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Abstract

By considering the order of the largest induced bipartite subgraph
of G, Hagauer and Klavzar [4] were able to improve the bounds first
published by V. G. Vizing [6] for the independence number of the
Cartesian product GOH for any graph H. In this paper, we study
maximum independent sets in GOH when G is a caterpillar, and
derive bounds for the independence number when H is bipartite. The
upper bound we produce is less than or equal to that in [4] when H is
also a caterpillar, and is shown to be strictly smaller when H comes
from a restricted class of caterpillars.

1 Introduction

The problem of determining the independence number of a graph can be
shown to be NP-hard [3]). As there are numerous practical applications for
determining the independence number of a graph (for instance, constructive
coding problems [5], wire coloring, and processor scheduling), it is of interest
to explore the idea further. Recent research seems to support the idea
that the independence number of a graph which can be realized as the
product of two graphs can be more easily determined if viewed in light of
the independence number of the graphs which produce it, since a number of
polynomial-time algorithms have been proposed for decomposing a graph
with respect to the Cartesian product [1, 2, 7]. This idea is set forward in
[4], in which the independence number of products with bipartite graphs,
odd paths, and odd cycles is examined in great detail. This paper expands
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upon that idea, examining products with stars and generalizing the results
with stars to caterpillars.

We consider finite, undirected, connected, simple graphs G = (V, E)
where V is the vertex set of the graph and E is the edge set. For conve-
nience, we let |G| = |V(G)|. A set U of vertices is independent if no two of
them are adjacent. The independence number, a(G), is the cardinality of
the largest independent set of vertices. We say a set S C V(G) is an a-set of
G if S is a maximum independent set of G. Let &(G) = maz{a(G—-S):S
is independent and |S| = a(G)}. A 2-independent set in G is the union of
two disjoint independent sets, and we denote the cardinality of the largest
2-independent set by a2(G). One will note that, for a bipartite graph,
a2(G) = |G|. A matching is an independent set of edges, and we denote
the largest matching of G by 7(G). Given a matching M, we say a vertex
z is an unsaturated vertex with respect to the matching M if z is incident
with no edges in M.

For graphs G = (V, E) and H = (W, F), the Cartesian product GOH is
the graph with vertex set V x W, and (u, z) is adjacent to (v,y) in GOH
whenever uv € E and £ = y, or zy € F and u = v. Note that GOH is
connected if and only if both G and H are connected.

A graph is a star, denoted K, if it consists of one vertex of degree
k and k vertices of degree one. A graph is a caterpillar if a path remains
after the removal of all its vertices of degree one. This path is called the
spine of the caterpillar. If z; is a nonnegative integer for 1 < 7 < n,
then by C(z1,x2,...,T,), we denote the caterpillar whose spine is the path
u1,Us, ..., U, such that for each ¢, u; is adjacent to a set, L,,, of degree
one vertices, called leaves, where |L,,| = z;. A leafless string of vertices
is a set of spine vertices, V; = {uj,4j41,...,ur}, which have z, = 0 for
n = j,j+1,...,k and are between two vertices, uj_; and wugy;, with
zj—1 2 1 and zx41 > 1. The first set of such vertices (i.e., those vertices
with smallest subscripts) is V;, the second is V5, and so on. Let v; = |V}].
When there is no ambiguity, we will refer to C(z3,%2,...,2,) as C. It is
also worth noting that a star K ; may be thought of as a caterpillar C(k).

For z € V(H), let G; = GO{z} and for u € V(G), let H, = {u}0H.
We call G, a layer of G and H, a layer of H. Note that G is isomorphic to
G and H,, is isomorphic to H. If y;,¥2,...,yn is an established ordering of
V(H) and S C V(GOH) with Y; = SNG,,, then we follow the convention
established in [4] and write S = (V},Y2,...,Y,). When H = K x, we will
use the ordering ¥1,¥2,-- -, Yk, where y1,¥2,...,Yx € L.

2 Preliminary Results

Vizing obtained the following bounds on a(GOH),
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Theorem 2.1 [6] For any graphs G and H,

a(G)a(H) + min{|V(G)| — a(G), [V (H)| - a(H)}
< a(GOH) < min{a(G)|V (H)|,a(H)[V(G)|}.

The lower bound comes from noting that the product of two independent
sets is independent. The upper bound arises from the realization that, for
u € V(G) and S an a-set of GOH, |S N Hy| < a(H).

Hagauer and Klavzar (4] refined these bounds in the case where one
graph is bipartite using the Cartesian product of a bipartition of one graph
with a 2-independent set of the other to obtain the lower bound. They
obtain the upper bound with the realization that, given a matching M of
H and a maximum independent set S of GOH, for zy € M, |SN(GUGy)| <
a2(G) and for an unsaturated vertex z € V(H), |SNG;| < a(G).

Theorem 2.2 [4] If H is a bipartite graph, then for any graph G,
4]

2
In the case where both graphs are bipartite, the upper bound can be

simplified and the lower bound can be improved using an equation found
in the proof of the above bounds in [4].

02(G) < o(GOH) < 7(H)az(G) + (|H] - 2r(H))a(G).

Theorem 2.3 For any bipartite graphs G, with color classes C, and C»
(IC1]| > |C|), and H, with color classes D, and Dy (|Dy| > |D2|),

|C1lID1] + |C2||1D2| < o(GBH) < 7(H)|G| + (|H| - 27(H))a(G).

3 Products with Stars

In this section, we consider the Cartesian product of a star, K, with a
graph G. We may eliminate the case of K, ; where k = 1 as trivial, as
a(GOK,,1) = a(GOK3) = az(G), a result noted in [4].

Theorem 3.1 For two stars, K, ; and K, 4,
(K1 ;0K ) = jk + 1.

Proof. By Theorem 2.2, a(K;,;0K1x) < jk+ 1. To obtain the lower
bound, construct the set T = (S, S,...,S, {z}), where S is a maximum
independent set of Ky ; and z € V(K,,; — §). Thus, |T| = jk+1, T is
independent and a(K,; ;0K k) > jk+ 1. (]
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One of the more interesting uses of stars is to serve as “building blocks”
for other graphs, especially caterpillars, as we will see later. With that
in mind, we provide the following theorem, which characterizes maximum
independent sets of Cartesian products when one factor is a star.

Theorem 3.2 For any graph G and any ster K, i, there exists a mazimum
independent set of GOK, . of the form (A, A,...,A, B) where A and B are
independent in G.

Proof. Let S = (X, Xs, X3, ..., Xk, X) be a maximum independent set of
GOK, ;. Choose i (for 1 < < k), such that |X;| > |Xj| forall 1 < j < k.
Then S’ = (X;, Xi,...,Xi, X) is independent and |S’| > |S]. o

In the case where the independence number of a bipartite graph is equal
to the size of the larger color class, the results from [4] may be used to obtain
an exact value for a(GOK] x).

Theorem 3.3 For any star K, and any bipartite graph G, with color
classes Cy and C, where a(G) = |Ch],

a(GOK, 1) = k|C1| +|Cy|.

Proof. Clearly {(C1,C),...,C1,C?) is an independent set. Thus
a(GOK, ) > k|Cy| + |C2|. By Theorem 2.2,

a(GOK, ) <|G|+ (k-1)a(G)
=|Ci| + |Ce| + (k — 1)|Cy| = k|Ch] + |Cel.

a

Let S; and S2 be disjoint independent sets such that |S; US;| = a2(G).
From among all such 2-independent sets of G, choose one where |S;| is as
small as possible.

Note that for a bipartite graph G with color classes C; and C; such
that |C1| > |C2|, the unique way to find S; and S5 is S} = C; and S, = C,.
"Theorem 3.3 provides a case in which a(GOH) = k|C1|+|Ca2|. The following
theorem, similar in result and proof to a result in [4], can be seen as a natural
generalization of Theorem 3.3 to an arbitrary graph G.

Theorem 3.4 Let k > 2. If |S2| < 2, then a(GDOK, ) = k|S:1| + |S2].
Otherwise, a(GOK) ) < k(|S1| + |52]) — 2k + 1.

Proof. Let s; = |Si| and s; = |S|. Clearly, S = (S1,51,...,51,52) is
an independent set of GOK] . Suppose |S| < a(GOK; ) and let S’ be
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a maximum independent set of GOK} . Hence, |S’| > |S|. By Theorem
3.2, we may assume S’ = (X;,X),...,X1,X>), for some pair of disjoint
independent sets X; and X; of G. Now let z; = |X;| and z2 = |X;|.
Clearly, z; > z;. Note that z; + 5 < s; + s3 since S; U S, is a maximum
2-independent set of G. If =3 + 2 = s; + s3, then by the choice of s,
s; > z1, which implies |S’| < [S], a contradiction. Hence,

)+ 2 <83 +82~1
1 <81 +82—2.

Now,

IS!| = kz1 + 29
= (k — 1)z + (71 + 2)
S(k-1s1+(k—-1)s2—2k+2+s; +s2—1
=k(s; +52) -2k +1
=ks;+s2+(k—1)s3—2k+1
=S|+ (k- 1)s2 — 2k + 1.

If (k—1)s2 —2k+1 <0, (ie, |S2| £ 2), there is a contradiction and
S is a maximum independent set of GOK) . Otherwise, a(GOK, ;) <
k(IS +1S2]) — 2k + 1. 0

One way of visualizing this upper bound is to note first that, given a
largest independent set S of GOK] . it follows that |[SN(G.UG,)| £ aa2(G)
for all y € L,. If we take this sum over all such leaves y, we obtain
k(|S1] +]S2]) but |S2| has been counted (k — 1) extra times. Recalling that
[S2] > 2,:‘_'11 since otherwise, we know the exact value for GOK x, we note
that (k— 1)|S2| > (k — 1)(¥=5L) = 2k — 1. So we remove these extra copies
to obtain, k(|S1| + [S2|) — (k — 1)|S2| < k(|S1]| + |S2|) — 2k + 1.

4 Products with Caterpillars

One might surmise that it would always be beneficial when construct-
ing a maximum independent set of GOK) i of the form (4, A4,..., A, B)
to let A be an a-set of G so as to maximize the number of elements in
the set which is counted the most times. However, this is not always the
case, as is demonstrated by caterpillars containing an odd number of con-
secutive degree two vertices on the spine. For example, in the case of
c(2,1,0,0,0,0,0,1,2)0K, 2, one may obtain an independent set of car-
dinality 22 using an a-set of C, but may obtain an independent set of
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Figure 1: C(2,1,0,0,0,0,0,1,2) and Kj o

Y, Y2 ¥, Yo ¥s Ys

cardinality 23 using the color classes of C.

The set I = {y1,¥2,¥3,u3,us,U7,¥a,Y5,Y6} is the unique a-set of the
caterpillar C, and J = {uy,u4,ug,us} is an a-set of C — I. These give rise
to the independent set S; = (I, I, J) of COK] 3 of cardinality 22. However,
if the color classes Cy = {y1,¥2, u2, u4,us,us,¥s,y6} and Co = V(C) — C;
are used instead, we can produce an independent set S2 = (C;,C},C2) of
cardinality 23.

As a result of this observation, we must restrict the next results to a
specific group of caterpillars, those for which z; > 1 for all 4.

Lemma 4.1 Letz; > 1 for eachi, 1 <i < n, and let k > 2. There exists a
mazimum independent set S = (A, A,...,A,B) of C(z1,z2,...,2,)0K)
such that A is an a-set of C(z1,z3,...,Tp).

Proof. Let $ = (A, A, ..., A, B) be amaximum independent set of COK} .
Assume A is not an a-set of C. Suppose first that there does not exist a
vertex u; from the spine of C such that u; € A and such that z; > 2. Then
there exists a vertex u; on the spine of C such that z; = 1 and such that
neither u; nor the unique leaf y € L,; is in A. Now, u; ¢ B, for other-
wise y could be in A. Thus y must be in B, but this is a contradiction,
since putting y in A would create a larger (but still independent) subset of
COK k. Thus, there exists u; € A such that z; > 2.

Let A’ =(A-u;)UL,; and B' = o(C — A"). Then |A'| = |A|+z; -1
and |B’| > |B| — z;. Also, A’ and B’ are independent and disjoint. It now
follows that

k|A'| +|B'| 2 k|A| + k(z: — 1) +|B| - z;
> klA|+ Bl +2(zi — 1) — z;
= k|A| + |B| +z; — 2
> k|A| +B|.

Thus §' = (A',A’,..., A", B') is a maximum independent set of COK ;. If
A’ is an a-set of C, the conclusion follows. If not, there exists u; € A’ with
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z; > 2. We may then repeat the above to yield §" = (4", A",..., A", B").

There are a finite number of vertices in the spine of C. Therefore the pro-
cess must terminate, vielding an a-set (™) = (A(™) Atm)  A(m) B(m))
of COK] 1 such that A™) is an a-set of C. O

Theorem 4.2 Let z; > 1 for each i, 1 < it < n, and let k > 2. If
(A,A,..., A, B) is a mazimum independent set of C(z),Za,...,Tn)0Kk,
then k|A| + |B} = ka(C) + a(C).

Proof. By Lemma 4.1, there exists a maximum independent set

S= (X],Xl, - ,Xl,Xz) of C(xl,.’ﬂg, vee ,x,,)DKl,k such that ISI = kIAl +
|B| and X, is an a-set of C. Thus |X,| < a@(C). And k|A| + |B| = |S] =
lell + |X2| < ka(C) + a(C). a

We now develop a procedure to be used in the next theorem (to calcu-
late certain parts of the lower and upper bounds of caterpillar products).

procedure £(G, H,T,U);

(* G =C(z,=2,...,z,) with leafless strings containing
v1,v2,...,V; vertices; H is a bipartite graph with
color classes C; and C; such that |Cy| > |Cy|; T is a
real number; U is either 1 or 0. U will be used to
distinguish between the value input to designate the
calculation of the lower bound (0) and the value input
to designate the calculation of the upper bound (1).

*)
begin
T:=0;t:=j;
IfU =0, U := |Cy|, Else U := a(H)
While t # 0 do begin
If vy iseven, T :=T + | %]|H|
Elseifv, =1, T := T + a(H)
Elseif vy isodd, T := T+ | % ||H|+ U
t:=t—-1
end (* while *)
end (* £ ¥)

For convenience, we will use £(G, H) to denote the number T obtained from
&G, H,T,0). We will use Z(G, H) to denote the number T obtained from
(G, H,T,1).

One should .iote chat

2GH) =Y (IZNE+e@)+ X (150H)

v; odd v; even
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I u
SIGIEI+ Y o)

i=1 v; odd
and v
i Ui
€GH = §¢ (Zna1+1C1) + Py (15001)
+ Z a(H).
v;=1

To illustrate the procedure, we consider the example G = C(2,0,1,0,0,
2,0,0,0,3) and H = C(2,4). Note that £(G, H) = 2|H|+a(H) +|C1| = 27
and Z(G, H) = 2|H| + 2a(H) = 28. The independent sets of GOH with
these cardinalities are My = ({u4, u7,u9} X C1)U({us, ug} x C2)U({uz} x A)
and M, = ({U4,u7} x C1)U ({U5,’ug} x Co) U ({ug,m} x A), where A =
{c,d,e, f,g,h} is the unique maximum independent set of H.

u, u, 4, u, u, u,
Yo ¥s

u u, u, oy a b
Y c d e f g h

)', Y) 4 B yn y7 YI
Figure 2: C(2,0,1,0,0,2,0,0,0,3) and C(2,4)
Lemma 4.3 There exists a mazimum matching M of C(z1,22,...,2,)

such that M saturates one leaf from each L, for which z; > 1.

Proof. Suppose there exists z; > 1 and a maximum matching M such that
no y € L,, is saturated by M. Let y € L,;. Then u; is saturated by M.
Let u; be such that u;u; € M. Then M' = (M — {uju;}) U {wy} is a
matching and |M’| = |M]|. o

We may thus assume that a maximum matching contains a leaf from
each L, for which z; > 1. Using the procedure given above we now find
upper and lower bounds for the product of two caterpillars, one arbitrary
and one in which all of the spine vertices have at least one leaf.

Theorem 4.4 Let uj,us,...,u, denote the n spine vertices of

G =0C(z1,T2,...,Zn). Let I ={u;:2; 22}, J={ui:z; =1}, K = {u;:
Ty = 0} Then} fOTH = C(yl:y?:---:ym) with Yi 2 1, fOT‘l < t<m,

a(H)Y i+ E(G, H) < o(GOH)

i=1
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and

o(GOH) < o(H) Y =i + [|a(H) + |J||H| + =(G, H)
w; €1

Proof. To demonstrate the lower bound, let A be an a-set of H and let
X = {(a,z) : 2 € Ly;;1 <4 < n;z € A}, Let 14, V3,...,V; be the strings
of leafless vertices of G. For each i, 1 < i < j, let X; be an a-set of V;OH.
Let S = X U (U, Xi). Then S is independent and

IS| =a(H) Z zi + Za(v,uﬂ)

i=1 i=1

=a(H)Zz.-+ Y. oViOH)+ Y oV:OH)

i=1 v; odd,v;#1 v even

+ ) o(Vi0H)

vi=1

sai)yu+ Y (LE+al)+ ¥ (L))

i=1 v; odd,v;#1 © v even

+ > a(H)

vi=1
= a(H))_ z:+ &G, H).
i=1

To prove the upper bound, let S be a largest independent set of GOH.
Foru; € Jand y € L,,, |SN (Hy, UHy)| < ap(H)

For u; € I and wy,wa,...,w,, € L,,, Lemma 4.1 implies
IS 0 (Hu, U (UEE Hu )l < < zio(H) + a(H)
For a string of v; leafless vertices (ug, Uk+1,. .-, Uktv;—1),

if v; is even, |S N (USER—1H, )| < |4 ]|H]|, while
if v; is odd, |SN (VXY -1H, )| < |%)|H| + o(H)
Thus, o(GOH) < a(H) Eu. 1 %i + |[I|a(H) + |J||H| + (G, H). o

The inequality in the previous theorem is strict whenever |H| — a(H) >
&(H) (in other words, if an a-set of H is also a color class of H).

Continuing with the example mentioned previously (G = C(2,0,1,
0,0,2,0,0,0,3), H = C(2,4)), this theorem implies that 75 < o(GOH) <
81. Theorem 2.2 states that 72 < a(GOH) < 84 and Theorem 2.3 improves
the lower bound to 74 < o(GOH).

One important note is that the proof of the lower bound in Theorem
2.2 does not rely on H being a caterpillar. One may conclude in general
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that, for G = C(z1,22,...,%,) and H a bipartite graph, a(H) YL, z; +
&(G, H) < a(GOH) using the same proof as in Theorem 4.4. The strength
of the upper bound lies in the realization that, for G and H as in the
statement of the theorem, [S N (Hy, U (U, Hy,)| < zia(H) + a(H). If
H bipartite, we would instead have |S N (Hy, U (UL, Hy,)| < |H| + (i -
1)a(H), which in turn would lead to an upper bound equivalent to the one
in Theorem 2.2. In the case of Theorem 4.4, however, the upper bound is
no larger than the upper bound in Theorem 2.2, as the next theorem shows.

Theorem 4.5 Lety; > 1 for 1 < i < m, G = C(z1,%2,...,Zn), and
H=C(y,y2,---,Ym), and let I, J, and K be defined as in the statement
of Theorem 4.4. Then,

a(H) Y =+ |Ila(H) + |J||H| + E(G, H)
w; el
< 7(G)ez(H) + (IG| - 27(G))a(H).

Proof. Let G and H be as in the statement of the theorem and let M be
a maximum matching of G. By Lemma 4.3, for each vertex = € I there
exists an edge in M that joins z to one of its leaves. For each vertex y € J
there exists an edge in M that joins y to one of its leaves. Thus

J
i
M| = 1]+ 11+ L5
i=1

The unsaturated vertices are (1) the leaves in L,, for u; € I that are not
in M (z; — 1 of them) and (2) one vertex for each odd v;.
Thus the number of unsaturated vertices is

Z(:L’i—l)'i' z 1.

u;€l v; odd
Therefore,

T(G)ez(H) + (|G| - 27(G))e(H)

= (III + IJl+ZL%J) az(H) + (Z (@-1+ > 1) a(H)

i=1 ui €1 v; odd
= |JI|H]| + 1| H| + (Z xi) o(H) - |Te(H) + (ZL%J) bl
u; €1 i=1
+ ( > 1) a(H)
v; odd
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= |JIH| +E(G, H) + |I|(|H| - o(H)) + a(H) Y 2
u; €l

> || H| +E(G, H) + [I|l&(H) + a(H) Y z:.

w, €l
a

The bounds in Theorem 4.4 are especially good when the independence
number of one of the graphs is much larger than the cardinality of the larger
color class of that graph. For instance, C(5,4,5,5)0C(3,0,0,3,2,0,0,1),
where Theorem 2.2 implies 196 < a(GOH) < 233 but Theorem 4.4 implies
217 < a(GOH) < 227.

In fact, the lower bound can be made arbitrarily better than the lower
bound in Theorem 2.2. However, the lower bound is not always better, as
can be seen in cases where the difference between the size of the largest color
class of a graph and the independence number of that graph is small. For
example, for G = C(2,1,0,0,0,0,2,1,2,0,0,0,1,1) and H = C(2,1,1,3,1),
Theorem 2.2 implies 156 < o(GOH) while Theorem 4.4 implies 126 <
a(GOH).

In order to obtain good bounds on the product of two caterpillars re-
gardless of how the size of the largest color class of one graph differs from
the independence number of that graph, it would be best to take the max-
imum of the lower bound in Theorem 2.2 and Theorem 4.4 along with the
upper bound in Theorem 4.4.

In conclusion, it is interesting to note yet another counter-intuitive as-
pect of the Cartesian product. By [4], an a-set of C(z;,22,...,Z7)0Pons1
has the form (A, B,..., A, B, A). In many examples, an a-set can be ob-
tained with |A| = a(C) or |A| = |C1] where C| is the largest color class of
C. However, this is not always the case.

I

Yo YaYe¥a¥s YoYrYa¥oYio Yi¥u YuuYidis Yi¥ir YuYnY¥u¥n

Figure 3: C(5,5,5,2,5) and Ps

For C(5,5,5,2,5)0P;, let My = {y;i : 1 < i < 22}, My = {u1,us,us}.
Then S] = (M],Mz,Ml,Mz,M]) has cardina.lity 72. Let C] and Cg
be the color classes of C. Then |[Ci| = 17 and |C3] = 10 and S; =
(01,02,01,02,01) has cardinality 71. But if we let M3 = (Ml—{yls,yu})U
{u4} and My = {uj,us,us,y16,%17}, We get an independent set Sz =
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(M3, My, M3, My, M3) with cardinality 73. This once again provides ev-
idence that calculating the independence number of a graph is indeed a
difficult task.
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