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Abstract

In this paper we present graceful and nearly graceful labelings of
some graphs. In particular we show, graceful labelings of the kCy-
snake (for the general case), kCs and kCjz-snakes (for the even
case) and also establish some conditions to obtain graceful labelings
of kCyn-snakes with some related results. Moreover, of the linear
kCs-snake, we show a graceful labeling when & is even and a nearly
graceful labeling when & is odd. We also do the connection of these
labelings with more restrictive variations of graceful ones.

1 Introduction

A vertez labeling of a graph G is an assignment f of labels to the vertices
of G that induces for each edge zy a label depending on the vertex labels.
In particular, a difference vertez labeling is a labeling that induce for each
edge y the label |f(z) — f(y)| named the weight of the edge xy. If the
set of vertex labels are non-negative integers, f is said a proper labeling. In
this paper we worked with proper difference vertex labelings. Some of the
graph theory notation is taken from [10].

Let G = (V, E) be a simple graph with n vertices and m edges, and
f:V —={0,1,...,m} a difference vertex labeling such that the set of weights
induced by f is {1,2,...,m}. Such labeling was introduced by Rosa [7] in
1967 under the name of 3-valuation and popularized by Golomb [5] in 1972
as graceful labeling. A graph that accept a graceful labeling is said graceful.
Several surveys have been written, for instance, Gallian [3] has surveyed
graph labelings, including over 200 articles related to graceful graphs.

Let G be a graph of order m and size n, and f : V(G) — S be a
one-to-one function from the vertices of G to a set of numbers S. The
complementary labeling of f is the function f' : V(G) — S’ defined as
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f'(v) = k — f(v), where k is any integer greater than the maximum of S.
Clearly, f’ is also a one-to-one function and §’ = {k —z:z € S}. Note
that both labelings induce the same set of weights.

Rosa in 1988 (8] introduced the following definition. Given a graph G
of order m and size n, the one-to-one function f: V(G) — {0,1,...,n+ 1}
which weights set could be {1,2,....,n—-1,n} or {1,2,...,n—1,n+1} is
a nearly graceful labeling (or p-labeling). A graph that accept a nearly
graceful labeling is said nearly graceful.

It is known that the cycle with n edges C, is graceful if and only if
n = 0 or 3(mod4). So, in order to have an overview of the ”gracefulness”
of C,, we represent the following result that give a nearly graceful labeling
of C,, when n =1 or 2(mod4).

Theorem 1. The cycle with n edges Cp, has a nearly graceful labeling with
weights 1,2,...,n —1,n+1 if and only if n = 1 or 2(mod4).

Proof. Since the sum of the weights induced for any labeling of C,, is always
even, 14+2+...+ (n—1)+ (n+ 1) = 0(mod2) which is impossible if n = 1
or 2(mod4).
Let C,, be a cycle with n edges where n = 1 or 2(mod4). Let C, be
described by a circuit vy, v, ..., v, v1. The valuation of C), is described by:
If n = 1(mod4)

0, ifi=1
) G+1)/2,  ifi=3,5,..,(n—3)/2
flo) = (i+3)/2, ifi=(m+1)/2,(n+5)/2,..,n
n+2—1/2, ifiiseven.

If n = 2(mod4)

0, ifi=1
) G+1)/2,  ifi=3,5..,(n—4)/2andn>10
o) = (i+3)/2, ifi=n/2,(n+4)/2,..,n—1, for every n
n+2—1i/2, ifiiseven.

This complete the proof. O

Frucht in 1992 [2] used the kind of nearly graceful labeling, used in
the above theorem, to show that the following graphs are nearly graceful:
PrUP,, SpUS,, SpUP,, GU K, where G is graceful, and C3U K, U S,,,
where m is even or m = 3(mod14).
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Rosa (8] has defined a triangular snake (or A-snake) as a connected
graph in which all blocks are triangles and the block-cutpoint graph is a
path, and conjectured that A,-snake (a A-snake with n blocks) is graceful
for n = 0 or 1(mod4) and is nearly graceful otherwise. In 1989 Moulton [6]
has proved Rosa’s conjecture but using instead of nearly graceful labelings
an stronger labeling named almost graceful.

2 Main results

Consider the following generalization of triangular snakes. For a kC,,-snake
we understood a connected graph in which the k blocks are isomorphic to
the cycle C,, and the block-cutpoint graph is a path. We are interested in
study under what conditions are they graceful. Since this kind of graphs
are Eulerian, they satisfy the ”parity condition” (Lemma 1 on [7]). So, they
are graceful if and only if its size kn = 0 or 3(mod4). If kn = 1 or 2(mod4),
we want to know if they are nearly graceful. We study some particular
values of n.

The first case, when n = 3 was completely solved by Moulton [6]. The
second one, when n = 4 was partially solved by Gnanajothi [4] in 1991.
Ruiz [9] in 1979 constructed families of graceful graphs, inside one of them,
appears some kCy-snakes. However, each of these results, presents only
one kind of these cyclic snakes. The size of kC;-snake is always congruent
with 0 modulo 4, but in contrast with the case n = 3, the way to construct
kCy-snake from (k — 1)Cy-snake (for k > 3) is not unique. In next figure
we show the two cases that appears now.

T L

Figure 1
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On Figure 1(a) we show the unique 2C;-snake. Beginning with this
graph and using the fact that we only have two vertices where to connect
the new copy of C4, one to distance 1 from the cut vertex and the other at
distance 2, we must obtain two non isomorphic 3Cy-snakes, showed in 1(b)
and 1(c). As we mentioned before, Gnanajothi partially solved this case, she
used the scheme of Figure 1(c). In general, following both schemes we may
obtain at most 2%¥—2 different kCj,-snakes, some of them are isomorphic.

To construct the kCy-snake we may apply these schemes and since our
graph is a bipartite graph (one partite set has black vertices and the other
has white vertices) it is possible to embed it, on an square grid as is showed
in the next figure.

Figure 2

Consider the following numbering of the vertices of C,4 showed in Figure
3. Assuming that z and y are non negative integers and that = > y then,
the weights induced are y —z— 1,y —z,y—z+1,and y—x + 2.

y+2 y-x+1 x+1
y-x+2 y-x-1
x y-x y
Figure 3
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Put black vertices in an string, ordered by diagonals from left to right
and inside each diagonal from bottom to top, assign to them consecutive
integers from 0 until complete the string. Similarly, put white vertices on
an string, ordered for diagonals from right to left and inside each diagonal
from bottom to top. Starting with first diagonal assign numbers from an
arithmetic progression of difference 2 which first term is one more than the
last integer used in the previous assignment, continuing until the last white
vertex has been numbered.

The labeling over each copy of Cjy is of the same kind that the used
on Figure 3, and is possible to see that the complete labeling is a graceful
labeling of kCy4-snake. Hence, we have proved the following theorem.

Theorem 2. The kCy-snake has a graceful labeling.

In Figure 4 we show the graceful labeling (obtained from the theorem)
of the 8Cy-snake . This result is agree with an unsolved conjecture, posed
by Acharya [1] in 1984, about that all connected d-dimensional polyminoes
are arbitrarily graceful, for every integer d > 2.

23 4

Figure 4

Let G = 2C,-snake, G has two blocks and contains only one cut-vertex.
Take one of these blocks, there exist |'§_| different ways to stick a new copy
of C,, to G, that depends of the distance that separate the cut-vertex of
the block selected and the vertex taken to stick the new block.

Consider the path P of minimum length that contains all the cut-vertices
of G. Beginning in one of its extremes, is possible construct an string of
k — 2 integers such that, any of this integers is the distance between two
consecutive cut-vertices of G on the path P. Since P is of minimum length,
the integers on the string are taken from E = {1,2,...,[2]}. Hence, any
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graph G = kC,-snake, is represented by an string. Until now, this repre-
sentation is not unique, because it depends of the extreme of P taken, but
considering the strings obtained for both extremes as the same, we avoid
the problem.

For instance, the string (from left to right) of the 8Cy-snake on Figure
4is 2,2,1,2,1,1. In the case of kC3-snakes, the sequence is 1,1, ...,1. The
kind of kCjy-snake studied by Gnanajothi also have string 1,1,...,1. And
the labelings gaven by Ruiz considered by kCy4-snake with string 2,2, ..., 2.
Theorem 2 has considered all the possible strings on E. If the string of a
given kC,-snake is [-'25 _| s vuey [%J , we say that kC,-snake is linear.

In the next theorem we work with linear kCg-snakes. Before exhibit
the method to construct the labelings of these cyclic snakes, we show the
labelings of the first cases.

Lemma 1. The 2Cg-snake is graceful and the linear 3Cg-snake is nearly
graceful.

Proof. 1t is enough to show the corresponding labelings, that we present in
the next figure. ]

13 12

Graceful 2C¢-snake Nearly graceful 3Cs-snake

Figure 5

Consider the labelings of Cg showed in Figure 6, the labeling in (a) is
named G labeling of C¢ of value t, note that the maximum label used is ¢
and that the weights induced are t,¢ — 1,¢t — 2,t — 3,t — 4, and ¢t — 6. The
labeling in (b) is called NG labeling of Cg of value t, here we also have
maximum label ¢ but the weights induced are ¢,t —2,t — 3,t —4,t -5, and
t — 6. We will use these labelings in the proof of the next theorem.
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t-1 2 t-2 1
(a) (b)

Figure 6

Theorem 3. The linear kCq-snake is nearly graceful if k is odd and grace-
ful if k is even.

Proof. If k = 1, Cs-snake is Cg and its nearly graceful labeling was given
in Theorem 1. The cases £ = 2 and & = 3 were presented in Lemma 1.
Hence, we focus in the cases where n > 4.

If k is even (odd), consider the nearly graceful (graceful) labeling of
(k—1)Cg-snake. Obtain its complementary labeling by substracting 6k — 2
(6k —3) to each vertex label. Now, the smallest label is 3 and the last three
labels are 6k — 2, 6k — 4, and 6k — 5 (6k — 3, 6k — 4, and 6k — 5). Use
the G (NG) labeling of Cg of value 6k (6k + 1) that use the labels 6k, 6k —
1,6k—4,2,1, and 0 (6k-+1,6k —1,6k —4,2,1, and 0) with induced weights
6k,6k—1,6k—2,6k—3,6k—4, and 6k—6 (6k+1,6k—1,6k—2,6k—3,6k—4,
and 6k — 5). Since the vertex with label 6k — 4 on (k — 1)Cg-snake is at
distance 3 of the first cut-vertex, we identify the corresponding vertices of
Cs and (k — 1)Cg-snake to obtain a graceful (nearly graceful) labeling of
kCg-snake. a

In Figure 7 we present two examples, 4Cs-snake with a graceful labeling
and 5Cs-snake with a nearly graceful labeling.

Since the size of kCyp-snake is 4kn = 0(mod4), we must hope obtain
graceful labelings of these graphs. Before continue in that direction, we
introduce some notation.

Let G be a graph and let f be any labeling of G, the labeling f* of G
defined for every z € V(G) by f*(z) = f(z) +t (¢ constant), is a traslation
of f. Clearly, this translation induces the same weights that f.

Let G be a graph and g a labeling of G. Denote the set of weights
induced by g on the edges of G by Wy = {wy, w2, ..., wn} .

If A is a non-empty set of real numbers, then A+ £ = {a+£:a € A},
for some constant £.
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Figure 7

Lemma 2. Let G be a cycle of size 2n, with bipartite sets Vi and Vj.
Assume that g is a labeling of G such that g(V1) = {0,1,...,n—1} and
9(Va) = {z1,22,...,zn}. Then, there ezists a labeling § of G such that
Wg =W, + &, for any positive constant §.

Proof. We may assume that for any edge e = uwv € E(G), v € V; and
v € V5. Using the definition of g we have that g(u) < g(v). Defining g as
g(V1) = g(V1) and §(V2) = g(Va)+&, we may observe that g satisfies G(u) <
g(v). Suppose now, that the weight of e under g is w;, thus w; = g(v) —g(u)
and its weight under g is §(v) — §(u) = g(v) + £ — g(u) = w; +£. Since this
occurs for every edge of G, we may conclude that Wy = W, + €. a

When g is a graceful labeling of a graph G of order p and size ¢, W5 =
{1+624+¢,...,9+¢}.

If G is a cyclic snake whose string contains only even numbers, we say
that G is an even cyclic snake. In the follow, we only work with even cyclic
snakes. The next theorem focus in even £Cg and kC)3-snakes. Consider
the labelings of Cs and Cj5 showed in Figure 8.



w

Figure 8

Observe that if £ = 8 or ¢ = 12, the numberings are graceful labelings
of Cg and Cjg, respectively. In the next theorem we introduce graceful
labelings of £Cs and kCis-snakes.

Theorem 4. The even kCs and kCia-snakes are graceful graphs.

Proof. Let G be any even kC,-snake, where n = 8,12. Then its string is
of the form dy,ds, ...,dx_2, d; € {2,4} if n =8 or d; € {2,4,6} if n = 12.
Denote by Bin, B2 n, ..., Bg,» the consecutive blocks of G. First, we label
the blocks of G:

block | labeling used |  translation
Bl,n Type %a t=nk

Bit1,n | Type diy t =n(k — i) (n—2)i/2
Bk,n Type '72!, t=n (n - 2)(k - 1)/2
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Second, the weights induced on the block B;, are n(k — ) + 1,n(k —
i)+ 2,...,n{k — %) + n. Since 1 < i < k, the weights on G are 1,2, ...,nk.
Third, the labels used are in the set {0,1,...,kn}. Finally, B; , and B; 1,5
are connected by its vertices of label (n—2)i/2, obtaining the graph G with
a graceful labeling. (M

In Figure 9 we present an example of this labeling for the 4C;2-snake
with string 4, 2.

48 147 2 42 39 7 40 9 4

16 26

17 21

13

Figure 9

The graceful labeling f of Cj, introduced by Rosa in [7] placed the
labels 0 and 2n — 1 at distance 2, and the labels 4n and 2n + 1 at distance
4. Then, its complementary labeling places the labels 0 and 2 — 1 at
distance 4. Hence using these labelings and the method developed in the
above theorem, is possible prove the next result.

Theorem 5. The even kCy,-snake with string dy,ds,...dx_o, where d; €
{2,4}, has a graceful labeling.

The labelings of C1s and Cog showed in Figure 10 (which are graceful
if t=16 and t=20, respectively), located the labels 0 and 7 at distance 8,
and the labels 0 and 9 at distance 10, respectively. So, using this and the
previous theorem we may state the following.

Theorem 6. The even kCy,-snake (n = 4,5) with string d,ds, ...dx—2,
where d; € {2,4,2n} has a graceful labeling.
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t ! 2 4 t-3
Tot-1 t-2
0 7
t-6 t-7
o—o0—0—0—0
t-5 3 6 t-8
5 t-4
t-3
9
t-9
8 t-10

Figure 10

3 Connections with other labelings

In this section, we connect the graceful labelings of kCjy,-snakes, obtained
in the previous section, with some variations of graceful labelings. All the
information about this labelings was taken from Gallian’s survey [3].

An a-labeling of a graph G is a graceful labeling with the additional
property that there exists an integer A so that for each edge zy of G, either
f(z) <A< f(y) or f(y) < A < f(z). This definition was introduced in
[7] by Rosa. He observed that if there exists an a-labeling of the graph G,
then G is a bipartite graph. It follows from definition, that A must be the
smaller of the two vertex labels that yield the weight 1.

A graph G of order q is k-graceful if there is a labeling f from V(G) to
{0,1,...,q + k — 1} such that the weights induced by f are k,k+1,...,q +
k — 1. This labeling was introduced independently by Slater and, Maheo
and Thuiller in 1982. Graphs that are k-graceful for all £ > 1 are named
arbitrarily graceful.

A generalization of these labelings are the (k, d)-graceful labelings, where
the labels are taken from {0,1,...,k + (¢ — 1)d} and the set of weights is
{k,k+4d,....k+ (g —1)d}. Acharya and Hegde did this generalization in
1990.

The kCy,-snakes are bipartite graphs, so we must hope that their grace-
ful labelings, presented here, will also be a-labelings. When n = 1 (Theo-
rem 2), A equals the number of diagonals where the black points lie, The
cyclic snakes in theorems 6, 7, and 8 are evens, in these cases A = k(n—2)/2.
Then, all of them are a-labelings.
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Gallian (3] has mentioned that Bu and Zhang, have shown the following
results:

If G has an o-labeling, then G is (k, d)-graceful for all k£ and d.

Let G be a connected graph. G is a (kd, d)-graceful graph if and only
if G is a k-graceful graph.

Therefore, we may write again these theorems, changing graceful label-
ings for the more restrictive a-labelings. Moreover, it is possible to find its
k-labelings, numbering adequately the bipartite set containing the biggest
labels.
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