V(G) | 4, and for any endblock B of G,
if one of T1|p and T»|p is the star having as its center the cutvertez
of G contained in B, then so is the other one (i.e., Ti|s = T2|B).

We prove Theorem 1 in Section 2 and prove Corollary 2 in Section 3.

Remark 1. Let T be a spanning tree of a connected graph G, and let T be
the spanning tree which we obtain by transferring a nonpendant edge e of T
to f (soT' =T —e+ f). Then f is a nonpendant edge of T’ (because the
two components of T — e, both of which have order at least 2, are precisely



the components of T' — f). Hence we can obtain T by transferring (a
nonpendant edge) f to e in T'. Thus if T1 can be transformed into T by
repeated applications of a transfer of a nonpendant edge, then T> can be
transformed into Ty by repeated applications of a transfer of a nonpendant
edge.

2. PROOF OF THEOREM 1

Let G, T, T, be as in Theorem 1. Let S be a largest common subtree of
T, and Ty (it is possible that S consists of a single vertex). For spanning
trees T, T of G, we write T — T when T can be transformed into T”
by repeated applications of a transfer of a nonpendant edge. We prove
Ty — T, by backward induction on | V(S) |. Let n =| V(G) |.

1. We consider the case where | V(S) |=n — 1. Let z be the remaining
vertex, i.e., the vertex which does not belong to S (z is an endvertex of
both T} and T3), and let z be the vertex adjacent to z in T; and let y
be the vertex adjacent to z in T. We divide the proof into three cases
according to the length of the (unique) z-y path in S. In general, if H isa
graph, then for a,b € V(H), we let dg(a,b) denote the length of a shortest
a-b path in H, and for a € V(H) and B C V(H), we let dy(a, B) denote
min{dy(a,b) | b € B}.

Case 1. ds(z,y) > 3.

On the z-y path in S, there exists an edge ab such that a # z,y and
b # z,y. We can transfer ab to yz in T1, and then we can transfer zz to ab
in T} — ab + yz. Then we obtain T,. Therefore T} — T>.

Case 2. ds(z,y) =2.

Let a be the only vertex adjacent to z and y in Ty and in T>. Since
| V(G) |> 5, Ns(z) — {a} # 0 or Ns(y) — {a} # 0 or Ns(a) — {z,y} #0.

Subcase 2.1. Ns(z) — {a} #0 or Ns(y) — {a} #0.

By symmetry (see the remark at the end of Section 1), we need to
consider only the case where Ns(z) — {a} # 0. Then we can transfer za
to yz in Ty, and then we can transfer zz to za in T} — za + yz. Then we
obtain 7. Therefore T} — T5.

Subcase 2.2. Ng(a) — {z,y} #0.

In this case, we can transfer za to yz in T}, and then we can transfer ya
to za in T — za + yz, and finally we can transfer zz to ya in T} +yz — ya.
Then we obtain T5. Therefore T} — T5.

Case 8. dg(z,y) =1.

Since | V(G) |> 5, at least one of x and y is not an endvertex of S.

Subcase 8.1. Neither x nor y is an endvertex of S.
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We can transfer zy to yz in T}, and then we can transfer zz to zy in
T} — zy + yz. Then we obtain T5. Therefore Ty — T5.

Subcase 3.2. z ory is an endvertex of S.

By symmetry, we may assume that y is an endvertex of 5. Then z is
not an endvertex of S. Let

A={v€eV(T))|v€ Nr,(x), v is an endvertex of T} },
B=V(T1) - {z} - A.

Since T} is not a star, B # @. Note that 2,y € A. We prove T} — 15 by
induction on dg—»(2, B).

First we consider the case where dg—(z, B) = 1. Choose v € Ng(z)NB.
By the definition of B, ds(z,v) > 2 or v is not an endvertex of S. It follows
that T} = S + 2x — S + 2v by Case 1 or Case 2 when ds(z,v) = 2 and
by Subcase 3.1 when dg(z,v) = 1 and v is not an endvertex of S. Since
ds(y,v) > 2, S+ 2zv —» S+ 2y = Tz by Case 1 or Case 2. Therefore
Tl - Tg.

Next we consider the case where dg_.(z, B) > 2. Let (2 =)2021 --- 21(21 €
B) be a shortest path between z and B in G — z. Since dg_z(2, B) > 2,
21 € A. Since dg-»(z, B) > dg-z(z1, B), we see that T} — T1 — 21T + 212
by applying the induction hypothesis with z and y replaced by z; and z,
respectively. Moreover since zz is a nonpendant edge of T} — 21z + 212, we
can transfer 2z to z2; in T} — 212+ 2, 2. Hence Ty — T} —zz+22; = S+22;.
If z; =y, then S 4 z2; = T and, therefore Ty — T». If 2; # y, then since
ds(z1,y) = 2, we get S+ 2z; — S + zy = T, by Case 2 and, therefore
T, — T,. This concludes the discussion for the case where | V(S) |[=n —1.

2. We consider the case where | V(S) |=n — 2. Let z and y be the two
remaining vertices. Assume for the moment that z and y are adjacent to
each other in T} or T3. By symmetry, we may assume that zy € E(Ty).
Let e be the only edge of T} which joins V(S) and {z,y}. Then e is a
nonpendant edge of 7;. Now let T3 be the spanning tree which we obtain
by transferring e in 7} to an edge f of T, which joins V(S) and {z,y}.
Then the order of a largest common subtree of T3 and T3 is greater than
| V(S) |(=n — 2), i.e., either the order of a largest common subtree of T3
and T3 is n — 1, or T3 = T». Hence by the induction hypothesis, T3 — T5.
Therefore Ty — T5.

Thus we may assume that = and y are nonadjacent both in 7} and in
Ty. Write

T, =S +e +e] (e =azx,e] =cy),
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Ty =S+ ey + e (e2 = bz,eh = dy)

(it is possible that a = ¢ or b = d). Since T} is not a star, at least one
of S+ e; and S + €] is not a star even if S is a star (here we make use
of the fact that | V(G) |> 5). We may assume that S + e; is not a star.
Now let T3 = S + e, + €5. Then since T3 is not a star and the order of a
largest common subtree of T} and T3 and that of T; and T3 are greater than
| V(S) |[(= n — 2), it follows from the induction hypothesis that T} — T3
and T3 — T5 . Therefore T} — T5.

3. We consider the case where | V(S) |< n— 3. Let e; = az be an edge
of T} with a € V(S) and £ € V(G — S), and let e2 = by be an edge of T
with b € V(S) and y € V(G — S). We divide the proof into two cases.

Case 1. z#y.

If $ + e; + ey is not a star, then letting 73 be a spanning tree which
contains S + e; -+ ea, we see that 77 — T3 — T, by arguing as in the last
part of the proof for the case where | V(S) |=n — 2. Thus we may assume
that S+e; +eo is a star. Then a = b and a is the center of S+e; 4-e;. Since
| V(S) |<€n—-3,| V(S+e; +e2) |< n—1, and hence by the assumption that
G is 2-connected, we see that in G — a, there exists an edge e which joins
V((S+e1+e2)—a) and V(G —a)-V((S+e1+ex)—a)(= V(G-S—z—y)).
Let T3 be a spanning tree which contains S + e; + ez + e. Then since T3
is not a star, we see that T} — T3 — 75 by arguing as in the preceding
paragraph.

Case 2. z=y.

Since G —  is connected and V(G — z — S) # 0, we see that in G — z,
there exists an edge e which joins V(S) and V(G — =z — S). Arguing as in
Case 1, we can find a spanning tree T3 which is not a star and contains
S + e; + e as well as a spanning tree T4 which is not a star and contains
S + ez +e. We see that Ty — T3 — Ty — T3 by arguing as earlier. This
completes the proof of the theorem.

3. PrROOF OF COROLLARY 2

Let G,Ty,T> be as in the corollary. It is easy to see that if none of
(i) through (v) holds, then T cannot be transformed into T by repeated
applications of a transfer of a nonpendant edge. Also it is clear that each
of (i), (ii) and (iii) implies 7 — T%, and the statement that (iv) implies
T, — T follows immediately from Theorem 1. Thus we need to prove only
the statement that (v) implies T} — T». Assume that condition (v) holds.

Let By,---,B) be the blocks of G. We proceed by induction on the
number [ of those blocks B; for which Ti|g, # Ti|p,. If | = 0, then
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T, = T3, and hence there is nothing to be proved. Thus assume [ > 1. We
may assume Ti|g, # Ta|B, (so | V(B1) |> 3). For spanning trees T, T of
By, we write T ~» T” to mean T U (T1|32 U..-u TllBk) - T'U (T1|32 U
---UTi|B,) (note that a nonpendant edge of T is also a nonpendant edge
of TU(Ty|g,U---UT\|g,), i.e., T — T" implies T ~ T").

In view of the induction hypothesis, it suffices to show that Tj|p, ~
T»|B,. Thus we may assume that ! =1, i.e., 71| 5, = T2|p, for each 2 < i <
k. We divide the proof into two cases according to whether | V(B;) |> 4
or | V(By) |=3.

Case 1. |V(By)|>4.

Subcase 1.1. T\|p, and T3|p, are not stars.

K | V(B1) |> 5, we see from the theorem that T1|g, ~ T3|s, (ie.,
Ty — T3). Thus we may assume | V(B,) |= 4. If {e | e is a pendant
edge of T1|p,} = {f | f is a pendant edge of T3|5,}, then from the case
where condition (iii) holds, we see that T}|g, ~» T3|g,. Therefore we may
suppose that {e | e is a pendant edge of Ti|p, } # {f | f is a pendant edge
of T3], }. Then we actually have {e | € is a pendant edge of Ti|g, }N{f | f
is a pendant edge of T|p, } = 0. Write

V(B1) = {a,b,c,d}
so that

{ab,cd} = {e| e is a pendant edge of T}|p, },

{bc,ad} = {f | f is a pendant edge of T35, }.
Let '

e; be the unique nonpendant edge of T}|s,, and

e2 be the unique nonpendant edge of T3 |p, .

By symmetry, we may assume that a is a cutvertex of G. Since e; is a
nonpendant edge of T1|p,, we can transfer e; to bc in T}|p, (it is possible
that e; = bc). Since ab is a nonpendant edge of T — e, + bc, we can
transfer ab to ad in T1 —e; + bc. Moreover since c¢d is a nonpendant edge of
T1|B, —e1+bc—ab+ad, we can transfer cd to ep in 71| g, —e; +bc—ab+ad
to obtain T3|p, (it is possible that c¢d = e;). Therefore T}, — T3.

Subcase 1.2. Ti|p, or Ts|p, is a star.

By symmetry(see the remark at the end of Section 1), we may assume
that T} |, is a star. Let b be the center of the star. Let a be a cutvertex of
G contained in B;. If B, is not an endblock, then B; contains at least two
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cutvertices of G, and hence we may assume a # b; if B, is an endblock,
then a # b by (v). Thus in either case, we have a # b.

Hence the edge ab € E(Ti|p,) is a nonpendant edge of Ty. Since B; is a
block (with | V((By) |> 3), there exists a vertex c(# b) which is adjacent to
a in B;. We can transfer ab to ac in T. Since | V(By) |> 4, T1|B, —ab+ac
is not a star. Consequently if T3|p, is not a star, then by Subcase 1.1,
T\|B, — ab+ ac ~ Tx|g,, and hence Ti|g, ~~ T2|p,; if T2|s, is a star, then
arguing as above, we see that there exists a spanning tree T of B; such
that T is not a star and T3|g, ~ T (so T ~~ T3|g,), and hence again by
Subcase 1.1, we get Ti|p, ~ T2|B,.

Case 2. |V(B;)|=3

Write

V(B:) = {a,b,c}
so that

E(T\|,) = {abs bc}’ E(T2|Bl) = {acr bc}

Assume for the moment that a is a cutvertex of G. Then ab is a nonpendant
edge of T1, and hence we can transfer ab to ac in T). Then we obtain T5.
Therefore T — T5. Thus we may assume that a is not a cutvertex. Then
by (v), By is not an endblock, and hence both b and c are cutvertices.
Consequently, we can transfer be to ac in 71, and then ab to be in T} —bc+ac.
Then we obtain T5. Therefore T} — T3. This completes the proof of
Corollary 2.
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