$(2 \mod 4)$ -cycles

Xiaotao Cai, Warren E. Shreve
Department of Mathematics
North Dakota State University
Fargo, ND 58105

Abstract

For two integers k(>0) and $s(\ge 0)$, a cycle of length l is called an $(s \mod k)$ -cycle if $l \equiv s \mod k$. In this paper, the following conjecture of Chen, Dean, and Shreve [5] is proved: Every 2-connected graph with at least six vertices and minimum degree at least three contains a $(2 \mod 4)$ -cycle.

INTRODUCTION We use [2] for our notation and terminology. 1 Our graphs have no loops or multiple edges and $\delta(G)$ denotes the minimum degree of the graph G. For two integers k(>0) and s(>0), a cycle of length l is called an $(s \mod k)$ -cycle if $l \equiv s \mod k$. Suppose $s \geq 0$ and k > 0 are integers such that s is even if k is even. Burr and Erdős [7] proposed the problem: Is there a constant c(s, k) depending only on k and s such that every graph G with $\delta(G) \geq c(s, k)$ contains an $(s \mod k)$ -cycle? In 1977 Bollobàs [3] provided an affirmative answer to this problem with $c(s,k) = \frac{(k+1)^k + 1}{k}$. In 1983 Thomassen [10] proved that c(s,k) = 4s(k+1)and conjectured that every graph G with $\delta(G) \geq k+1$ contains a (2s mod k)-cycle, where s and k are two positive integers; that is, c(s,k) = k+1. In the case k=3, it was conjectured in [1] that every graph G with $\delta(G) \geq 3$ contains a (0 mod 3)-cycle. This conjecture was proved by Chen and Saito [6]. Cai and Shreve [4] obtained the result that every graph G with $\delta(G) \geq 4$ contains a (1 mod 3)-cycle. Then, these two results were combined to imply that Thomassen's conjecture is true for k=3. Dean, Kaneko, Ota, and Toft [8] proved that if G is a 2-connected graph with $\delta(G) \geq 3$, then G contains an $(s \mod 3)$ -cycle with some exceptions, when s = 1 or 2. Dean,

Lesniak, and Saito [9] proved that every graph G with $\delta(G) \geq 3$ contains a (0 mod 4)-cycle which affirmed Thomassen's conjecture for k=4. In 1993, Chen, Dean, and Shreve [5] proved that if G is a 2-connected graph with at least six vertices and $\delta(G) \geq 4$, then G contains a (2 mod 4)-cycle and conjectured that the conclusion was also true if $\delta(G) \geq 3$.

In this paper, we first obtain the following theorem.

Theorem 1. Every hamiltonian graph G of order $p(G) \ge 6$ with $\delta(G) \ge 3$ contains a $(2 \mod 4)$ -cycle.

Then, we affirm Chen, Dean and Shreve's conjecture.

Theorem 2. Every 2-connected graph G of order $p(G) \ge 6$ and $\delta(G) \ge 3$ contains a (2 mod 4)-cycle.

Note that neither a cycle C_l of length l, where $l \not\equiv 2 \mod 4$, nor $G = N \cup M$, where $N \cong K_4 \cong M$ and $|V(N) \cap V(M)| = 1$, contain a (2 mod 4)-cycle. Thus, Theorem 2 is best possible.

- **2** NOTATION AND LEMMAS We denote the lengths of a cycle C and path P by l(C) and l(P) respectively and the subgraph of G induced by $S \subseteq V(G)$ by $\langle S \rangle$. A cycle of length l is called odd (or even) if $l \equiv 1$ (or $l \equiv 0$) mod 2.
- **Lemma 3.** Let $C = v_1 v_2 \cdots v_k v_1$ be a cycle with $k \equiv 0 \mod 2$ and $v_i v_j$, $2 \le i + 1 < j \le k$, a chord of C with $j i \equiv 1 \mod 2$. Then $C + v_i v_j$ contains a $(2 \mod 4)$ -cycle.
- **Proof.** By way of contradiction, suppose that $C+v_iv_j$ contains no (2 mod 4)-cycle. Since C and the cycle $v_iv_{i+1}\cdots v_jv_i$ are even cycles, $k\equiv 0$ and $j-i+1\equiv 0$ mod 4. Thus, G contains the cycle $C^*=v_1v_2\cdots v_iv_jv_{j+1}\cdots v_kv_1$, and $l(C^*)=k-(j-i-1)\equiv -(j-i+1-2)\equiv 2$ mod 4, a contradiction. \Box
- **Lemma 4.** Let $C = v_1 v_2 \cdots v_k v_1$ be a cycle with $k \equiv 1 \mod 2$ such that $v_t v_h$ and $v_i v_j$, $1 \le t \le i < j \le h \le k$, are two distinct chords of C with $j i \equiv h t \equiv 0 \mod 2$. Then $C + \{v_i v_i, v_t v_h\}$ contains a (2 mod 4)-cycle.
- **Proof.** Consider the even cycle $v_1v_2\cdots v_iv_jv_{j+1}\cdots v_kv_1$. Lemma 4 follows by Lemma 3. \square
- **Lemma 5.** Let G consist of the cycle $v_1v_2\cdots v_tv_1$ and the two chords v_iv_i

and $v_k v_l$, where $1 \le i < j \le k < f \le t$. If $1 \equiv t, i \equiv j$, and $k \not\equiv f \mod 2$, then G contains a (2 mod 4)-cycle.

Proof. Consider the even cycle $v_1v_2\cdots v_iv_jv_{j+1}\cdots v_iv_j$. Lemma 5

follows by Lemma 3.

Lemma 6. Let G consist of the cycle $v_1v_2\cdots v_pv_1$ and the three chords v_iv_j,v_xv_y , and v_kv_j , where $1\leq i\leq x< y\leq k< f\leq j\leq p$. If $p\equiv 1,x\equiv y$, $k\equiv f$ and $i\not\equiv j$ mod 2, then G contains a (2 mod 4)-cycle.

Proof. Suppose, to the contrary, that G contains no $(2 \mod 4)$ -cycle. Since the cycle $C_1 = v_1v_2 \cdots v_xv_yv_{y+1} \cdots v_pv_1$ is even, $l(C_1) = x + (p-y+1) \equiv 0 \mod 4$. Thus, $y-x \equiv p+1 \mod 4$. Similarly, $y-k \equiv p+1 \mod 4$. Included the cycle $C_2 = v_iv_{i+1} \cdots v_xv_yv_{y+1} \cdots v_kv_yv_{y+1} \cdots v_jv_i$, $l(C_2) = (j-i+1) - (y-x-1) - (y-k-1) - (y-k-1) = 3+1-(p+1-1)-(p+1-1) \equiv 2p \equiv 2 \mod 4$, a contradiction. This completes the proof of Lemma 6. \square

Lemma 7. Let G consist of the three edges v_1v_b, v_cv_t , and v_iv_j , and the path $v_1v_2\cdots v_t$ with $1 \le c \le i < j \le b \le t$, and $b \equiv c \equiv t \equiv j$ and $i \equiv j$ mod 2. Then G contains a (2 mod 4)-cycle.

Proof. By way of contradiction, suppose that G contains no (2 mod A)-cycle. Then, since the two cycles $C_1 = v_1v_bv_{b+1} \cdots v_tv_cv_{c-1} \cdots v_1$ and $C_2 = v_1v_bv_{b-1} \cdots v_jv_iv_{i-1} \cdots v_1$ are even, $l(C_1) = c + (i-j) + 2 \equiv 0 \mod 4$. Therefore, $c+t+(i-j)+2 \equiv 0 \mod 4$. Hence, the cycle $v_cv_{c+1} \cdots v_iv_jv_{j+1} \cdots v_iv_c$ has length $(t-c+1)-(j-i-1) \equiv 1 + 2 \equiv 2c \equiv 2 \mod 4$, a contradiction. \square

Let G be a graph with $u, v \in V(G)$ and $u \neq v$. If $n \in \{2,3\}$, and there are n uv-paths of distinct lengths i_1, \dots, i_n mod 4 in G, (u, v) is said to have the n-property in G, or, simply, (u, v) has P(n, G).

Lemma 8. Let G be consist of two disjoint cycles $C_1 = v_1 v_2 \cdots v_k v_1$ and $C_2 = u_1 u_2 \cdots u_i u_1$ and three pairwise disjoint paths $P_1 = v_1 w_1 \cdots w_j u_1$, $P_2 = x_1 x_2 \cdots x_j v_i$, and $P_3 = y_1 y_2 \cdots y_k u_j$, where P_1 connects the two cycles. If $i \neq 1$, $j \neq 1$, $k \equiv t \equiv 1 \mod 2$, $V(P_2) \cap V(C_1 \cup C_2) = \{v_i\}$, and $V(P_3) \cap V(C_1 \cup C_2) = \{v_j\}$, then (x_1, y_1) has P(3, G).

Proof. Let $G_1 = C_1 \cup P_1 \cup P_2$ and $G_2 = C_2 \cup P_3$. Since G_1 and G_2 are

odd cycles, (x_1, u_1) has $P(2, G_1)$. Similarly, (u_1, y_1) has $P(2, G_2)$. Hence, (x_1, y_1) has P(3, G). \square

Lemma 9. Let G consist of the cycle $C = v_1v_2 \cdots v_{w-1}v_wv_{w+1} \cdots v_tv_1$ and the three pairwise disjoint paths $P_1^* = v_1u_1u_2 \cdots u_kv_w$, $P_2^* = xx_1x_2 \cdots x_gv_i$, and $P_3^* = yy_1y_2 \cdots y_hv_j$, where $1 < i < w < j \le t$ with $w \equiv 0 \equiv t$ and $k \equiv 1 \mod 2$. If $V(P_1^*) \cap V(C) = \{v_1, v_w\}$, $V(P_2^*) \cap V(C) = \{v_i\}$ and $V(P_3^*) \cap V(C) = \{v_j\}$, Then (x, y) has P(3, G).

Proof. The following four $v_i v_j$ -paths may be found in G.

$$\begin{split} P_1 &= v_i v_{i+1} \cdots v_w v_{w+1} \cdots v_j, \\ P_2 &= v_i v_{i-1} \cdots v_1 u_1 u_2 \cdots u_k v_w v_{w+1} \cdots v_j, \\ P_3 &= v_i v_{i-1} \cdots v_1 v_t v_{t-1} \cdots v_j, \text{ and} \\ P_4 &= v_i v_{i+1} \cdots v_w u_k u_{k-1} \cdots u_1 v_1 v_t v_{t-1} \cdots v_j, \\ \text{with} \\ l(P_1) &= j - i, \\ l(P_2) &= (i-1) + (k+1) + (j-w+1) - 1 = i+j+k-w, \\ l(P_3) &= i + (t-j) = i-j+t, \text{ and} \\ l(P_4) &= (w-i) + (k+2) + (t-j) = -(i+j) + w+k+t+2. \end{split}$$
 Therefore,
$$l(P_2) - l(P_1) = 2i + k - w \equiv 1 \mod 2, \\ l(P_3) - l(P_1) = 2(i-j) + t \equiv 0 \mod 2, \\ l(P_4) - l(P_1) &= -2j + w + k + t + 2 \equiv 1 \mod 2, \text{ and} \\ l(P_2) - l(P_4) &= 2(i+j) - t - 2w - 2 \equiv 2(i-j) + t + 2 \mod 4, \text{ since} \end{split}$$

If $2(i-j)+t\equiv 2 \mod 4$, then $l(P_3)-l(P_1)\equiv 2 \mod 4$. Hence, it follows using P_1,P_3 , and P_4 , that (v_i,v_j) has P(3,G).

If $2(i-j)+t\equiv 0 \mod 4$, then $l(P_2)-l(P_4)\equiv 2 \mod 4$. Thus, using P_1 , P_2 , and P_4 , we conclude that (v_i,v_j) has P(3,G).

Hence, (x, y) has P(3, G). \square

 $w \equiv t \equiv 0$, and $k \equiv 1 \mod 2$.

Lemma 10. Let G consist of an edge $v_i v_j$ and the cycle $C = v_1 v_2 \cdots v_t v_1$, where $1 \le i \le x < y \le j \le t$ with $1 \equiv t$, and $j \equiv i \mod 2$, and either $i \ne 1$ or $j \ne t$. If G contains no (2 mod 4)-cycle, then (v_x, v_y) has P(3, G).

Proof. Consider the cycle C_1 and three xy-paths P_1 , P_2 , and P_3 , where $C_1 = v_1v_2 \cdots v_iv_jv_{j+1} \cdots v_tv_1$, $P_1 = v_xv_{x+1} \cdots v_y$,

$$\begin{split} P_2 &= v_x v_{x-1} \cdots v_i v_j v_{j-1} \cdots v_y, \text{ and } \\ P_3 &= v_x v_{x-1} \cdots v_1 v_t v_{t-1} \cdots v_y. \\ \text{Then,} \\ l(C_1) &= i + (t-j+1) = i-j+t+1 \equiv 0 \text{ mod } 4, \\ l(P_1) &= y-x, \\ l(P_2) &= (x-i) + (j-y) + 1 = (j-i) + (x-y) + 1, \text{ and } \\ l(P_3) &= x + (t-y) = x-y+t. \\ \text{Thus.} \end{split}$$

 $l(P_2)-l(P_1)=j-i+2(x-y)+1\equiv t+2+2(x-y) \mod 4$, and $l(P_3)-l(P_1)=t+2(x-y)$. Therefore, $l(P_2)-l(P_3)\equiv 2 \mod 4$. Since $t\equiv 1 \mod 2$, $l(P_2)-l(P_1)\equiv l(P_3)-l(P_1)\equiv 1 \mod 2$. Hence, (v_x,v_y) has P(3,G). \square

Lemma 11. Let G consist of the four distinct edges $v_1v_t, v_iv_j, v_xu_1, v_yw_1$ and the three pairwise disjoint paths $v_1v_2...v_t, u_1u_2\cdots u_a$, and $w_1w_2\cdots w_b$, with $1 \le x \le i < j \le y \le t$ and $t \equiv 1$ and $i \equiv j \mod 2$. If G contains no (2 mod 4)-cycles, and $x \equiv y \mod 2$, then (u_a, w_b) has P(3, G).

Proof. Consider the even cycle C and the three v_xv_y -paths P_1 , P_2 , and P_3 , where

$$C = v_1 v_2 ... v_i v_j v_{j+1} ... v_t v_1,$$

$$P_1 = v_x v_{x+1} ... v_y,$$

$$P_2 = v_x v_{x+1} ... v_i v_j v_{j+1} ... v_y, \text{ and }$$

$$P_3 = v_x v_{x-1} ... v_1 v_t v_{t-1} ... v_y.$$
Then,
$$l(C_1) = i + (t - j + 1) = i - j + t + 1 \equiv 0 \mod 4,$$

$$l(P_1) = y - x,$$

$$l(P_2) = (i - x + 1) + (y - j) = (i - j) + (y - x) + 1, \text{ and }$$

$$l(P_3) = x + (t - y) = x - y + t.$$
Hence
$$l(P_3) - l(P_4) - (i - i) + 1 = -t \text{ and } l(P_4) - l(P_4) - 2$$

Hence, $l(P_2)-l(P_1)=(i-j)+1\equiv -t$ and $l(P_3)-l(P_1)=2(x-y)+t\equiv t$ mod 4. Since $t\equiv 1$ mod 2, (v_x,v_y) has P(3,G). Therefore, (u_a,w_b) has P(3,G). \square

Lemma 12. Let G consist of the three edges v_1v_b, v_iv_j , and v_1v_a and the path $v_1v_2 \cdots v_b$, where $1 \leq i < j < a < b$ with $i \equiv j$ and $a \not\equiv b \mod 2$. If $1 \leq x < y \leq a$ with $x \equiv y \mod 2$ and G contains no (2 mod 4)-cycles, then (v_x, v_y) has P(3, G).

Proof. Since $a \not\equiv b \mod 2$, either $a \equiv 1$, or $b \equiv 1 \mod 2$.

If $i \le x < y \le j$, then, by Lemma 10, (v_x, v_y) has P(3, G).

If either $1 \le x \le y < i$ or $j \le x < y \le a$, then, by Lemma 8, (v_x, v_y) has P(3, G).

If $1 \le x \le i$ and $j \le y \le a$, then, by Lemma 11, (v_x, v_y) has P(3, G).

If either $i < x \le j < y \le a$ or $1 \le x < i \le y < j$, then, by Lemma 8, (v_x, v_y) has P(3, G).

Hence the lemma follows. \Box

Lemma 13. Let G consist of the edge $v_t v_w$ and the cycle $v_1 v_2 ... v_k v_1$, where $1 < t < w \le k$. If G contains an odd cycle, then (v_x, v_y) has P(2, G) for every pair of distinct vertices v_x and v_y in G.

Proof. If $k \equiv 1 \mod 2$, then the result is trivial. Suppose that $k \equiv 0 \mod 2$. We assume, without loss of generality, that x = 1. Note that the cycle $C = v_1 v_2 \cdots v_t v_w v_{w+1} \cdots v_k v_1$ is odd. If $v_y \in V(C)$, then the result is again trivial. If $v_y \notin V(C)$, then the two paths $v_y v_{y+1} \cdots v_w v_{w+1} \cdots v_k v_1$ and $v_y v_{y+1} \cdots v_w v_t v_{t-1} \cdots v_1$ have different lengths mod 2. Hence, (v_x, v_y) has P(2, G). The proof is complete. \square

Lemma 14 (Two-body Lemma). Let G consist of two graphs M and N and two disjoint paths, one a uv-path P_1 and the other an xy-path P_2 , such that the two paths both connect M and N, where $u, x \in V(N)$, and

- (1) $V(M) \cap V(N) = \{u\}$, if $l(P_1) = 0$, and $l(P_2) \neq 0$,
- (2) $V(M) \cap V(N) = \{x\}$, if $l(P_1) \neq 0$, and $l(P_1) = 0$,
- (3) $V(M) \cap V(N) = \{x, u\}$, if $l(P_1) = 0$, and $l(P_2) = 0$, and
- (4) $V(M) \cap V(N) = \emptyset$, if $l(P_1) \neq 0$, and $l(P_2) \neq 0$.

If (u, x) has P(3, N) and (v, y) has P(2, M), then G contains a (2 mod 4)-cycle.

Proof. Immediate. \square

3 PROOF OF THEOREM 1 Assume, to the contrary, that there is a hamiltonian graph G with $p(G) \geq 6$, and $\delta(G) \geq 3$, such that G contains no $(2 \mod 4)$ -cycle. First, we orient some hamiltonian cycle C of G. Then, for each $u \in V(C)$, label the V(C) in the direction of the orientation as $u = u_1, u_2, \dots, u_{p-1}, u_p$, where p = p(G). Let $a(u) = \max\{i : 2 \leq i . Finally, choose <math>v \in V(G)$ such that a(v) is as large

as possible. Let a(v)=a, and, then, set $C=v_1v_2\cdots v_{a-1}v_av_{a+1}\cdots v_pv_1$, where $v=v_1$. Since $p(G)\geq 6$ and $\delta(G)\geq 3$, it follows that $a\geq 4$ and there exists some $w\in\{2,3,\cdots,p-2\}$ such that $v_wv_p\in E(G)$.

Consider the cycle $C_1 = v_p v_w v_{w+1} \cdots v_p$. Now, $l(C_1) = p - w + 1 \not\equiv 2$ mod 4. Hence,

$$w \not\equiv p - 1 \bmod 4. \tag{1}$$

Consider the cycle $C_2 = v_p v_1 v_2 \cdots v_w v_p$. Now, $l(C_2) = w + 1 \not\equiv 2 \mod 4$. Hence,

$$w \not\equiv 1 \bmod 4. \tag{2}$$

If 1 < w < a, then, for the cycle $C_3 = v_p v_{p-1} \cdots v_a v_1 v_2 \cdots v_w v_p$, $l(C_3) = w + (p-a+1) \not\equiv 2 \mod 4$. Hence,

$$w \not\equiv a - p + 1 \bmod 4. \tag{3}$$

Finally, consider the cycle $C_4 = v_p v_1 v_a v_{a-1} \cdots v_w v_p$. Now, $l(C_4) = a - w + 3 \neq 2 \mod 4$. Hence,

$$w \not\equiv a + 1 \bmod 4. \tag{4}$$

If $a \le w \le p-2$, then, for the cycle $C_5 = v_p v_1 v_a v_{a+1} \cdots v_w v_p$, $l(C_5) = w-a+3 \not\equiv 2 \mod 4$. Hence,

$$w \not\equiv a - 1 \bmod 4. \tag{5}$$

Since G contains no (2 mod 4)-cycle, $a \not\equiv p, a \not\equiv 2$, and $p \not\equiv 2 \mod 4$.

We have three cases to discuss.

Case 1. $a \equiv 1 \equiv p \mod 2$.

Then, $p - a \equiv 2 \mod 4$.

Subcase 1.1. $a \le w \le p-2$.

Then, by (5), $w \not\equiv p+1 \mod 4$. By (1), $w \not\equiv 0$ and $w \not\equiv 2 \mod 4$. Again, by (2),

$$w \equiv 3 \bmod 4. \tag{6}$$

Consider v_2 ; there is a v_x , $3 < x \le p$, such that $v_x v_2 \in E(G)$, since $a \ge 4$ and $\delta(G) \ge 3$.

If $x \not\equiv 2 \mod 2$, then, since $a \equiv 1 \mod 2$, $x \leq a$ by the maximality of a. By Lemma 5, G contains a (2 mod 4)-cycle, a contradiction. Thus, $x \equiv 2 \mod 2$. Hence, x = a + 1 by Lemma 4 and the maximality of a.

Consider v_3 ; there is a v_y , y = 1 or $4 < y \le p$, such that $v_y v_3 \in E(G)$.

If $y \equiv 3 \mod 2$, then, by Lemma 4, y = a + 2. Thus, the cycle $v_1v_2v_3v_{a+2}v_{a+1}v_av_1$ is a $(2 \mod 4)$ -cycle, a contradiction. Therefore, $y \not\equiv 3 \mod 2$. Hence, the cycle $C_1 = v_3v_4 \cdots v_yv_3$ is even and $l(C_1) = y - 2 \equiv 0 \mod 4$. Thus,

$$y \equiv 2 \bmod 4. \tag{7}$$

Hence, since $a \equiv 1 \mod 2$, and a is maximal,

$$y \le \left\{ \begin{array}{ll} a+1 & \text{if} \quad a \equiv 1 \mod 4, \text{ and} \\ a-1 & \text{if} \quad a \equiv 3 \mod 4, \end{array} \right.$$

and, by (6),

$$w \ge \left\{ \begin{array}{cccc} a+2 & \text{if} & a \equiv 1 \mod 4, & \text{and} \\ a & \text{if} & a \equiv 3 \mod 4. \end{array} \right.$$

Therefore, y < w. By Lemma 5, G contains a (2 mod 4)-cycle, implying a contradiction.

Subcase 1.2. 1 < w < a.

Then, by (3), $w \not\equiv a - p + 1 \equiv 3 \mod 4$. Again by (1) and (2),

$$w \equiv p + 1 \mod 4. \tag{8}$$

Since $p - a \equiv 0$ and $w \equiv 0 \mod 2$, it follows that $w \geq 4$ by the maximality of a.

Consider v_2 ; there is a v_x , $3 < x \le a + 1$, such that $v_x v_2 \in E(G)$.

If $x\equiv 2 \mod 2$, then, by Lemma 4, x=a+1. Hence, for the cycle $C_1=v_wv_{w+1}\cdots v_av_1v_2v_{a+1}\cdots v_pv_w$, by (8), $l(C_1)=p-w+3\equiv 2 \mod 4$, a contradiction. Thus, $x\not\equiv 2 \mod 2$. Since the cycle $C_2=v_2v_3...v_xv_2$ is even, $l(C_2)=x-1\equiv 0 \mod 4$ and, therefore, $x\geq 5$ and

$$x \equiv 1. \tag{9}$$

If x > w, then, for the cycle $C_3 = v_2 v_3 ... v_w v_p v_{p-1} ... v_x v_2$, by (8) and (9), $l(C_3) = (w-2+1) + (p-x+1) \equiv w + p - x \equiv p+1+p-1 \equiv 2p \equiv 2 \mod 4$, a contradiction. Therefore, $w \ge x$.

Consider v_3 ; there is a $v_y, y = 1$ or $4 < y \le a+2$, such that $v_y v_3 \in E(G)$.

If $y \equiv 3 \mod 2$, then by Lemma 4, y = a + 2. Thus, the length of the cycle $v_1v_av_{a+1}v_{a+2}v_3v_2v_1$ is 6, a contradiction. Therefore, $y \not\equiv 3 \mod 2$.

Hence,

$$y \equiv 2 \mod 4, \text{ and } x < y, \tag{10}$$

by Lemma 3, and, therefore, $y \neq a$.

If y > a, then for the cycle $C_4 = v_p v_1 v_a v_{a-1} \cdots v_3 v_y v_{y+1} \cdots v_p$, by (10), $l(C_4) = 1 + (a-3+1) + (p-y+1) = a + p - y = (p-a) + 2a - y \equiv 2a \equiv 2$ mod 4, a contradiction. Thus, y < a.

Again, consider v_4 ; there is a v_f , $1 \le f < 3$ or $5 < f \le p$, such that $v_4v_f \in E(G)$.

If $f \equiv 4 \mod 2$, then by Lemma 4 and the assumption of no (2 mod 4)-cycles in G, f = a+3. Thus, cycle $C_5 = v_3v_2v_1v_av_{a+1}v_{a+2}v_{a+3}v_4v_5\cdots v_yv_3$, by (10), satisfies $l(C_5) = y+4 \equiv 2 \mod 4$, a contradiction. Therefore, $f \not\equiv 4 \mod 2$.

If f > 5, then

$$f \equiv 3 \bmod 4. \tag{11}$$

By Lemma 3, f > x. Thus, for the cycle $C_6 = v_2 v_3 v_4 v_f v_{f-1} ... v_x v_2$, by (9) and (11), $l(C_6) = (f-x+1)+3 \equiv (3-1+1)+3 \equiv 2 \mod 4$, a contradiction.

If f < 3, then f = 1. Thus, for the cycle $C_7 = v_1 v_2 v_x v_{x+1} \cdots v_y v_3 v_4 v_1$, by (10), $l(C_7) = (y-x+1)+4 \equiv (2-1+1)+4 \equiv 2 \mod 4$, a contradiction.

Case 2. $p \equiv 0 \mod 2$.

Then $p \equiv 0 \mod 4$. By Lemma 3, $a \equiv 1 \mod 2$. By (1), $w \not\equiv 3 \mod 4$.

Subcase 2.1. $a \leq w \leq p-2$.

By (2) and (5), $w \equiv a + 1 \mod 4$.

Consider v_2 ; there is a v_x , $3 < x \le a + 1$, such that $v_2v_x \in E(G)$. By Lemma 3, $x \equiv 2 \mod 2$.

If $x \le a$, then by Lemma 4, G contains a (2 mod 4)-cycle, a contradiction. Therefore, x = a + 1.

Again, consider v_3 ; there is a v_y , y = 1 or $4 < y \le a + 2$, such that $v_y v_3 \in E(G)$. By Lemma 3, $y \equiv 3 \mod 2$.

If y = a + 2, then 6 is the length of the cycle $v_1v_2v_3v_{a+2}v_{a+1}v_av_1$, a contradiction. Therefore, $1 \le y \le a$. Thus, G contains a (2 mod 4)-cycle by Lemma 4, a contradiction.

Subcase 2.2. 1 < w < a.

By (2) and (5),

$$w \equiv a + 3 \mod 4. \tag{12}$$

Then, $p \ge 8$, since $p \ge 6$ and $p \equiv 0 \mod 4$.

Subcase 2.2.1. a + 1 < p.

Since $w \equiv a + 3 \mod 4$, $w \ge 4$ by the maximality of a.

Consider v_3 ; there is a v_x , x = 1 or $4 < x \le a + 2$, such that $v_3v_x \in E(G)$. By Lemma 3, $x \equiv 3 \mod 2$.

If x > a, then x = a + 2. Thus, the cycle $v_1v_2v_3v_{a+2}v_{a+1}v_av_1$, has length 6, a contradiction.

If $w < x \le a$, then, since the cycle $C_1 = v_1 v_2 v_3 v_x v_{x+1} \cdots v_a v_1$ is even, $l(C_1) = 3 + (a - x + 1) \equiv 0 \mod 4$. Therefore,

$$x \equiv a \mod 4. \tag{13}$$

Thus, for the cycle $C_2 = v_3 v_4 \cdots v_w v_p v_{p-1} \cdots v_x v_3$, using (12) and (13), one obtains $l(C_2) = (w-3+1) + (p-x+1) \equiv w-x-1 \equiv a+3-a-1 \equiv 2$ mod 4, a contradiction. Therefore, $x \leq w$.

Consider v_{p-1} ; there a v_y , $1 \le y < p-2$, such that $v_y v_{p-1} \in E(G)$. By Lemma 3, $y \equiv p-1 \mod 2$.

If y < w, then y < a and the cycle $C_3 = v_y v_{y+1} \cdots v_w v_p v_{p-1} v_y$ is even. Thus, $l(C_3) = w - y + 1 + 2 \equiv 0 \mod 4$, which implies that

$$y \equiv w + 3 \bmod 4. \tag{14}$$

Hence, for the cycle $C_4 = v_1 v_2 \cdots v_y v_{p-1} v_{p-2} \cdots v_a v_1$, by (12) and (14), $l(C_4) = y + ((p-1) - a + 1) \equiv y - a \equiv w + 3 - a \equiv a + 6 - a \equiv 2 \mod 4$, a contradiction.

If y > w, then, since the cycle $C_5 = v_w v_{w+1} \cdots v_y v_{p-1} v_p v_w$ is even, $l(C_5) = y - w + 3 \equiv 0 \mod 4$, and, hence, by (12),

$$y - a \equiv 0 \bmod 4. \tag{15}$$

Thus, for the cycle $C_6 = v_1 v_2 v_3 v_x v_{x+1} \cdots v_w v_p v_{p-1} v_y v_{y+1} \cdots v_a v_1$ (or for the cycle $v_1 v_2 v_3 v_x v_{x+1} \cdots v_w v_p v_{p-1} v_y v_{y-1} \cdots v_a v_1$), by (12), (13), and (15), $l(C_6) = 3 + (w - x + 1) + 2 + |y - a| + 1 \equiv w - x + 3 \equiv a + 3 - a + 3 \equiv 2$ mod 4, a contradiction.

Subcase 2.2.2. a + 1 = p.

Then, $a = p - 1 \ge 7$. Consider v_3 ; there is a v_x , x = 1 or $4 < x \le p$, such that $v_x v_3 \in E(G)$. By Lemma 3, $x \equiv 3 \mod 2$. Therefore, $x \not\equiv p$.

If x=1, then for the cycle $C_7=v_1v_{p-1}v_{p-2}\cdots v_3v_1$, $l(C_7)=p-2\equiv 2$ mod 4, a contradiction. Thus, $4< x\leq a$. Since, for the cycle $C_8=v_1v_2v_3v_xv_{x-1}\cdots v_av_1$, $l(C_8)=(a-x+1)+3\equiv 0$ mod 4, it follows that

$$x \equiv a \equiv p - 1 \equiv 3 \mod 4. \tag{16}$$

Thus, $x \geq 7$.

Consider v_5 ; there is a v_y , $1 \le y < 4$ or $6 < y \le p$, such that $v_y v_5 \in E(G)$. By Lemma 3, $y \equiv 5 \mod 2$. Thus, $y \ne p$. By Lemma 4, y = 1 or $x < y \le a$.

If y = 1, then, for the cycle $C_9 = v_1 v_5 v_6 \cdots v_x v_3 v_2 v_1$, by (16), $l(C_9) = x - 1 \equiv 3 - 1 \equiv 2 \mod 4$, a contradiction.

If $x < y \le a$, then, since the cycle $C_{10} = v_1 v_2 \cdots v_5 v_y v_{y+1} \cdots v_a v_1$ is even, $l(C_{10}) = a - y + 1 + 5 \equiv 0 \mod 4$. Hence,

$$y \equiv a + 2 \equiv 1 \mod 4. \tag{17}$$

Thus, for the cycle $C_{11} = v_3 v_4 v_5 v_y v_{y-1} \cdots v_x v_3$, by (16) and (17), $l(C_{11}) = 3 + (y - x + 1) \equiv 3 + (1 - 3 + 1) \equiv 2 \mod 4$, a contradiction.

Case 3. $a \equiv 0 \mod 2$.

Then, $a \equiv 0 \mod 4$ and, by Lemma 3, $p \equiv 1 \mod 2$.

Subcase 3.1. $a \le w \le p-2$.

By (5), $w \not\equiv 3 \mod 4$. Again, by (1) and (2), $w = p + 1 \mod 4$.

Consider v_3 ; there is a v_x , x = 1 or $4 < x \le a + 2$, such that $v_3v_x \in E(G)$.

If $x \not\equiv 3 \mod 2$, then x > a by Lemma 3. Therefore, x = a + 2. Thus, the length of the cycle $v_1v_av_{a+1}v_{a+2}v_3v_2v_1$ is 6, a contradiction. Therefore, $x \equiv 3 \mod 2$.

If $x \leq w$, then, by Lemma 5, G contains a (2 mod 4)-cycle, which contradicts the initial assumption.

If x > w, then x = a + 1 and w = a. Hence, 6 is the length of the cycle $v_1v_2v_3v_{a+1}v_av_pv_1$, a contradiction.

Subcase 3.2. 1 < w < a.

Then, by (1) and (2), either $w \equiv 3$, or $w \equiv p+1 \mod 4$.

Subcase 3.2.1.

$$w \equiv 3 \mod 4. \tag{18}$$

Subcase 3.2.1.1. $a + 1 \neq p$.

Then, $p \ge a + 3$, since $p \equiv 1 \mod 2$.

Consider v_{a+2} ; there is a v_x , $3 \le x < a+1$ or $a+3 < x \le p$, such that $v_x v_{a+2} \in E(G)$.

If $x \equiv a+2 \mod 2$, then, x < w by Lemma 4. Therefore, since the cycle $C_1 = v_1 v_2 \cdots v_x v_{a+2} v_{a+3} \cdots v_p v_1$ is even,

$$l(C_1) = x + (p - (a+2) + 1) \equiv 0 \mod 4. \tag{19}$$

Thus, for the cycle $C_2 = v_1 v_2 \cdots v_x v_{a+2} v_{a+3} \cdots v_p v_w v_{w+1} \cdots v_a v_1$, by (18) and (19), $l(C_2) = x + (a - w + 1) + (p - (a + 2) + 1) \equiv x + (p - (a + 2) + 1) + (a - w + 1) \equiv 0 + (0 - 3 + 1) \equiv 2 \mod 4$, a contradiction.

If $x \not\equiv a + 2 \mod 2$, then x > a + 2, clearly.

Consider v_2 ; there is a v_y , $3 \le y \le a+2$, such that $v_y v_2 \in E(G)$.

If $y \equiv 2 \mod 2$, then, by Lemma 5, G contains a (2 mod 4)-cycle, contradicting the initial assumption.

If $y \not\equiv 2 \mod 2$, then y = a + 1 by Lemma 3. Thus, for the cycle $C_3 = v_1 v_2 v_{a+1} v_a \cdots v_w v_p v_1$, by (18), $l(C_3) = 2 + 1 + ((a+1) - w + 1) \equiv 1 - w \equiv 1 - 3 \equiv 2 \mod 4$, a contradiction.

Subcase 3.2.1.2. a + 1 = p.

Subcase 3.2.1.2.1. w = 3.

Now, $a \ge 8$. We consider v_4 . There is a v_x , $1 \le x < 3$ or $5 < x \le p$, such that $v_x v_4 \in E(G)$.

If $x \not\equiv 4 \mod 2$, then x = p by Lemma 3. Hence, 6 is the length of the cycle $v_1v_2v_3v_4v_pv_av_1$, a contradiction. Thus $x \equiv 4 \mod 2$. By Lemma 4, x = 2.

Consider v_6 ; there is a v_y , $1 \le y < 5$ or $7 < y \le p$, such that $v_y v_6 \in E(G)$.

If $y \not\equiv 6 \mod 2$, then, by Lemma 3, y = a + 1 = p. Again, by Lemma 5, G contains a (2 mod 4)-cycle, a contradiction.

If $y \equiv 6 \mod 2$, then, by Lemma 4, G also contains a (2 mod 4)-cycle, a contradiction.

Subcase 3.2.1.2.2. $w \neq 3$.

Therefore,

$$w \ge 7. \tag{20}$$

Consider v_4 ; there is a v_x , $1 \le x < 3$ or $5 < x \le p$, such that $v_4v_x \in E(G)$.

If $x \not\equiv 4 \mod 2$, then x = p by Lemma 3. Thus, 6 is the length of the cycle $v_1v_2v_3v_4v_pv_av_1$, a contradiction. Therefore, $x \equiv 4 \mod 2$.

If $x \geq w$, then, since the cycle $C_1 = v_1v_2v_3v_4v_xv_{x+1}\cdots v_pv_1$ is even, $l(C_1) = (p-x+1)+4 \equiv 0 \mod 4$. Thus,

$$x \equiv p + 1 \equiv 2 \bmod 4,\tag{21}$$

which implies x < a. Hence, for the cycle $C_2 = v_1 v_2 v_3 v_4 v_x v_{x-1} \cdots v_z v_p v_1$, by (18) and (21), $l(C_2) = 4 + (x - w + 1) + 2 \equiv (2 - 3 + 1) + 2 \equiv 2 \mod 4$, a contradiction. Therefore, x < w.

If x > 4, then, for v_2 , there is a v_y , $3 < y \le p$, such that $v_3v_y \in E(G)$.

If $y \not\equiv 2 \mod 2$, then y = p by Lemma 3. Again, by Lemma 6, G contains a (2 mod 4)-cycle, a contradiction.

If $y \equiv 2 \mod 2$, then y = 4 by Lemma 4. Again, by Lemma 6, G contains a $(2 \mod 4)$ -cycle, a contradiction.

If x < 4, then x = 2.

Consider v_6 ; by (20) there is a v_z , $1 \le 3 < 5$ or $7 < z \le p$, such that $v_z v_6 \in E(G)$.

If $z \not\equiv 6 \mod 2$, then, by Lemma 3, z = p. By Lemma 5, G contains a (2 mod 4)-cycle, a contradiction. Thus $z \equiv 6 \mod 2$.

If z > 6, then $z \le a$. By Lemma 6, G contains a (2 mod 4)-cycle, a contradiction.

If z < 6, then, by Lemma 4, z = 4. Again, by Lemma 6, G contains a (2 mod 4)-cycle, a contradiction.

Subcase 3.2.2.

$$w \equiv p + 1 \mod 4. \tag{22}$$

Subcase 3.2.2.1. a + 1 < p.

Then, the maximality of a implies that w > 2. Consider v_2 ; there is a v_x , $3 < x \le a + 1$, such that $v_2v_x \in E(G)$.

If $x \not\equiv 2 \mod 2$, then x = a + 1 by Lemma 3. Hence, for the cycle $C_1 = v_2 v_3 \cdots v_w v_p v_{p-1} \cdots v_{a+1} v_2$, by (22), $l(C_1) = w - 1 + (p - (a+1) + 1) = 0$

 $w+p-a-1 \equiv p+1+p-0-1 \equiv 2p \equiv 2 \mod 4$, a contradiction. Thus, $x \equiv 2 \mod 2$. Therefore, $x \leq a$. By Lemma 5, w < x. Since the cycle $C_2 = v_1v_2v_xv_{x+1}\cdots v_pv_1$ is even, $l(C_2) = 2 + (p-x+1) \equiv 0 \mod 4$. Hence,

$$x \equiv p + 3 \mod 4. \tag{23}$$

Consider v_{p-1} ; as in the symmetric case of v_2 , there is a $v_y \in V(G)$ such that $v_y v_{p-1} \in V(G)$ and

$$y \equiv p - 1 \mod 2$$
, and $y \equiv 2 \mod 4$. (24)

If $x \leq y$, then, for the cycle $C_3 = v_2 v_3 \cdots v_w v_p v_{p-1} v_y v_{y-1} \cdots v_x v_2$, by (22), (23), and (24), $l(C_3) = (w-1) + (y-x+1) + 2 = w+y-x+2 \equiv p+1+2-(p+3)+2 \equiv 2 \mod 4$, a contradiction.

If y < x, then, for the cycle $C_4 = v_2 v_3 \cdots v_y v_{p-1} v_{p-2} \cdots v_x v_2$, by (24), (25), and (26), $l(C_4) = (y-2+1) + ((p-1)-x+1) = y+p-x-1 \equiv 2+p-(p+3)-1 \equiv 2 \mod 4$, a contradiction.

Subcase 3.2.2.2. a + 1 = p.

Then $a \geq 8$.

Subcase 3.2.2.1. $w \le p - 7$.

Consider v_{p-4} ; there is a v_x , $1 \le x < p-5$ or $p-3 < x \le p$, such that $v_{p-4}v_x \in E(G)$. By Lemma 3, $x \equiv p-4$ mod 2.

If x > p-4, then, since the cycle $C_5 = v_1 v_2 \cdots v_{p-4} v_x v_{x+1} \cdots v_p v_1$ is even, $l(C_5) = (p-4) + (p-x+1) \equiv 0 \mod 4$. Thus, $x \equiv 2p+1 \equiv 3 \mod 4$ and, therefore, x = a-1.

For v_{p-6} , there is a v_y , $1 \le y < p-7$ or $p-5 < y \le p$, such that $v_yv_{p-6} \in E(G)$. By Lemma 3, $y \equiv p-6 \mod 2$. Again, by Lemma 6, y > p-6. Then, since the cycle $C_6 = v_1v_2 \cdots v_{p-6}v_yv_{y+1} \cdots v_pv_1$ is even, $l(C_6) = p-6+(p-y+1) \equiv 0 \mod 4$. Thus, $y \equiv 2p-1 \equiv 1 \mod 4$. And, by Lemma 4, y = p-4. By Lemma 6, G contains a (2 mod 4)-cycle, providing another contradiction.

If x < p-4, then, consider v_{p-2} ; there is a v_f , f = p or $1 \le f < p-3$, such that $v_f v_{p-2} \in E(G)$. By Lemma 3, $f \equiv p-2 \mod 2$. Again, by Lemmas 4 and 6, either x < f < p-4 or f = p.

If f = p, then, by Lemma 6, x < w. Since the cycle $C_7 = v_1 v_2 \cdots v_x v_{p-4}$ $v_{p-3} \cdots v_p v_1$ is even, it follows that $l(C_7) = x + 5 \equiv 0 \mod 4$. Therefore,

$$x \equiv 3 \bmod 4. \tag{25}$$

Thus, for the cycle $C_8 = v_1 v_2 \cdots v_x v_{p-4} v_{p-5} \cdots v_w v_p v_{p-2} v_a v_1$, by (22) and (25), $l(C_8) = x + ((p-4) - w + 1) + 3 = x + p - w \equiv 3 + p - (p+1) \equiv 2$ mod 4, a contradiction.

If x < f < p-4, then, since the cycles $C_9 = v_1 v_2 \cdots v_x v_{p-4} v_{p-3} \cdots v_p v_1$ and $C_{10} = v_1 v_2 \cdots v_f v_{p-2} v_{p-1} v_p v_1$ are even, $l(C_9) = x+5 \equiv 0$ and $l(C_{10}) = f+3 \equiv 0 \mod 4$. Therefore, $x \equiv 3$ and $f \equiv 1 \mod 4$. Thus, for the cycle $C_{11} = v_x v_{x+1} \cdots v_f v_{p-2} v_{p-3} v_{p-4} v_x$, $l(C_{11}) = (f-x+1)+3 \equiv f-x \equiv 1-3 \equiv 2 \mod 4$, a contradiction.

Subcase 3.2.2.2. w > p - 7.

In this case, $w > a+1-7 \ge 8-6=2$. On the other hand, by (22), $w \equiv p+1 \equiv a+1+1 \equiv 2 \mod 4$. Hence, $w \ge 6$.

Consider v_4 ; there is a v_x , $1 \le x < 3$ or $5 < x \le p$, such that $v_x v_4 \in E(G)$. By Lemma 3, $x \equiv 4 \mod 2$. Again, by Lemma 5, x > w.

Consider v_2 ; there is a v_y , $3 < y \le p$, such that $v_y v_2 \in E(G)$. By Lemma 3, $y \equiv 2 \mod 2$. Again, by Lemmas 4 and 6, 4 < y < x. Since the two cycles $C_{12} = v_1 v_2 v_y v_{y+1} \cdots v_p v_1$ and $C_{13} = v_1 v_2 v_3 v_4 v_x v_{x+1} v_p v_1$ are even, $l(C_{12}) = 2 + (p - y + 1) \equiv 0$ and $l(C_{13}) = 4 + (p - x + 1) \equiv 0$ mod 4. Therefore, $y \equiv p + 3$ and $x \equiv p + 1$ mod 4. Thus, for the cycle $C_{14} = v_2 v_3 v_4 v_x v_{x-1} \cdots v_y v_2$, $l(C_{14}) = 3 + (x - y + 1) \equiv x - y \equiv p + 1 - (p + 3) \equiv 2 \mod 4$, a contradiction.

A contradiction is obtained in every case. Therefore, Theorem 1 is true. \Box

4 PROOF OF THEOREM 2 To the contrary, assume that there is a 2-connected graph G with $p(G) \geq 6$ and $\delta(G) \geq 3$ such that G contains no $(2 \mod 4)$ -cycle. Let \wp be the set of longest paths in G. Note, for $P = v_1v_2 \cdots v_t \in \wp$, $N(v_1) \subseteq V(P)$. The following definition is crucial to this proof. Define

$$b(P) = \max \left\{ i : v_i \in N(v_1) \right\}$$

Then, choose $P \in \wp$, say $P = v_1 v_2 \cdots v_t$, such that b(P) is as large as possible. Let b(P) = b and $N = \langle \{v_1, v_2, \cdots, v_b\} \rangle$. Since $d(v_1) \geq 3$, there is

an $a \in \{3, 4, \dots, t\}$ such that $v_1 v_a \in E(G)$. Clearly,

$$a \not\equiv 2, \ b \not\equiv 2 \text{ and } a \not\equiv b \mod 4,$$
 (26)

since, if not, $a \equiv b \mod 4$. Then, the cycle $v_a v_{a+1} \cdots v_b v_1 v_a$ is a (2 mod 4)-cycle in G, contradicting the assumption.

By the maximality of b(P) and the length of P, Claim 1 follows immediately.

Claim 1. If $v \in V(N)$ and N contains a vv_b -hamiltonian path, then $N_G(v) \subseteq V(N)$. \square

Claim 2. If $1 < i < a < j \le b$, then (v_i, v_j) has P(3, N).

Proof. By way of contradiction, assume that (v_i, v_j) does not have P(3, N). The four following paths are distinct $v_i v_j$ -paths in N:

$$\begin{split} P_1 &= v_i v_{i+1} \cdots v_j, \\ P_2 &= v_i v_{i-1} \cdots v_1 v_a v_{a+1} \cdots v_j, \\ P_3 &= v_i v_{i-1} \cdots v_1 v_b v_{b-1} \cdots v_j, \text{ and } \\ P_4 &= v_i v_{i+1} \cdots v_a v_1 v_b v_{b-1} \cdots v_j, \\ \text{with lengths:} \\ l(P_1) &= j-i, \end{split}$$

$$l(P_2) = i + (j - a) = i + j - a,$$

 $l(P_3) = i + (b - j) = i - j + b,$ and

$$l(P_4) = (a-i+1) + (b-j+1) = (a+b) - (i+j) + 2.$$

It follows that,

$$l(P_2) - l(P_1) = 2i - a,$$
 (27)

$$l(P_3) - l(P_1) = 2(i - j) + b, (28)$$

$$l(P_4) - l(P_1) = a + b - 2j + 2, (29)$$

$$l(P_3) - l(P_2) = a + b - 2j, (30)$$

and

$$l(P_4) - l(P_3) = a - 2i + 2. (31)$$

By (26), there are three cases to be discussed.

Case 1. $a \equiv 1 \equiv b \mod 2$.

Then, by (26), $a+b \equiv 0 \mod 4$; and by (27), $l(P_2)-l(P_1)=2i-a \equiv 1 \mod 2$.

If $j \equiv 1 \mod 2$, then, by (30), $l(P_3) - l(P_2) = a + b - 2j \equiv 2 \mod 4$. It follows using P_1 , P_2 , and P_3 that (v_i, v_j) has P(3, N), a contradiction.

If $j \equiv 0 \mod 2$, then, by (29), $l(P_4) - l(P_1) = a + b - 2j + 2 \equiv 2 \mod 4$. Hence (v_i, v_j) has P(3, N) with P_1 , P_2 , and P_4 , a contradiction.

Case 2. $a \equiv 0 \mod 4$.

Then, by (26), $b \equiv 1 \mod 2$; and by (28), $l(P_3) - l(P_1) = 2(i-j) + b \equiv 1 \mod 2$.

If $i \equiv 0 \mod 2$, then, by (31), $l(P_4) - l(P_3) = a - 2i + 2 \equiv 2 \mod 4$. Hence, (v_i, v_i) has P(3, N) with P_1 , P_3 , and P_4 , a contradiction.

If $i \equiv 1 \mod 2$, then by (27), $l(P_2) - l(P_1) = 2i - a \equiv 2 \mod 4$. Hence, (v_i, v_i) has P(3, N) with P_1 , P_2 , and P_3 , a contradiction.

Case 3. $b \equiv 0 \mod 4$.

Then, by (26), $a \equiv 1 \mod 2$.

Subcase 3.1. $i - j \equiv 1 \mod 2$.

Then, $l(P_2)-l(P_1)=2i-a\equiv 1 \mod 2$, and $l(P_3)-l(P_1)=2(i-j)+b\equiv 2 \mod 4$. Hence (v_i,v_j) has P(3,N) with $P_1,\ P_2$, and P_3 , a contradiction.

Subcase 3.2. $i - j \equiv 0 \mod 2$.

Consider v_a ; since $v_{a-1}v_{a-2}\cdots v_1v_av_{a+1}\cdots v_b$ is a $v_{a-1}v_b$ -hamiltonian path in N and $d(v_{a-1}) \geq 3$, by Claim 1, there is a $v_x \in V(N)$, x < a-2 or x > a+1, such that $v_{a-1}v_x \in E(N)$. By Lemma 3, $x \equiv a-1 \mod 2$.

If x < a - 2, then, since the two odd cycles $v_1v_av_{a+1}\cdots v_bv_1$ and $v_{a-1}v_xv_{x+1}$

 $\dots v_{a-1}$ are connected by the path $v_1v_2\dots v_x$, by Lemma 8, (v_i, v_j) has P(3, N), a contradiction. Therefore, x > a + 1.

Subcase 3.2.1. b > a + 1.

Consider v_{b-1} ; by Claim 1, there is a $v_y \in V(N)$, y > b-2, such that $v_{b-1}v_y \in E(N)$. By Lemma 3, $y \equiv b-1 \equiv 1 \mod 2$.

If $y \ge a$, then, since the odd cycles $v_1 v_2 \cdots v_a v_1$ and $v_y v_{y+1} \cdots v_{b-1} v_y$ are connected by the path $v_a v_{a+1} \cdots v_y$, by Lemma 8, (v_i, v_j) has P(3, N), a contradiction. Therefore, y < a.

If i < y, then the two odd cycles $v_1 v_2 \cdots v_a v_1$ and $v_y v_{y+1} \cdots v_{b-1} v_y$ have an odd number of common vertices v_y, v_{y+1}, \dots, v_a since $y \equiv a \equiv 1$ mod 2. By Lemma 9, (v_i, v_j) has P(3, N), a contradiction.

If i > y, then the two odd cycles $v_1v_2 \cdots v_av_1$ and $v_1v_2 \cdots v_yv_{b-1}v_bv_1$ have an odd number of common vertices v_1, v_2, \cdots, v_y since $y \equiv 1 \mod 2$. Thus, by Lemma 9, (v_i, v_j) has P(3, N), a contradiction. Therefore, i = y.

Similarly, by Lemma 9, since $v_1v_av_{a+1}\cdots v_bv_1$ and $v_yv_{y+1}\cdots v_{b-1}v_y$ are two odd cycles with an odd number of common vertices, $v_a, v_{a+1}, \cdots, v_{b-1}$, it follows that $j \leq b-1$.

If x = b, then, for the even cycle $C_1 = v_b v_{a-1} v_{a-2} \cdots v_y v_{b-1} v_b$, $l(C_1) = 2 + (a-1-y) + 1 \equiv 0 \mod 4$. Therefore,

$$y \equiv a + 2 \bmod 4. \tag{32}$$

Thus, for the cycle $C_2 = v_1 v_2 \cdots v_y v_{b-1} v_{b-2} \cdots v_a v_1$, by (32), $l(C_2) = y + (b-1) - a + 1 \equiv y - a \equiv 2 \mod 4$, which contradicts the hypothesis that G contains no (2 mod 4)-cycles. Therefore, $x \leq b-1$.

If $x \leq j \leq b-1$, then, since $i \equiv j \mod 2$ and the two cycles $v_y v_{y+1} \cdots v_{b-1} v_y$ and $v_{a-1} v_a \cdots v_x v_{a-1}$ are odd, by Lemma 11, (v_i, v_j) has P(3, N), a contradiction.

Let j < x. Then, $v_1v_2 \cdots v_y v_{b-1}v_b v_1$ and $v_{a-1}v_a \cdots v_x v_{a-1}$ are two odd, cycles, and by Lemma 8, (v_i, v_j) has P(3, N), a contradiction.

Subcase 3.2.2. b = a + 1.

Then, b = j.

If b = 4, then $N \cong K_4$ and i = 2. Therefore, (v_i, v_j) has P(3, N), a contradiction.

If $b \neq 4$, then $b \geq 8$.

Consider v_{a-2} ; by Claim 1, there is a $v_z \in V(N)$, z < a-3 or z > a-1, such that $v_{a-2}v_z \in E(N)$. By Lemma 3, $z \equiv a-2 \mod 2$. Since the two odd cycles $v_zv_{z+1}\cdots v_{a-2}v_z$ (or $v_{a-2}v_{a-1}v_av_{a-2}$) and $v_av_bv_1v_a$ are connected by one of the paths $v_1v_2\cdots v_z$ or $v_{a-2}v_{a-1}v_a$ (or v_a), by Lemma 8, (v_i, v_j) has P(3, N), a contradiction.

This contradiction completes the proof of Claim 2.

Claim 3. If $1 < i < j \le a$, then (v_i, v_j) has P(3, N).

Proof. By contradiction, assume that (v_i, v_j) does not have P(3, N). The following three paths are distinct $v_i v_j$ -paths in N:

 $P_1=v_iv_{i+1}\cdots v_j,$

 $P_2 = v_i v_{i-1} \cdots v_1 v_a v_{a-1} \cdots v_j$, and

 $P_3 = v_i v_{i-1} \cdots v_1 v_b v_{b-1} \cdots v_i,$ with lengths: $l(P_1) = j - i,$

 $l(P_2) = a - j + i$, and

 $l(P_3) = b - j + i.$

Thus,

$$l(P_2) - l(P_1) = a + 2(i - j), (33)$$

and

$$l(P_3) - l(P_1) = b + 2(i - j). (34)$$

If $a \equiv 1 \equiv b \mod 2$, then the two cycles $v_1 v_2 \cdots v_a v_1$ and $v_1 v_2 \cdots v_b v_1$ are odd. Therefore, by Lemma 10, (v_i, v_j) has P(3, N), a contradiction.

By (26), we have the two following cases to discuss.

Case 1. $b \equiv 0 \mod 4$.

Then, by (26), $a \equiv 1 \mod 2$.

If $i \not\equiv j \mod 2$, then, by (33), $l(P_2) - l(P_1) = a + 2(i - j) \equiv 1 \mod$ 2; and by (34), $l(P_3) - l(P_1) = b + 2(i - j) \equiv 2 \mod 4$. Thus, (v_i, v_j) has P(3, N) with P_1 , P_2 , and P_3 , a contradiction. Therefore,

$$i \equiv j \bmod 2, \tag{35}$$

and, therefore,

$$l(P_2) - l(P_1) = a + 2(i - j) \equiv 1 \mod 2.$$
 (36)

Consider v_{a-1} ; by Claim 1, there is a $v_x \in V(N)$, $1 \le x < a-2$ or $a < x \le b$, such that $v_{a-1}v_x \in E(N)$. Thus, by Lemma 3,

$$x \equiv a - 1 \equiv 0 \bmod 2. \tag{37}$$

Subcase 1.1. $j \neq a$.

Subcase 1.1.1. x < a - 2.

Then, by (35) and (37), the cycle $C_1 = v_1 v_2 \cdots v_x v_j v_a v_1$ is even. Thus,

$$l(C_1) = x + 2 \equiv 0 \mod 4.$$
 (38)

Subcase 1.1.1.1. i < x.

If $j \neq a-1$, then, by (35), the two odd cycles $v_x v_{x+1} \cdots v_{a-1} v_x$ and $v_1 v_a$

 $v_{a+1} \cdots v_b v_1$ are connected by the path $v_{a-1} v_a$. By Lemma 8, (v_i, v_j) has P(3, N), a contradiction.

If j=a-1, then, by (35), $i\equiv 0 \mod 2$, and, for a v_iv_j -path $P_4=v_iv_{i+1}\cdots v_xv_i$, $l(P_4)=x-i+1$. Thus, by (38), $l(P_2)-l(P_4)=(i+a-j)-(x-i+1)=2i-x+a-1-j=2i-x\equiv 2 \mod 4$. Hence, by (36), (v_i,v_j) has P(3,N) with P_1 , P_2 , and P_4 , a contradiction.

Subcase 1.1.1.2. $i \geq x$.

Then, for the $v_i v_j$ -path $P_5 = v_i v_{i-1} \cdots v_x v_{a-1} v_{a-2} \cdots v_j$, $l(P_5) = a - j + x - i$. Threfore, by (38), $l(P_5) - l(P_2) = (a - j + i - x) - (a - j + i) = -x \equiv 2 \mod 4$. Hence, by (36), (v_i, v_j) has P(3, N) with P_1 , P_2 , and P_5 , a contradiction.

Subcase 1.1.2. x > a.

By (37), the cycle $C_2 = v_1 v_2 \cdots v_{a-1} v_x v_{x-1} \cdots v_a v_1$ is even; and, therefore,

$$l(C_2) = x \equiv 0 \mod 4. \tag{39}$$

Subcase 1.1.2.1. x > a + 1.

Consider v_{x-1} ; by Claim 1, there is a $v_y \in V(N)$, $1 \le y < x-2$ or $x < y \le b$, such that $v_{x-1}v_y \in E(N)$ since the path $v_{x-1}v_{x-2} \cdots v_a v_1 v_2 \cdots v_{a-1}$ $v_x v_{x+1} \cdots v_b$ is a $v_{x-1}v_b$ -hamiltonian path in N. Therefore, by Lemma 3, $y \equiv x-1 \mod 2$.

If y < a-1, then, by (37), the cycle $C_3 = v_y v_{y+1} \cdots v_{a-1} v_x v_{x-1} v_y$ is even; and, therefore, $l(C_3) = a - y + 2 \equiv 0 \mod 4$. Thus, for the cycle $C_4 = v_1 v_2 \cdots v_y v_{x-1} v_{x-2} \cdots v_a v_1$, by (39), $l(C_4) = x - 1 - (a - y - 1) = x + y - a \equiv y - a \equiv 2 \mod 4$, which contradicts the hypothesis that G contains no (2 mod 4)-cycles.

If a-1 < y < x, then, since the cycle $C_5 = v_{a-1}v_a \cdots v_y v_{x-1}v_x v_{a-1}$ is even, $l(C_5) = 2 + (a-y+1+1) = y-a+4 \equiv y-a \equiv 0 \mod 4$. Thus, for the two v_iv_j -paths $P_6 = v_iv_{i-1} \cdots v_1v_bv_{b-1} \cdots v_x v_{a-1}v_{a-2} \cdots v_j$ and $P_7 = v_iv_{i-1} \cdots v_1v_b \cdots v_{x-1}v_y v_{y-1} \cdots v_j$, $l(P_6) = i+b-x+1+a-1-j = a+b+i-x-j$ and $l(P_7) = i+b-(x-1)+1+y-j = b+y+i-j-x+2$, respectively. Therefore, $l(P_6)-l(P_7) = a-y-2 \equiv 2 \mod 4$. By (36), (v_i,v_j) has P(3,N) with either P_1 , P_6 , and P_7 , or P_2 , P_6 , and P_7 , a contradiction.

If y>x, then, for the even cycle $C_6=v_{a-1}v_a\cdots v_{x-1}v_yv_{y-1}\cdots v_xv_{a-1}$, $l(C_6)=y-(a-1)+1=y-a+2\equiv 0 \mod 4$. On the other hand, for the cycle $C_7=v_1v_av_{a+1}\cdots v_{x-1}v_yv_{y+1}\cdots v_bv_1$, by (39), $l(C_7)=b-((a-2)+(y-(x-1)-1))=-(a+y-x-2)\equiv 2a\equiv 2 \mod 4$, which contradicts the hypothesis that G contains no $(2 \mod 4)$ -cycles.

Subcase 1.1.2.2. x = a + 1.

Consider v_{a-2} ; by Claim 1, there is a $v_y \in V(N)$, $1 \le y < a-3$ or $a \le y \le b$, such that $v_{a-2}v_y \in E(N)$. Then, by Lemma 3, $y \equiv a-2 \mod 2$.

Subcase 1.1.2.2.1. $y \ge a$.

If i < a-2, then $v_{a-2}v_{a-1} \cdots v_y v_{a-2}$ and $v_1v_av_{a+1} \cdots v_bv_1$ are two odd cycles with an odd number of common vertices, $v_a, v_{a+1}, \cdots v_y$. Therefore, by Lemma 9, (v_i, v_j) has P(3, N), a contradiction.

If $i \geq a-2$, then i=a-2 and j=a-1. Thus, the two odd cycles $v_{a-1}v_av_{a+1}v_{a-1}$ and $v_1v_2\cdots v_{a-2}v_yv_{y+1}\cdots v_bv_1$ are connected by the path $v_xv_{x+1}\cdots v_y$. By Lemma 8, (v_i,v_j) has P(3,N), a contradiction.

Subcase 1.1.2.2.2. y < a - 3.

If $1 < i < j \le y$, then the two odd cycles $C_8 = v_y v_{y+1} \cdots v_{a-2} v_y$ and $C_9 = v_{a-1} v_a v_{a+1} v_{a-1}$ are connected by the path $v_{a-2} v_{a-1}$. By Lemma 8, (v_i, v_j) has P(3, N), a contradiction.

If $y \le i < j \le a-2$, then, since $a \equiv 1$ and $y \equiv a-2 \mod 2$, by Lemma 10, (v_i, v_j) has P(3, N), a contradiction.

If 1 < i < y and y < j < a - 2, then a contradiction follows by Lemma 8 as in the case of $1 < i < j \le y$.

If 1 < i < y and $a - 2 \le j \le a - 1$, then, since $a \equiv 1$, $y \equiv a - 2$, and $i \equiv j \mod 2$, by Lemma 11, (v_i, v_j) has P(3, N), a contradiction.

If $y \le i \le a-2$ and j=a-1, then $i \ne y$ since $y \equiv a-2$ and $i \equiv j \equiv a-1 \mod 2$. Thus, a contradiction is also obtained as in the case when $a-2 \le i < j \le a-1$.

Subcase 1.2. j = a.

Then, $i \equiv j \equiv 1 \mod 2$.

If x < i, then the two odd cycles $v_1 v_j v_{j+1} \cdots v_b v_1$ and $v_x v_{x+1} \cdots v_{a-1} v_x$ are connected by the path $v_1 v_2 \cdots v_x$. By Lemma 8, (v_i, v_j) has P(3, N), a contradiction.

If $i \le x < j$, then, since $j \equiv 1$, $x \equiv a - 1$, and $i \equiv j \mod 2$, by Lemma 11, (v_i, v_j) has P(3, N), a contradiction.

If j < x, then, for the even cycle $C_{11} = v_1v_jv_{a-1}v_xv_{x+1}\cdots v_bv_1$, $l(C_{11}) = b - x + 4 \equiv -x \equiv 0 \mod 4$. Now, for the v_iv_j -path $P_{10} = v_jv_{a-1}v_xv_{x+1}\cdots v_bv_1v_2$

 $\cdots v_i$, $l(P_{10}) = i + b - x + 2$. Thus, $l(P_{10}) - l(P_2) = (i + b - x + 2) - i = b - x + 2 \equiv 2 \mod 4$. Hence, by (36), (v_i, v_j) has P(3, N) with P_1 , P_2 , and P_{10} , a contradiction.

Subcase 2. $a \equiv 0 \mod 4$.

Then, by (26), $b \equiv 1 \mod 2$.

If $i \not\equiv j \mod 2$, then by (33), $l(P_2) - l(P_1) = a + 2(i - j) \equiv 2 \mod 4$; and by (34), $l(P_3) - l(P_1) = b + 2(i - j) \equiv 1 \mod 2$. Thus, (v_i, v_j) has P(3, N) with P_1 , P_2 , and P_3 , a contradiction. Hence,

$$i \equiv j \bmod 2 \tag{40}$$

and, therefore,

$$l(P_3) - l(P_1) = b + 2(i - j) \equiv 1 \mod 2.$$
(41)

Consider v_{a-1} ; by Claim 1, there is a $v_x \in V(N)$, $1 \le x < a-2$ or $a < x \le b$, such that $v_{a-1}v_x \in E(N)$.

Subcase 2.1. x < a.

Then, by Lemma 3, $x \equiv a - 1 \equiv 0 \mod 2$. Thus, by (40) and Lemma 12, (v_i, v_j) has P(3, N), a contradiction.

Subcase 2.2. x > a.

If $x \not\equiv a-1 \mod 2$, then the cycle $C_{12}=v_{a-1}v_a\cdots v_xv_{a-1}$ is even. Hence, $l(C_{12})=x-a+2\equiv x+2 \mod 4$. Thus, for the cycle $C_{13}=v_1v_2\cdots v_{a-1}v_xv_{x-1}\cdots v_av_1$, $l(C_{13})=x\equiv 2 \mod 4$, which contradicts the hypothesis that G contains no $(2 \mod 4)$ -cycles. Therefore,

$$x \equiv a - 1 \equiv 1 \mod 2. \tag{42}$$

Subcase 2.2.1. $x \neq a + 1$.

Consider v_{x-1} ; by Claim 1 there is a $v_y \in V(N)$, $1 \le y < x-2$ or $x < y \le b$, such that $v_{x-1}v_y \in E(N)$.

Subcase 2.2.1.1. y > x.

Then, $y \equiv x-1 \mod 2$ by Lemma 3 since the cycle $v_1v_av_{a+1}\cdots v_bv_1$ is odd. Thus, $C_{14}=v_{a-1}v_xv_{x+1}\cdots v_yv_{x-1}v_{x-2}\cdots v_{a-1}$ is an even. cycle. Therefore, $l(C_{14})=y-a+2\equiv y+2 \mod 4$. Hence, for the cycle $C_{15}=v_1v_2\cdots v_{a-1}v_xv_{x+1}\cdots v_yv_{x-1}v_{x-2}\cdots v_av_1$, $l(C_{15})=y\equiv 2 \mod 4$, which contradicts the hypothesis that G contains no $(2 \mod 4)$ -cycles.

Subcase 2.2.1.2. y < x - 2.

Then, since G contains no $(2 \mod 4)$ -cycles, y < a by Lemma 4.

If $y \equiv x-1 \mod 2$, then the cycle $C_{16} = v_y v_{y+1} \cdots v_{a-1} v_x v_{x-1} v_y$ is even. Hence, $l(C_{16}) = a - y + 2 \equiv 2 - y \mod 4$. Thus, for the cycle $C_{17} = v_1 v_2 \cdots v_y v_{x-1} v_x v_{a-1} v_a v_1$, $l(C_{17}) = x+4 \equiv 2 \mod 4$, which contradicts the hypothesis that G contains no $(2 \mod 4)$ -cycles.

If $y \not\equiv x-1 \mod 2$, then, clearly, $x-1-y+1=x-y\equiv 0 \mod 4$. Thus, for the cycle $C_{18}=v_1v_2\cdots v_yv_{x-1}v_{x-2}\cdots v_av_1$, by (42), $l(C_{18})=y+x-a\equiv y+x\equiv 2x\equiv 2 \mod 4$, which contradicts the hypothesis that G contains no $(2 \mod 4)$ -cycles.

Subcase 2.2.2. x = a + 1.

Consider v_{a-2} ; by Claim 1 there is a $v_y \in V(N)$, $1 \le y < a-3$ or $a-1 < y \le b$, such that $v_{a-2}v_y \in E(N)$.

Subcase 2.2.1. y > a - 1.

Subcase 2.2.2.1.1. $y \equiv a - 2 \mod 2$.

Then, y = a by Lemma 4.

If j < a, then the two odd cycles $v_a v_{a-1} v_{a-2} v_a$ and $v_1 v_a v_{a+1} \cdots v_b v_1$ are connected by the path v_a . By Lemma 8, (v_i, v_j) has P(3, N), a contradiction.

If j = a and $i \ge a - 1$, then, since $a - 2 \equiv a$ and $b \equiv 1 \mod 2$, by Lemma 10, (v_i, v_j) has P(3, N), a contradiction.

If j = a and i < a - 1, then, since $a - 2 \equiv a$ and $b \equiv 1 \mod 2$, by (40) and Lemma 11, (v_i, v_j) has P(3, N), a contradiction.

Subcase 2.2.2.1.2. $y \not\equiv a - 2 \mod 2$.

Then, clearly, $y - a + 3 \equiv 0 \mod 4$. Therefore,

$$y \equiv 1. \tag{43}$$

If j < a, then, by (40), i < a - 2. Now, by (42) and (43), the two odd cycles $v_{a-2}v_yv_{y-1}\cdots v_xv_{a-1}v_{a-2}$ and $v_1v_av_{a+1}\cdots v_bv_1$ have an odd number of common vertices $v_x, v_{x+1}, \cdots, v_y$. Thus, by Lemma 9, (v_i, v_j) has P(3, N), a contradiction.

If j=a, then, by (40), $i \leq a-2$, and $C_{19}=v_{a-1}v_{a+1}v_{a+2}\cdots v_bv_1v_2\cdots v_{a-1}$ is an even cycle for which $l(C_{19})=b-1\equiv 0 \mod 4$. For the v_iv_j -path $P_{11}=v_jv_{a-1}v_{a+1}v_{a+2}\cdots v_bv_1v_2\cdots v_i,\ l(P_{11})=b-(a-1-i)$. Now, by (40), $i\equiv j\equiv a\equiv 0 \mod 2$; and, therefore, $2i\equiv 0 \mod 4$. Thus, $l(P_{11})-l(P_1)=(b-a+i+1)-(a-i)=b-2a+2i+1\equiv 2 \mod 4$. Hence, by (41), (v_i,v_j) has P(3,N) with P_1 , P_3 , and P_{11} , a contradiction.

Subcase 2.2.2. y < a - 3.

Then, by Lemma 3, $y \equiv a - 2$.

If i < y and j < a-2, then the two odd cycles $C_{20} = v_y v_{y+1} \cdots v_{a-2} v_y$, and $C_{21} = v_1 v_a v_{a+1} \cdots v_b v_1$ are connected by the path $v_{a-2} v_{a-1} v_a$. By Lemma 8, (v_i, v_j) has P(3, N), a contradiction.

If i < y and $a - 2 \le y \le a$, then, since $b \equiv 1$, $y \equiv a - 2$, and $i \equiv j \mod 2$, by Lemma 11, (v_i, v_j) has P(3, N), a contradiction.

If $y \le i < j \le a-2$, then, since $b \equiv 1$, and $y \equiv a-2 \mod 2$, by Lemma 10, (v_i, v_j) has P(3, N), a contradiction.

If $y < i \le a-2$ and $a-1 \le j \le a$, then, C_{20} and C_{21} are connected by the path $v_1v_2 \cdots v_y$. Thus, by Lemma 8, (v_i, v_j) has P(3, N), a contradiction.

If i = y and $a - 1 \le j \le a$, then, since $b \equiv 1$, $y \equiv a - 2$, and $i \equiv j \mod 2$, by Lemma 11, (v_i, v_j) has P(3, N), a contradiction.

Claim 3 follows. □

Claim 4. If $a \leq i < j \leq b$, then (v_i, v_j) has P(3, N).

Proof. By way of contradiction, assume that (v_i, v_j) does not have P(3, N). The following three paths are distinct $v_i v_j$ -paths in N:

$$P_1 = v_i v_{i+1} \cdots v_j,$$

 $P_2 = v_i v_{i-1} \cdots v_a v_1 v_b v_{b-1} \cdots v_j,$ and
 $P_3 = v_i v_{i-1} \cdots v_1 v_b v_{b-1} \cdots v_j,$
with lengths:
 $l(P_1) = j - i,$
 $l(P_2) = b - a - (j - i) + 2,$ and

 $l(P_3) = b - (j - i).$

Then,

$$l(P_2) - l(P_1) = b - a + 2(i - j) + 2, (44)$$

$$l(P_3) - l(P_1) = b + 2(i - j), \tag{45}$$

and

$$l(P_3) - l(P_2) = a - 2. (46)$$

If $a \equiv 0 \mod 4$, then by (26), $b \equiv 1 \mod 2$. Thus, by (45), $l(P_3) - l(P_1) = b + 2(i - j) \equiv 1 \mod 2$; and by (46), $l(P_3) - l(P_2) = a - 2 \equiv 2 \mod 4$. Thus, (v_i, v_j) has P(3, N) with P_1 , P_2 , and P_3 , a contradiction.

It suffices by (26) to discuss the two following cases.

Case 1. $b \equiv 0 \mod 4$.

Then, by (26), $a \equiv 1 \mod 2$, and by (44),

$$l(P_2) - l(P_1) \equiv 1 \mod 2.$$
 (47)

If $i \not\equiv j \mod 2$, then by (45), $l(P_3) - l(P_1) \equiv 2 \mod 4$. Thus, (v_i, v_j) has P(3, N) with P_1 , P_2 , and P_3 , a contradiction. Therefore, $i \equiv j \mod 2$.

Consider v_{b-1} ; by Claim 1, there is a $v_x \in V(N)$, $1 \le x < b-2$, such that $v_{b-1}v_x \in E(N)$. Then, by Lemma 3, $x \equiv 1 \equiv 0 \mod 2$.

Subcase 1.1. $j \neq b$.

Subcase 1.1.1. $x \ge a$.

Note, $i \equiv j$ and $x \equiv 1 \mod 2$ and the cycle $v_1 v_a v_{a+1} \cdots v_b v_1$ is odd.

If $a \le i < j < b$, then, by Lemma 10, (v_i, v_j) has P(3, N), a contradiction.

If $a \leq i < x$, and j < b-1, then the two odd cycles $v_1v_2 \cdots v_av_1$ and $v_xv_{x+1}\cdots v_{b-1}v_x$ are connected by the path $v_1v_bv_{b-1}$. Therefore, by Lemma 8, (v_i, v_j) has P(3, N), a contradiction.

If $a \leq i < x$ and j = b - 1, then, by Lemma 11, (v_i, v_j) has P(3, N), a contradiction.

Subcase 1.1.2. x < a.

Now, the cycle $C_1 = v_1 v_a v_{a+1} \cdots v_{b-1} v_x v_{x-1} \cdots v_1$ is even since $a \equiv 1$ and $x \equiv b-1 \mod 2$. Therefore, $l(C_1) = b-1 - (a-x-1) = b+x-a \equiv x-a \equiv 0 \mod 4$. Thus, for the $v_i v_j$ -path $P_4 = v_i v_{i-1} \cdots v_x v_{b-1} v_{b-2} \cdots v_j$, $l(P_4) = b-x-j+i$. Hence, $l(P_4) - l(P_2) = a-x-2 \equiv 2 \mod 4$, where

 $P_2 = v_i v_{i-1} \cdots v_a v_1 v_b v_{b-1} \cdots v_j$. Therefore, by (47), (v_i, v_j) has P(3, N) with P_1 , P_2 , and P_4 , a contradiction.

Subcase 1.2. j = b.

Subcase 1.2.1. $x \ge a$.

If $a \leq i \leq x$, then, by Lemma 11, (v_i, v_j) has P(3, N), a contradiction. If x < i < b, then the two odd cycles $v_1 v_2 \cdots v_a v_1$ and $v_x v_{x+1} \cdots v_{b-1} v_x$ are connected by the path $v_a v_{a+1} \cdots v_x$. Thus, by Lemma 8, (v_i, v_j) has P(3, N), a contradiction.

Subcase 1.2.1. x < a.

By the argument of Subcase 1.1.2., $x-a\equiv 0 \mod 4$. Now, for the v_iv_j -path $P_5=v_iv_{i-1}\cdots v_av_1v_2\cdots v_xv_{b-1}v_j$, $l(P_5)=x+2+i-a$. Hence, $l(P_5)-l(P_1)=(x+2+i-a)-(b-i)=x-a+2i+b+2\equiv 2 \mod 4$. Therefore, by (47), (v_i,v_j) has P(3,N) with P_1 , P_2 , and P_5 , a contradiction.

Case 2. $a \equiv 1 \equiv b \mod 2$.

Then, by (26), $a - b \equiv 2 \mod 4$, and by (45),

$$l(P_3) - l(P_1) = b + 2(i - j) \equiv 1 \mod 2.$$
(48)

If $i \not\equiv j \mod 2$, then, by (44), $l(P_2) - l(P_1) = b - a + 2(i - j) + 2 \equiv 2 \mod 2$. Thus, by (48), (v_i, v_j) has P(3, N) with P_1 , P_2 , and P_3 , a contradiction. Therefore, $i \equiv j \mod 2$.

Consider v_{b-1} ; by Claim 1, there is a $v_x \in V(N)$, $1 \le x < b-2$, such that $v_{b-1}v_x \in E(N)$.

Subcase 2.1. $j \not\equiv b-1 \mod 2$.

Then, clearly, $b-1-x+1=b-x\equiv 0 \mod 4$; and by Lemma 5, x< a. Thus, for the cycle $C_2=v_1v_av_{a+1}\cdots v_xv_{b-1}v_bv_1,\ l(C_2)=4+a-x=4+(a-b)+(b-x)\equiv 2 \mod 4$ since $a-b\equiv 0 \mod 4$, which contradicts the hypothesis that G contains no $(2 \mod 4)$ -cycles.

Subcase 2.2. $x \equiv b - 1 \mod 2$.

Subcase 2.2. $j \neq b$.

If $i \geq x$, then $x \leq i < j \leq b-1$; and, therefore, by Lemma 10, (v_i, v_j) has P(3, N), a contradiction.

If i < x and $j \neq b-1$, then the two odd cycles $v_1v_2 \cdots v_a v_1$ and $v_x v_{x+1} \cdots v_{b-1} v_x$ are connected by the path $v_{b-1} v_b v_1$. Thus, by Lemma 8,

 (v_i, v_j) has P(3, N), a contradiction.

If i < x and j = b - 1, then, by Lemma 11, (v_i, v_j) has P(3, N), a contradiction.

Subcase 2.2.2. j = b.

Subcase 2.2.2.1. $x \ge a$.

If $a \leq i \leq x$, then, by Lemma 11, (v_i, v_j) has P(3, N), a contradiction. If x < i, then the two odd cycles $v_1 v_2 \cdots v_a v_1$ and $v_x v_{x+1} \cdots v_{b-1} v_x$ are connected by the path $v_a v_{a+1} \cdots v_x$. Therefore, by Lemma 8, (v_i, v_j) has

Subcase 2.2.2.2. x < a.

P(3,N), a contradiction.

Then the cycle $C_3 = v_1 v_2 \cdots v_x v_{b-1} v_b v_1$ is even, and, hence, $l(C_3) = x+2 \equiv 0 \mod 4$. Thus, for the $v_i v_j$ -path $P_5 = v_i v_{i-1} \cdots v_a v_1 v_2 \cdots v_x v_{b-1} v_j$, $l(P_5) = x+2+i-a$. Thus, $l(P_5) - l(P_1) = (x+2+i-a) - (j-i) = 2(i-j) + b - a + x + 2 \equiv 2 \mod 4$. Hence, by (48), (v_i, v_j) has P(3, N) with P_1 , P_3 , and P_5 , a contradiction.

This contradiction completes the proof of Claim 4.

Combining Claims 2, 3, and 4, the following claim is established.

Claim 5. If $1 < i < j \le b$, then (v_i, v_j) has P(3, N). \square

Continuation of the main proof of Theorem 2. Consider v_t , the end vertex with greatest index of the longest path P; if $v_t = v_b$, then V(G) = V(P) and, therefore, G is hamiltonian. Thus, by Theorem 1, G contains a (2 mod 4)-cycle, contradicting the initial assumption. Hence, t > b.

By the maximality of P and $\delta(G) \geq 3$, there are z and $w \in \{1, 2, \dots, t-2\}$ with z < w such that $v_z v_t$, $v_w v_t \in E(G)$. Thus, z > 1.

If $z \geq b$, then let $M = \langle \{v_z, v_{z+1}, \cdots, v_t\} \rangle$. By Lemma 3, either $z \equiv t$, or $w \equiv t \mod 2$; and, therefore, M contains an odd cycle. Since G is 2-connected, there are two disjoint paths, say a uv-path and an xy-path, which connect M and N where $u, x \in V(N)$ and $v, y \in V(M)$. By Claim 5, (u, x) has P(3, N) and, by Lemma 13, (v, y) has P(2, M). By the Two-body Lemma, G again contains a $(2 \mod 4)$ -cycle, contradicting the beginning assumption.

If z < b and $w \ge b$, then set $M = \langle \{v_w, v_{w+1}, \dots, v_t\} \rangle$. Now, the cycle $v_w v_{w+1} \cdots v_t v_w$ is not a (2 mod 4)-cycle. Hence, (v_w, v_t) has P(2, M). By Claim 5, (b, z) has P(3, N). Thus, by the Two-body Lemma, G contains a (2 mod 4)-cycle, leading to a contradiction.

Finally, we discuss the last case in which 1 < z < w < b.

We assume that:

$$v_{\alpha}v_{t} \in E(G) \text{ with } 1 < \alpha < b \text{ and } \alpha \equiv t - 1 \mod 4,$$
 (49)

$$v_{\beta}v_{t} \in E(G)$$
 with $1 < \beta < b$ and $\beta \equiv b - t + 1 \mod 4$, (50)

$$v_{\gamma}v_{t} \in E(G)$$
 with $1 < \gamma < a$ and $\gamma \equiv a - t + 1 \mod 4$, (51)

$$v_{\eta}v_t \in E(G)$$
 with $1 < \eta \le a$ and $\eta \equiv a - b + t + 1 \mod 4$, (52)

and

$$v_{\theta}v_{t} \in E(G) \text{ with } a \leq \theta < b \text{ and } \theta \equiv a+b-t-1 \text{ mod } 4.$$
 (53)

Then,

$$\beta - \alpha \equiv b + 2(1 - t) \bmod 4, \tag{54}$$

$$\gamma - \alpha \equiv a + 2(1 - t) \bmod 4, \tag{55}$$

$$\eta - \alpha \equiv a - b + 2 \mod 4, \tag{56}$$

and

$$\theta - \alpha \equiv a + b + 2(1 - t) + 2 \mod 4. \tag{57}$$

Five cycles are now given together with their lengths:

$$l(C_{\alpha}) = t - \alpha + 1 \equiv 2 \mod 4$$
, where $C_{\alpha} = v_{\alpha}v_{\alpha+1} \cdots v_t v_{\alpha}$,

$$l(C_{\beta}) = \beta + t - b + 1 \equiv 2 \mod 4$$
, where $C_{\beta} = v_{\beta}v_{\beta-1} \cdots v_1 v_b v_{b+1} \cdots v_t v_{\beta}$,

$$l(C_\gamma)=\gamma+t-a+1\equiv 2 \bmod 4, \text{ where } C_\alpha=v_\gamma v_{\gamma-1}\cdots v_1v_av_{a+1}\cdots v_tv_\gamma,$$

$$l(C_{\eta}) = a - \eta + 2 + t - b + 1 \equiv 2 \mod 4$$
, where $C_{\eta} = v_{\eta}v_{\eta+1}\cdots v_av_1v_bv_{b+1}\cdots v_tv_{\eta}$,

and

 $l(C_\theta)=(t-b+1)+(\theta-a)+2\equiv 2 \bmod 4, \text{ where } C_\theta=v_\theta v_{\theta-1}\cdots v_a v_1 v_b$ $v_{b+1}\cdots v_t v_\theta.$

Since G contains no (2 mod 4)-cycles, the following claim will now be established.

Claim 6. Both $z \not\equiv f$ and $w \not\equiv f \mod 4$ for any $f \in \{\alpha, \beta, \gamma, \eta, \theta\}$.

Case 1. $a \equiv 0 \mod 4$.

Then, by (26), $b \equiv 1 \mod 2$.

Subcase 1.1. $t \equiv 0 \mod 2$.

Then, by (54) and (56), $\beta - \eta = (\beta - \alpha) - (\eta - \alpha) \equiv 2b + 2(1-t) - a - 2 \equiv 2 \mod 4$. On the other hand, by (54), $\beta - \alpha \equiv b + 2(1-t) \equiv b + 2 \mod 4$ $\equiv 1 \mod 2$. By (55), $\gamma - \alpha \equiv a + 2(1-t) \equiv 2 \mod 4$. Thus, by Claim 6, $a \leq z < w < b$.

Now, by (54) and (57), $\beta - \theta = (\beta - \alpha) - (\theta - \alpha) \equiv b + 2(1 - t) - (a + b + 2(1 - t) + 2) \equiv 2 \mod 4$. On the other hand, by (54), $\beta - \alpha \equiv 1 \mod 2$. Therefore, by (49), $z \equiv w \equiv \alpha + 2 \equiv t + 1 \mod 4$. Thus, the cycle $v_z v_{z+1} \cdots v_w v_t v_z$ is a (2 mod 4)-cycle, giving a contradiction.

Subcase 1.2. $t \equiv 1 \mod 2$.

Then, by (54), $\beta - \alpha \equiv b + 2(1 - t) \equiv b \mod 4$. Hence, by Claim 6, (49), and (50), either $z \equiv b - t + 3$ and $w \equiv t + 1$ or $w \equiv b - t + 3$ and $z \equiv t + 1 \mod 4$.

We assume, without loss of generality, that $z \equiv b-t+3 \mod 4$. By (54) and (57), $\beta-\theta=(\beta-\alpha)-(\theta-\alpha)\equiv a+2\equiv 2 \mod 4$. Hence, if $a\leq z< b$, then $z\not\equiv\theta\equiv b-t+3 \mod 4$. Therefore, z< a. By the maximality of b, z< a-1.

Consider v_{a-1} ; by Claim 1, there is a $v_x \in V(N)$, $1 \le x < a-2$ or $a < x \le b$, such that $v_{a-1}v_x \in E(N)$.

If $x \equiv a-1 \mod 2$, then, since $b \equiv t \equiv z \equiv 1 \mod 2$, by Lemma 7, x < z; and for the even cycle $C_1 = v_1v_2 \cdots v_xv_{a-1}v_a \cdots v_bv_1$, $l(C_1) = x + (b - (a-1) + 1) \equiv x + b + 2 \equiv 0 \mod 4$. Hence, for the cycle $C_2 = v_xv_{x+1}\cdots v_zv_tv_{t-1}\cdots v_{a-1}v_x$, $l(C_2) = (t - (a-1) + 1) + (z - x + 1) \equiv t + 2 + (b - t + 3) + (b + 2) + 1 \equiv 2b \equiv 2 \mod 4$, which contradicts the assumption that G contains no $(2 \mod 4)$ -cycles.

If $x \not\equiv a-1 \mod 2$, then, by Lemma 3, x>a and $x-(a-1)+1\equiv x+2\equiv 0 \mod 4$. Hence, for the cycle $C_3=v_1v_2\cdots v_{a-1}v_xv_{x-1}\cdots v_av_1$, $l(C_3)=x\equiv 2 \mod 4$, which contradicts the hypothesis that G contains no $(2 \mod 4)$ -cycles.

Case 2. $a \equiv 1 \equiv b \mod 2$.

Then, by (26), $a - b \equiv 2 \mod 4$.

Subcase 2.1. $t \equiv 0 \mod 2$.

Then, by (54), $\beta - \alpha \equiv b + 2(1 - t) \equiv b + 2 \mod 4 \equiv 1 \mod 2$. Therefore, by (49) and (50), either $z \equiv t + 1$ and $w \equiv b - t + 3$ or $w \equiv t + 1$ and $z \equiv b - t + 3 \mod 4$.

If $w\equiv t+1$ and $z\equiv b-t+3$ mod 4, then, for the cycle $C_4=v_1v_2\cdots v_zv_tv_w$

 $v_{w+1}\cdots v_bv_1$, $l(C_4)=z+b-w+2\equiv (b-t+3)+b-(t+1)+2\equiv 2b\equiv 2$ mod 4, which contradicts the hypothesis that G contains no (2 mod 4)-cycles. Therefore,

$$z \equiv t + 1 \text{ and } w \equiv b - t + 3 \text{ mod } 4. \tag{58}$$

By the maximality of b, w < b - 1.

Consider v_{b-1} ; by Claim 1, there is a $v_x \in V(N)$, $1 \le x < b-2$, such that $v_{b-1}v_x \in E(N)$.

If $x \neq b-1 \mod 2$, then $(b-1)-x+1 = b-x \equiv 0 \mod 4$; and by Lemma 3, x < z. Hence, for the cycle $C_5 = v_x v_{x+1} \cdots v_z v_t v_{t-1} \cdots v_{b-1} v_x$, by (58), $l(C_5) = (z-x+1)+(t-(b-1)+1) = (t+1)-x+t-b+3 \equiv 2t-x-b \equiv -2b \equiv 2 \mod 4$, a contradiction. Therefore, $x \equiv b-1$.

Now, by (54) and (55), $\beta - \gamma \equiv (\beta - \alpha) - (\gamma - \alpha) \equiv b - a \equiv 2 \mod 4$. On the other hand, by (54), $\beta - \alpha \equiv 1 \mod 2$. Hence, by (49), $w \equiv t + 1$ if 1 < w < a. Thus, $w \ge a$. Since the cycle $C_6 = v_1 v_2 \cdots v_x v_{b-1} v_b v_1$ is even,

$$l(C_6) = x + 2 \equiv 0 \mod 4. \tag{59}$$

If $x \geq w$, then the cycle $C_7 = v_1 v_a v_{a-1} \cdots v_z v_t v_w v_{w+1} \cdots v_x v_{b-1} v_b v_1$ (or $v_1 v_a v_{a+1} \cdots v_z v_t v_w v_{w+1} \cdots v_x v_{b-1} v_b v_1$) is even, by (58) and (59), $l(C_7) = (x-w+1)+4+(a-z+1)=x+a-w-z+6\equiv 2+a-(b-t+3)-(t+1)+2\equiv a-b\equiv 2$ (or $l(C_7)=(x-w+1)+4+(z-a+1)=x+z-w-a+6\equiv 2+(t+1)-(b-t+3)-a+2\equiv 2t+(b-a)-2b-2\equiv 2b\equiv 2 \mod 4$), a contradiction. Therefore, x < w.

If $x \le z$, then, for the cycle $C_8 = v_x v_{x+1} \cdots v_z v_t v_w v_{w+1} \cdots v_{b-1} v_x$, by (58), $l(C_8) = (z - x + 1) + ((b - 1) - w + 1) + 1 = z + b - x - w + 2 \equiv (t+1) + b - 2 - (b-t+3) + 2 \equiv 2 \mod 4$, a contradiction. Therefore, z < x.

Since $w \equiv b - t + 3 \equiv 0 \mod 2$, by (59), w > x + 1. Consider v_{x+1} ; by Claim 1, there is a $v_y \in V(N)$, $1 \leq y < x$ or $x + 2 < y \leq b$, such that $v_{x+1}v_y \in E(N)$.

If $y \not\equiv x-1 \mod 2$, then, since $z \not\equiv t \mod 2$, by Lemma 3, y < z and $(x+1)-y+1=x-y+2 \equiv 0 \mod 4$. Hence, for the cycle $C_9 =$

 $v_1v_2\cdots v_yv_{x+1}v_{x+2}\cdots v_wv_tv_{t-1}\cdots v_bv_1,\ l(C_9)=y+(w-(x+1)+1)+(t-b+1)=y+w+t-x-b+1\equiv (x-2)+(b-t+3)+t-x-b+1\equiv 2$ mod 4, a contradiction. Therefore, $y\equiv x-1$ mod 2.

If y > x+2, then, by Lemma 4, y = b; and, hence, for the cycle $C_{10} = v_{x+1}v_bv_{b+1}\cdots v_tv_wv_{w-1}\cdots v_{x+1}$, by (58) and (59), $l(C_{10}) = (w-(x+1)+1)+(t-b+1)=w-x+t-b+1\equiv (b-t+3)-2+t-b+1\equiv 2 \mod 4$, a contradiction. Therefore, y < x. Since the cycle $C_{11} = v_1v_2\cdots v_yv_{x+1}v_{x+2}\cdots v_bv_1$ is even, $l(C_{11}) = y+(b-(x+1)+1)+1=y+b-x\equiv 2 \mod 4$, a contradiction.

If $y \geq a$, then, $C_{12} = v_1 v_a v_{a+1} \cdots v_y v_{x+1} v_{x+2} \cdots v_w v_t v_{t-1} \cdots v_b v_1$, a cycle, satisfies by (58), $l(C_{12}) = 1 + (y-a+1) + (w-(x+1)+1) + (t-b+1) = y + w + t - a - x - b + 3 \equiv (x-b) + (b-t+3) + t - a - x - b + 3 \equiv -2b + (b-a) + 2 \equiv 2 \mod 4$, a contradiction. Therefore, y < a. By Lemma 4, a < x + 1. Thus, for the cycle $C_{13} = v_1 v_2 \cdots v_y v_{x+1} v_x \cdots v_a v_1$, by (59), $l(C_{13}) = y + (x+1-a+1) \equiv (x-b) + x - a + 2 \equiv 2x - 2b + (b-a) + 2 \equiv 2 \mod 4$, a contradiction.

Subcase 2.2. $t \equiv 1 \mod 2$.

Then by (54), $\beta - \alpha \equiv b + 2(1-t) \equiv b \equiv 1 \mod 2$; and by (57), $\theta - \alpha \equiv a + b + 2(1-t) + 2 \equiv 2 \mod 4$. Hence, if either $a \leq z < b$ or $a \leq w < b$, then, by (50), either $z \equiv \beta + 2 \equiv b - t + 3$ or $w \equiv b - t + 3 \mod 4$. On the other hand, by (54) and (55), $\beta - \gamma \equiv (\beta - \alpha) - (\gamma - \alpha) \equiv b - a \equiv 2 \mod 4$. Thus, if either 1 < z < a or 1 < w < a, then, by (49), either $z \equiv \alpha + 2 \equiv t + 1$ or $w \equiv t + 1 \mod 4$. Hence, $z \equiv t + 1$ and $w \equiv b - t + 3 \mod 4$. For the cycle $C_{14} = v_1v_2 \cdots v_zv_tv_wv_{w+1} \cdots v_bv_1$, $l(C_{14}) = z + (b - w + 1) + 1 = t + 1 + b - (b - t + 3) + 2 \equiv 2t \equiv 2 \mod 4$, a contradiction.

Case 3. $b \equiv 0 \mod 4$.

Then, by (26), $a \equiv 1 \mod 2$.

Subcase 3.1. $t \equiv 0 \mod 2$.

Then, by (54), $\beta - \alpha \equiv b + 2(1-t) \equiv 2 \mod 4$; and by (57), $\theta - \alpha \equiv a + b + 2(1-t) + 2 \equiv a \mod 4 \equiv 1 \mod 2$. Hence, if either $a \leq z < b$ or $a \leq w < b$, then, by (53), either $z \equiv \theta + 2 \equiv a - t + 1$ or $w \equiv a - t + 1 \mod 4$. On the other hand, by (55), $\gamma - \alpha \equiv a + 2(1-t) \equiv a + 2 \mod 4 \equiv 1 \mod 2$. Therefore, if either 1 < z < a or 1 < w < a, then, by (51), either

 $z \equiv \gamma + 2 \equiv a - t + 3$ or $w \equiv a - t + 3 \mod 4$. Hence, $z \equiv a - t + 3 \mod 4$ with 1 < z < a - 1 and $w \equiv a - t + 1 \mod 4$ with $a \le w \le b$.

Consider v_{a-1} ; by Claim 1, there is a $v_x \in V(N)$, $1 \le x < a-2$ or $a < x \le b$, such that $v_{a-1}v_x \in E(N)$. By Lemma 3, $x \equiv a-1 \mod 2$.

If x > a, then the cycle $C_{15} = v_1 v_2 \cdots v_{a-1} v_x v_{x-1} \cdots v_a v_1$ is even. Therefore, $l(C_{15}) = x \equiv 0 \mod 4$. Thus, $C_{16} = v_z v_{z+1} \cdots v_a v_x v_{x+1} \cdots v_t v_z$, a cycle, satisfies $l(C_{16}) = (t-z+1) - (x-(a-1)-1) = t+a-z-x+1 \equiv t+a-(a-t+3)+1 \equiv 2t-2 \equiv 2 \mod 4$, a contradiction.

If x < a, then the cycle $C_{17} = v_1 v_2 \cdots v_x v_{a-1} v_a v_1$ is even. Hence, $l(C_{17}) = x + 2 \equiv 0 \mod 4$. Thus, $C_{18} = v_1 v_2 \cdots v_x v_{a-1} v_a \cdots v_w v_t v_{t-1} \cdots v_b v_1$, a cycle, satisfies $l(C_{18}) = (t - b + 1) + x + (w - (a - 1) + 1) = t + x + w - b - a + 3 \equiv t + 2 + (a - t + 1) - a + 3 \equiv 2 \mod 4$, a contradiction.

Subcase 3.2. $t \equiv 1 \mod 2$.

Then, by (57), $\theta - \alpha \equiv a + b + 2(1 - t) + 2 \equiv a + 2 \mod 4 \equiv 1 \mod 2$. Hence, if either $a \leq z < b$ or $a \leq w < b$, then, by (49) and (53), either $z \equiv t + 1$ or $a - t + 1 \mod 4$, or $w \equiv a - t + 1$ or $t + 1 \mod 4$. On the other hand, by (55), $\gamma - \alpha \equiv a + 2(1 - t) \equiv a \equiv 1 \mod 2$; and, by (55) and (56), $\eta - \gamma \equiv (\eta - \alpha) - (\gamma - \alpha) \equiv 2 \mod 4$. Thus, if either 1 < z < a or 1 < w < a, then, by (49), either $z \equiv \alpha + 2 \equiv t + 1$ or $w \equiv t + 1 \mod 4$. Hence, the two following subcases are left to discuss.

Subcase 3.2.1. $w \equiv t+1$ and $z \equiv a-t+1 \mod 4$ with $a \leq z < w \leq b-1$.

Then, for the cycle $C_{19} = v_1 v_a v_{a+1} \cdots v_z v_t v_w v_{w+1} \cdots v_b v_1$, $l(C_{19}) = (z-a+1)+(b-w+1)+2=z-a-w \equiv (a-t+1)-a-t-1 \equiv -2t \equiv 2 \mod 4$, a contradiction.

Subcase 3.2.2. $z \equiv t+1$ and $w \equiv a-t+1 \mod 4$ with $a \leq w \leq b-1$. If $z \leq a$, then, for the cycle $C_{20} = v_1 v_a v_{a-1} \cdots v_z v_t v_w v_{w+1} \cdots v_b v_1$, $l(C_{20}) = (a-z+1) + (b-w+1) + 2 = a-z-w \equiv a-(t+1)-(a-t+1) \equiv 2 \mod 4$, a contradiction. Therefore, z > a.

Consider v_{b-1} ; by Claim 1 there is a $v_x \in V(N)$, $1 \le x < b-2$, such that $v_{b-1}v_x \in E(N)$. By Lemma 3, $x \equiv b-1 \mod 2$.

If $w \le x$, then the cycle $C_{21} = v_1 v_a v_{a+1} \cdots v_x v_{b-1} v_b v_1$ is even; and, hence, $l(C_{21}) = x - a + 4 \equiv x - a \equiv 0 \mod 4$. Thus, for the cycle $C_{22} = v_1 v_2 \cdots v_x v_t v_w v_{w+1} \cdots v_x v_{b-1} v_b v_1$, $l(C_{22}) = z + (x - w + 1) + 3 = z + x - w \equiv 0$

 $(t+1) + a - (a-t+1) \equiv 2t \equiv 2 \mod 4$, a contradiction. Therefore, x < w. Thus, the cycle $C_{23} = v_1 v_a v_{a-1} \cdots v_x v_{b-1} v_b v_1$ (or $v_1 v_a v_{a+1} \cdots v_x v_{b-1} v_b v_1$) is even. Therefore, $l(C_{23}) = a - x + 4 \equiv a - x \equiv 0$ (or $x - a + 4 \equiv x - a \equiv 0$) mod 4. Hence, for the cycle $C_{24} = v_1 v_2 \cdots v_x v_{b-1} v_{b-2} \cdots v_w v_t v_{t-1} \cdots v_b v_1$, $l(C_{24}) = x + (t - w + 1) = a + t - (a - t + 1) + 1 \equiv 2t \equiv 2 \mod 4$, a contradiction.

This contradiction completes the proof of Theorem 2.

ACKNOWLEDGMENT We would like to thank Dr. G. T. Chen for helpful discussions and suggestions.

References

- [1] C. A. Barefoot, L. H. Clark, J. Douthett, R. C. Entringer, and M. R. Fellows, Cycles of length 0 modulo 3 in graphs, in Graph Theory, Combinatorics, and applications (Y. Alavi et al., eds.), John Wiley, New York, (1991) 87-101.
- [2] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Macmillan, London and Elsevier, New York, 1976.
- [3] B. Bollobás, Cycles modulo k, Bull. London Math. Soc. 9 (1977) 97-98.
- [4] X. T. Cai and W. E. Shreve, (1 mod 3)-cycles, Preprint.
- [5] G. T. Chen, N. Dean, and W. E. Shreve, Cycles of length 2 mod k, Congr. Numer. 93 (1993) 177-182.
- [6] G. T. Chen and A. Saito, Graphs with a cycle of length divisible by three, J. Combinat. Theory B 60 (1994) 277-292.
- [7] P. Erdős, Some recent problems and results in graph theory, Combinatorics and Number Theory, Congr. Numer. 15, (1976) 3-14.
- [8] N. Dean, A. Kaneko, K. Ota, and B. Toft, Cycles modulo 3, DIMACS Technical Report 91-32.
- [9] N. Dean, L. Lesniak, and A. Saito, Cycles of length 0 modulo 4 in Graphs, Discrete Math. 121 (1993) no 1-3, 37-49.
- [10] C. Thomassen, Graph decomposition with applications to subdivisions and path systems modulo k, J. Graph Theory 7 (1983) 261-271.