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Abstract
For two integers k(> 0) and s(> 0), a cycle of length [ is
called an (s mod k)-cycle if { = s mod k. In this paper, the
following conjecture of Chen, Dean, and Shreve [5] is proved:
Every 2-connected graph with at least six vertices and minimum
degree at least three contains a (2 mod 4)-cycle.

1 INTRODUCTION We use [2] for our notation and terminology.
Our graphs have no loops or multiple edges and §(G) denotes the minimum
degree of the graph G. For two integers k(> 0) and s(> 0), a cycle of
length [ is called an (s mod k)-cycle if { = s mod k. Suppose s > 0 and
k > 0 are integers such that s is even if k is even. Burr and Erdés [7)
proposed the problem: Is there a constant ¢(s, k) depending only on k and
s such that every graph G with 6(G) > c(s, k) contains an (s mod k)-cycle?
In 1977 Bollobas (3] provided an affirmative answer to this problem with
c(s, k) = gklem In 1983 Thomassen [10] proved that c(s, k) = 4s(k + 1)
and conjectured that every graph G with §(G) > k + 1 contains a (2s mod
k)-cycle, where s and k are two positive integers; that is, ¢(s,k) = k+1. In
the case k = 3, it was conjectured in [1] that every graph G with §(G) > 3
contains a (0 mod 3)-cycle. This conjecture was proved by Chen and Saito
[6]. Cai and Shreve [4] obtained the result that every graph G with §(G) > 4
contains a (1 mod 3)-cycle. Then, these two results were combined to imply
that Thomassen’s conjecture is true for £k = 3. Dean, Kaneko, Ota, and
Toft (8] proved that if G is a 2-connected graph with §(G)> 3, then G
contains an (s mod 3)-cycle with some exceptions, when s = 1 or 2. Dean,
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Lesniak, and Saito (9] proved that every graph G with §(G) > 3 contains a
(0 mod 4)-cycle which affirmed Thomassen’s conjecture for k = 4. In 1993,
Chen, Dean, and Shreve [5] proved that if G is a 2-connected graph with
at least six vertices and §(G) > 4, then G contains a (2 mod 4)-cycle and
conjectured that the conclusion was also true if §(G) > 3.

In this paper, we first obtain the following theorem.

Theorem 1. Every hamiltonian graph G of order p(G) > 6 with §(G) > 3
contains a (2 mod 4)-cycle.

Then, we affirm Chen, Dean and Shreve’s conjecture. .

Theorem 2. Every 2-connected graph G of order p(G) > 6 and §(G) > 3
contains a (2 mod 4)-cycle.

Note that neither a cycle C; of length I, where | # 2 mod 4, nor
G=NUM, where N = K4 2 M and |V(N)NV(M)| = 1, contain a (2
mod 4)-cycle. Thus, Theorem 2 is best possible.

2 NOTATION AND LEMMAS We denote the lengths of a cycle
C and path P by [(C) and I(P) respectively and the subgraph of G induced
by S C V(G) by (S). A cycle of length [ is called odd (or even) if l =1 (or
1 =0) mod 2.

Lemma 3. Let C = vjvy---vxv; be a cycle with £ = 0 mod 2 and
vv5,2 <i+1< j < k, a chord of C with j —i =1 mod 2. Then C + v;v;
contains a (2 mod 4)-cycle.

Proof. By way of contradiction, suppose that C' + v;v; contains no (2
mod 4)-cycle. Since C and the cycle v;viy; - - v;v; are even cycles, £k =0
and j—i+1 = 0 mod 4. Thus, G contains the cycle C* = vyva - - v;0vj41 -+ -
vy, and [(C*) = k—(j—i—1) = —(j—i+1-2) = 2 mod 4, a contradiction.
a

Lemma 4. Let C = vv3---v4v; be a cycle with £ = 1 mod 2 such that
veup and vivj, 1 £t < i < j < h <k, are two distinct chords of C with
j—i=h—t=0mod 2. Then C + {vv;,v.vs} contains a (2 mod 4)-cycle.

Proof. Consider the even cycle vjvs - - v;vvj41 -+ - vkv;. Lemma 4
follows by Lemma 3. O

Lemma 5. Let G consist of the cycle vjv; - - - v, and the two chords v;v;
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odd cycles, (z1,%;) has P(2,G,). Similarly, (u;,y1) has P(2,G3). Hence,
(zl)yl) has P(3! G) o

Lemma 9. Let G consist of the cycle C = v1vg + - - Uy — 1V Ui - - - v:v1 and
the three pairwise disjoint paths P = viujug - - - uxvy, Py = 22173 - - - 24,
and P = yy1y2- - ynv;, where 1 < i < w < j <t withw =0=1¢ and
k=1mod 2. If V(P{)NV(C) = {v1,vs}, V(P3) NV(C) = {v;} and
V(P$)NV(C) = {v;}, Then (z,y) has P(3,G).

Proof. The following four v;v;-paths may be found in G.

Py = vv541 -+ - Uy VUug1 -+ Y5,

Py =905 1 - - U182 - ¢ - UkV V] * * * V)

P3 = vv;_1 - - 0100 - - -5, and

Py = 0041+ Uy UgUg—1 - - U V1 VeV - * * Vg,

with

UP)=j—1,

(PR)=G-1)+(k+D)+(-w+l)—1=i+j+k—w,

(P)=i+(t—j)=i—-35+1,and

(P)=w—-i)+k+2+(t-F)=—(+i)+w+k+t+2

Therefore,

{P)—U(P)=2i+k—w=1mod 2,

I(P3) —U(P) =2(i - j) + t =0 mod 2,

I(Py) - U(P))=-2j+w+k+t+2=1mod 2, and

UP2)—I(Py) =2(i+3j)—t—2w—2=2(i —j) +t+2 mod 4, since
w=t=0,and k=1mod 2.

If 2(i — j) + t = 2 mod 4, then I(P;) — I(P,) = 2 mod 4. Hence, it
follows using P, Ps, and Py, that (v;,v;) has P(3,G).

If 2(i — j) + t = 0 mod 4, then I(P;) — {(P;) = 2 mod 4. Thus, using
Py, P, and P4, we conclude that (v;,v;) has P(3,G).

Hence, (z,y) has P(3,G). O
Lemma 10. Let G consist of an edge v;v; and the cycle C = vyvy - - - vy,
where 1<i<z<y<j<twithl=t, and j =7 mod 2, and either i # 1
or j #t. If G contains no (2 mod 4)-cycle, then (v, v,) has P(3,G).

Proof. Consider the cycle C; and three zy-paths P, P;, and P;, where

C1 = v1v2- - V00541 - - - VeV,

Py = vzv541 - * Uy,
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Py = vpup_y - 00051 - - - vy, and
P3 = VgVUgal ** VN VVp—-1 """ Vy.

Then,
{(C1)=i+(t—-j+1)=i—j+t+1=0mod 4,
l(P1)=y—$,

UPR)=(z—d)+(-y)+1=(G-9)+(z-y)+1,and

(P)=z+(t-y)=z—y+t.

Thus,

(PR)-UP)=j—-i+2(z-y)+1=t+2+2(z—y) mod 4, and
I(P3) - U(P) =t +2(z —y). Therefore, [(P2) — I(P;) = 2 mod 4. Since
t=1mod 2, I(P;) - I(P) = I(Ps) — I(P1) = 1 mod 2. Hence, (v;,v,) has
P(3,G).0

Lemma 11. Let G consist of the four distinct edges vy, viv;, vzus, vywy
and the three pairwise disjoint paths v1ve...v;, u1us - - - Ug, and wyws - - wy,
withl<z<i<j<y<tandt=1andi=jmod2 IfG contains no (2
mod 4)-cycles, and z = y mod 2, then (u,,ws) has P(3,G).

Proof. Consider the even cycle C and the three v v,-paths Py, P>, and
P;, where

C= V1V2...V{V;jVj41...VtV1,

Pl = VUgVUzyg1...Vy,

Py = v,0,41...90jvj41...vy, and

P3 = 02Vz_1...01 0V 1...0y.

Then,
(C)=i+(t—-j+1)=i—j+t+1=0mod 4,
l(P1)=y—1',

UWP)=(G-z+1)+(y—-j)=({-4)+(y—=2)+1,and

I(PB)=z+(t-y)=z—y+t.

Hence, I(Py)—U(P,) = (i—j)+1 = —tand [(P3)~l(P) = 2(z—y)+t =1t
mod 4. Since ¢t = 1 mod 2, (vz,vy) has P(3,G). Therefore, (u,,ws) has
P(3,G).0

Lemma 12. Let G consist of the three edges v, v, v;v;, and vyv, and the
path vjup---vp, where 1 i< j<a < bwithi=jand a # b mod 2. If
1<z <y <awithz=y mod 2 and G contains no (2 mod 4)-cycles, then
(vz,vy) has P(3,G).
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Proof. Since a # b mod 2, either a =1, or b= 1 mod 2.

If i < z < y < j, then, by Lemma 10, (v;,vy) has P(3,G).

If either 1 <z <y <iorj<z<y<a, then, by Lemma 8, (vz,vy)
has P(3,G).

If1<z<iand j <y< a, then, by Lemma 11, (vz,vy) has P(3,G).

Ifeitheri<z<j<y<aorl<z<ic<y<j then, by Lemma 8,
(vz,vy) has P(3,G).

Hence the lemma follows. O

Lemma 13. Let G consist of the edge v;v,, and the cycle vjvs...vxv;, where
1<t < w < k. If G contains an odd cycle, then (v, vy) has P(2,G) for
every pair of distinct vertices v, and vy in G.

Proof. If £ =1 mod 2, then the result is trivial. Suppose that £ =0
mod 2. We assume, without loss of generality, that z = 1. Note that the
cycle C = v1vg - - - VgV U1 + - U0y is 0dd. If v, € V(C), then the result is
again trivial. If v, ¢ V(C), then the two paths vyvy41 -+ VU1 -+ Vk¥1
and vyvUy41 - VuVsUe—1 - - - U1 have different lengths mod 2. Hence, (vz,vy)
has P(2,G). The proof is complete. O

Lemma 14 (Two-body Lemma). Let G consist of two graphs M and N
and two disjoint paths, one a uv-path P, and the other an zy-path P, such
that the two paths both connect M and N, where u,z € V(N), and

(1) VIM)NV(N) = {u}, if {(P) =0, and I(P2) # 0,

(2) VIM)NV(N) = {z}, if I(P,) # 0, and I(P,) =0,

(3) V(IMYNV(N) = {z,u}, if (P,) =0, and {(P2) =0, and

(4) VIM)NV(N)=0,if I(P) #0, and I(P,) # 0.
If (u,z) has P(3,N) and (v,y) has P(2, M), then G contains a (2 mod
4)-cycle.

Proof. Immediate. O

3 PROOF OF THEOREM 1 Assume, to the contrary, that there is
a hamiltonian graph G with p(G) > 6, and §(G) > 3, such that G contains
no (2 mod 4)-cycle. First, we orient some hamiltonian cycle C of G. Then,
for each u € V(C), label the V(C) in the direction of the orientation as
U = u1,U,", Up—1,Up, Where p = p(G). Let a(u) =max{i : 2<i<p
and vu; € E(G)}. Finally, choose v € V(G) such that a(v) is as large
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as possible. Let a(v) = a, and, then, set C = vjvs -+ - Vg—1VaVas1 - - - Up¥1,
where v = v;. Since p(G) > 6 and §(G) > 3, it follows that @ > 4 and there
exists some w € {2,3,---,p — 2} such that v,v, € E(G).

Consider the cycle C) = vpvy,Vy41 -+ vp. Now, I(C)) =p—w+1£ 2
mod 4. Hence,
wZp—1mod 4. (1)

Consider the cycle Cy = v,v1v2 -+ Uy Vp. Now, [(C3) = w4 1 # 2 mod 4.
Hence,
w# 1 mod 4. (2)

If 1 < w < a, then, for the cycle C3 = vyvp_1 -+ UV V2 - - - Uyp, [(C3) =
w+ (p—a+1)# 2 mod 4. Hence,

w#a—p+1mod 4. 3)

Finally, consider the cycle Cyq = vpv1vava—1 - - Uy Vp. Now, [(Cy) = a —w +
3 # 2 mod 4. Hence,
w#a+1mod 4. ' (4)

If a < w < p—2, then, for the cycle Cs = vuv1Uaa41 - VyUp, U(C5) =
w—a+ 3# 2 mod 4. Hence,

w#a—1mod 4. (5)

Since G contains no (2 mod 4)-cycle, a # p,a Z 2, and p # 2 mod 4.
We have three cases to discuss.

Case 1. a=1=pmod 2.
Then, p—a =2 mod 4.

Subcase 1.1. a<w<p-2.
Then, by (5), w # p+1 mod 4. By (1), w Z 0 and w # 2 mod 4.
Again, by (2),
w = 3 mod 4. (6)

Consider vz; there is a vz, 3 < z < p, such that v,v2 € E(G), since a > 4
and §(G) > 3.

If z # 2 mod 2, then, since a = 1 mod 2, z < a by the maximality of a.
By Lemma 5, G contains a (2 mod 4)-cycle, a contradiction. Thus, £ = 2
mod 2. Hence, z = a + 1 by Lemma 4 and the maximality of a.
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Consider vs; there is a vy, y =1 or 4 < y < p, such that v,v3 € E(G).

If y = 3 mod 2, then, by Lemma 4, y = a + 2. Thus, the cycle

V1U2V3Va42Va+1Va V1 1S & (2 mod 4)-cycle, a contradiction. Therefore, y # 3

mod 2. Hence, the cycle Cy = v3v, - vyv3 is even and {(Cy) =y —-2=0
mod 4. Thus,

¥y =2 mod 4. )]

Hence, since a = 1 mod 2, and a is maximal,

< a+1l if a=1 mod 4, and
"]l a-1if a=3 mod 4,

and, by (6),

a+2 if a=1 mod 4, and
w>
- a if a=3 mod 4.

Therefore, y < w. By Lemma 5, G contains a (2 mod 4)-cycle, implying
a contradiction.

Subcase 1.2. 1 <w<a.
Then, by (3), w# a —p+ 1 =3 mod 4. Again by (1) and (2),

w=p+1mod 4 (8)

Since p — a =0 and w = 0 mod 2, it follows that w > 4 by the maximality
of a.

Consider vo; there is a v;, 3 < z < a + 1, such that v;v2 € E(G).

If z = 2 mod 2, then, by Lemma 4, £ = a + 1. Hence, for the cycle
C1 = VyVut1 ** * VaV1V2Vart1 * * * VpUu, bY (8), {C1) =p—w+3=2mod 4,
a contradiction. Thus, z # 2 mod 2. Since the cycle C; = vov3...v,v5 is
even, {(C3) =z — 1 =0 mod 4 and, therefore, z > 5 and

z=1. (9)

If z > w, then, for the cycle C3 = vav3...v,VpVp—1...vzV2, by (8) and (9),
(C)=(w-2+1)+(p—z+1l)=w+p—z=p+1+p—1=2p=2mod
4, a contradiction. Therefore, w > z.
Consider vs3; thereisa vy, y = 1 or4 < y < a+2, such that vyv3 € E(G).
If y = 3 mod 2, then by Lemma 4, y = a + 2. Thus, the length of the
cycle v1V,Va41Ve+2v3U2v; is 6, a contradiction. Therefore, y # 3 mod 2.
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Hence,
y=2mod 4, and z < y, (10)

by Lemma 3, and, therefore, y # a.

If y > a, then for the cycle Cy = vpV1VaVa_1 - + - V3UyVy41 + +  Up, by (10),
(Cd)=1+(a—-3+1)+(p—y+1)=a+p-y=(p—a)+2a—y=2a=2
mod 4, a contradiction. Thus, ¥ < a.

Again, consider vy; there isa vy, 1 £ f < 3 or 5 < f < p, such that
v4vy € E(G).

If f =4 mod 2, then by Lemma 4 and the assumption of no (2 mod 4)-
cyclesin G, f = a+3. Thus, cycle Cs = 30201 V,Va41Va+2Va+3V4Vs « * * Uy V3,
by (10), satisfies [(C5) = y+4 = 2 mod 4, a contradiction. Therefore, f # 4
mod 2.

If f > 5, then

f=3mod 4. (11)
By Lemma 3, f > z. Thus, for the cycle Cs = vovzv4vsvs_1...v2v9, by (9)
and (11), {(Cs) = (f—z+1)+3 = (3—1+1)+3 = 2 mod 4, a contradiction.

If f < 3, then f = 1. Thus, for the cycle C7 = v1v2v;v41 - - - VyV3V4Y;,
by (10), {(C7) = (y—x+1)+4 = (2—1+1)+4 =2 mod 4, a contradiction.

Case 2. p=0mod 2.
Then p = 0 mod 4. By Lemma 3, a =1 mod 2. By (1), w # 3 mod 4.
Subcase 2.1. a<w<p-—2.

By (2) and (5), w=a + 1 mod 4.

Consider vs; there is a v, 3 < z < a + 1, such that vyv, € E(G). By
Lemma 3, z = 2 mod 2.

If £ < a, then by Lemma 4, G contains a (2 mod 4)-cycle, a contradic-
tion. Therefore, z =a + 1.

Again, consider vg; there is a vy, y = 1 or 4 < y < a + 2, such that
vyv3 € E(G). By Lemma 3, y = 3 mod 2.

If y = a + 2, then 6 is the length of the cycle v1vU3Us2Va+1%.01, &
contradiction. Therefore, 1 < y < a. Thus, G contains a (2 mod 4)-cycle
by Lemma 4, a contradiction.

Subcase 2.2. 1 < w < a.

By (2) and (5),

w=a+3 mod 4. -(12)
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Then, p > 8, since p > 6 and p = 0 mod 4.

Subcase 2.2.1. a+ 1 < p.

Since w = a + 3 mod 4, w > 4 by the maximality of a.

Consider vs; there is a v;, z = 1 or 4 < z < a + 2, such that v3v, €
E(G). By Lemma 3, z = 3 mod 2.

If £ > a, then z = a + 2. Thus, the cycle v\ Vo3V 42Ua 41V V), has
length 6, a contradiction.

If w < z < a, then, since the cycle C) = vjvv30, Uz 41 + - - YoV is even,
[(C1) =3+ (a—z+1) =0 mod 4. Therefore,

z =a mod 4. (13)

Thus, for the cycle Ca = v3v4 - + - Uy UpUp—1 * * Uz V3, using (12) and (13), one
obtains I(Co) = (w—3+1)+(p—z+1l)=w-zr-1=a+3-a-1=2
mod 4, a contradiction. Therefore, z < w.

Consider v,_y; there a vy, 1 <y < p—2, such that v,v,_, € E(G). By
Lemma 3, y=p— 1 mod 2.

If y < w, then y < a and the cycle C3 = vyvy41 - - - Vo UpUp-17y is even.
Thus, I(C3) =w —y+ 1+ 2 = 0 mod 4, which implies that

y =w+ 3 mod 4. (14)

Hence, for the cycle Cy = viv2 -+ - vyVUp_1¥p—2- - Va1, by (12) and (14),
(C)=y+((p-1)—a+l)=y-a=w+3-a=a+6—-a=2mod 4,a
contradiction.

If y > w, then, since the cycle Cs = VUil ' - VyVUp—1vpUw IS even,
I(Cs) =y —w+ 3 =0mod 4, and, hence, by (12),

y—a=0mod 4. (15)

Thus, for the cycle Cs = vjvaU3UzUz41 * * * Uy UpUp—1VyUy41 - - - U1 (oT for
the cycle v1v2U3UzUr 41 * * * VyUpVp—1VyUy—1 - - - Va¥1), by (12), (13), and (15),
(Ce)=3+(w—z+1)+2+|y—a|l+l=w—-z+3=a+3—-a+3=2
mod 4, a contradiction.

Subcase 2.2.2. a+ 1 =p.

Then, a = p—1 > 7. Consider v3; thereisa vz, z =1lor4 <z < p,
such that v;vs € E(G). By Lemma 3, z = 3 mod 2. Therefore, z # p.
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If z = 1, then for the cycle C7 = v1vp_1Vp—z ---v3v, (C7) =p—2=2
mod 4, a contradiction. Thus, 4 < z < a. Since, for the cycle C3 =

V1VaU3UzVz—1 -+ + Va1, U(Cs) = (a — z + 1) + 3 = 0 mod 4, it follows that
z=a=p-—1=3mod4. (16)

Thus, 2z > 7.

Consider vs; there is a vy, 1 <y <4 or 6 < y < p, such that v,v5 €
E(G). By Lemma 3, y = 5 mod 2. Thus, y # p. By Lemma 4, y = 1 or
r<y<La.

If y = 1, then, for the cycle Cy = v1v5vs - - - vz V3201, by (16), I(Co) =
z—1=3-1=2mod 4, a contradiction.

If z < y < a, then, since the cycle Cip = viva -« - UsUyUyq1 -+ - Va1 iS
even, [(Cio) =a—y+1+5=0 mod 4. Hence,

y=a+2=1mod 4. amn

Thus, for the cycle Cy; = v3v4vsvyVy_1 - - - vz U3, by (16) and (17), I(C11) =
3+(y—z+1)=3+(1-3+1)=2mod 4, a contradiction.

Case 3. a =0 mod 2.
Then, a = 0 mod 4 and, by Lemma 3, p=1 mod 2.
Subcase 3.1. a<w<p-—2.

By (5), w #Z 3 mod 4. Again, by (1) and (2), w =p+ 1 mod 4.

Consider vs; there is a vz, £ = 1 or 4 < = < a + 2, such that v3v; €
E(G).

If z # 3 mod 2, then > a by Lemma 3. T}?erefore, z = a + 2. Thus,
the length of the cycle v1v,Vg4+1va+2v3v201 is 6, a contradiction. Therefore,
z = 3 mod 2.

If z < w, then, by Lemma 5, G contains a (2 mod 4)-cycle, which
contradicts the initial assumption.

If £ > w, then z = a + 1 and w = a. Hence, 6 is the length of the cycle
V1V203Va+1VaVpV1, & contradiction.

Subcase 3.2. 1 <w<a.

Then, by (1) and (2), either w=3,orw=p+ 1 mod 4.
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Subcase 3.2.1.
w = 3 mod 4. (18)

Subcase 3.2.1.1. a + 1 #p.

Then, p > a + 3, since p =1 mod 2.

Consider v,42; thereis av;, 3 <z <a+1ora+3 <z < p, such that
UzVe42 € E(G).

If z =a+2 mod 2, then, z < w by Lemma 4. Therefore, since the
cycle C) = v1v2 - - UzVa42Va43 - - - Up¥y S even,

{(C1)=z+(p—(ea+2)+1) =0mod4. (19)

Thus, for the cycle C2 = v1v2 - - VzVa42Va43 * * * UpUn Vw41 *  * Vo V1, bY (18)
and (19),{(Co)=z+(a—w+1)+(p—(e+2)+1)=z+(p—(a+2)+
)+(a—w+1)=0+(0-3+1) =2 mod 4, a contradiction.

If £ # a+2 mod 2, then = > a + 2, clearly.

Consider v,; there is a vy, 3 < y < a + 2, such that vyv, € E(G).

If y = 2 mod 2, then, by Lemma 5, G contains a (2 mod 4)-cycle,
contradicting the initial assumption.

If y # 2 mod 2, then y = a + 1 by Lemma 3. Thus, for the cycle
C3 = 1U2Va41Va * - VuUp¥1, by (18), (C3) =2+1+4+ ((a+1)-w+1) =
1—-w=1-3= 2 mod 4, a contradiction.

Subcase 3.2.1.2. a + 1 =p.
Subcase 3.2.1.2.1. w = 3.

Now, a > 8. We consider v4. Thereisa vz, 1 <z <3o0or5 < z < p,
such that v,v4 € E(G).

If £ #£ 4 mod 2, then £ = p by Lemma 3. Hence, 6 is the length of the
cycle v1v2u3v4U,Yav), a contradiction. Thus z = 4 mod 2. By Lemma 4,
T=2.

Consider vg; thereis a vy, 1 <y < 5 or 7 < y < p, such that vyvs €
E(G).

If y Z 6 mod 2, then, by Lemma 3, y = a + 1 = p. Again, by Lemma
5, G contains a (2 mod 4)-cycle, a contradiction.

If y = 6 mod 2, then, by Lemma 4, G also contains a (2 mod 4)-cycle,
a contradiction.
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Subcase 3.2.1.2.2. w # 3.
Therefore,
w>T. (20)

Consider vy; there is a vz, 1 <z <3 or 5 < z < p, such that v4v, € E(G).
If z # 4 mod 2, then z = p by Lemma 3. Thus, 6 is the length of the
cycle v1v9v3v4VpV, 1, a contradiction. Therefore, z = 4 mod 2.
If z > w, then, since the cycle C; = v1v203v4vzVz41 « - - V) is even,
{{(C1)=(p—z+1)+4=0mod 4. Thus,

z=p+1=2mod 4, (21)

which implies < a. Hence, for the cycle Co = v1v9v3v4V5 V51 + - - V,0pVy,
by (18) and (21), /(C;) =4+ (z—w+1)+2=(2-3+1)+2 = 2 mod 4,
a contradiction. Therefore, z < w.

If 2 > 4, then, for v, there is a vy, 3 < y < p, such that vzv, € E(G).

If y £ 2 mod 2, then y = p by Lemma 3. Again, by Lemma 6, G
contains a (2 mod 4)-cycle, a contradiction.

If y =2 mod 2, then y = 4 by Lemma 4. Again, by Lemma 6, G
contains a (2 mod 4)-cycle, a contradiction.

If x < 4, then z = 2.

Consider vg; by (20) there is a v;, 1 <3 <5 or 7 < z < p, such that
v, € E(G).

If z # 6 mod 2, then, by Lemma 3, z = p. By Lemma 5, G contains a
(2 mod 4)-cycle, a contradiction. Thus z =6 mod 2.

If 2 > 6, then z < a. By Lemma 6, G contains a (2 mod 4)-cycle, a
contradiction.

If z < 6, then, by Lemma 4, z = 4. Again, by Lemma 6, G contains a
(2 mod 4)-cycle, a contradiction.

Subcase 3.2.2.
w=p+1mod 4. (22)

Subcase 3.2.2.1. a4 1 < p.

Then, the maximality of a implies that w > 2. Consider vy; there is a
vz, 3 <z < a+ 1, such that vov, € E(G).

If x # 2 mod 2, then z = a+ 1 by Lemma 3. Hence, for the cycle
C1 = vau3 - - VyyVpUp_1 * * - Va 412, by (22), I(C1) = w—14+(p—(a+1)+1) =
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w+p—a—1=p+1+p—0-1=2p=2mod 4, a contradiction. Thus,
z = 2 mod 2. Therefore, ¢ < a. By Lemma 5, w < z. Since the cycle
Cz = V1VaUzVUz41 - - - Upv) is even, [(C2) = 24+ (p—z + 1) = 0 mod 4. Hence,

z=p+ 3 mod 4. (23)

Consider v,_1; as in the symmetric case of vs, there is a v, € V(G) such
that vyv,_; € V(G) and

y=p—1mod 2, and y =2 mod 4. (24)

If z < y, then, for the cycle C3 = vav3 « - - Uy UpUp—_1VyVy—1 - - - Uz V2, by (22),
(23), and (24),l(C3) = (w-1)+(y—z+1)+2 =wH+y—-z+2 =
p+1+2—(p+3)+2=2mod 4, a contradiction.

If y < z, then, for the cycle Cy = vov3 - - - VyVp_1Vp_2 - - - Uz V2, by (24),
(25), and (26), [(Cy) = (y -2+ 1)+ ((p—-1)—-z+1)=y+p-z—-1=
2+p—(p+3)—1=2mod 4, a contradiction.

Subcase 3.2.2.2. a+1=1p.
Then a > 8.
Subcase 3.2.2.2.1. w<p-T7.

Consider vp—4; thereis a vz, 1 <z < p—>5or p—3 < z < p, such that
vp_q¥z € E(G). By Lemma 3, z =p — 4 mod 2.

If £ > p — 4, then, since the cycle Cs = vjv3 - - Up_qVUaVzy1 -+ - Up¥1 8
even, [(Cs)=(p—4)+(p—z+1) =0 mod 4. Thus, z=2p+1 =3 mod
4 and, therefore, z =a — 1.

For vy, thereisa vy, 1l <y <p—-Torp—-5<y<p, such that
vyvp— € E(G). By Lemma 3, y = p — 6 mod 2. Again, by Lemma 6,
y > p — 6. Then, since the cycle Cg = v1v2 - - Up_gUyVUy41 -+ Yp¥1 is even,
I(Cé) =p—6+(p—y+1) =0mod 4. Thus, y =2p—1 =1 mod 4. And, by
Lemma 4, y = p— 4. By Lemma 6, G contains a (2 mod 4)-cycle, providing
another contradiction.

If z < p— 4, then, consider v,_s; thereisa vy, f =por1 < f <p-3,
such that vfup—2 € E(G). By Lemma 3, f = p — 2 mod 2. Again, by
Lemmas 4 and 6, eitherz < f <p—4or f=p.
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If f = p, then, by Lemma 6, z < w. Since the cycle C7 = vyv2 - - - Uz Vp—4g
Up_3 - Upv; is even, it follows that {(C7) = = + 5 = 0 mod 4. Therefore,

z =3 mod 4. (25)

Thus, for the cycle Cg = v)vVa - - VzUp_qUp_5 - - - UV UpUp_2vay, by (22) and
(25), (Cs) =z+((p—4)—w+1)+3=z+p—-w=3+p—(p+1)=2
mod 4, a contradiction.

If z < f < p—4, then, since the cycles Co = v1vs - - - UzUp—_qVUp_3 - - - Up¥1
and Cy = v1v3 * - - UgUp_oUp_1pv) are even, I(Cq) = +5 = 0 and [(Cyo) =
f + 3 =0 mod 4. Therefore, z = 3 and f = 1 mod 4. Thus, for the cycle
Cl1 = VaVUzi1 - VfUp_oUp_3Up_a¥s, (C11) = (f—2z+1)+3=f-z =
1 — 3 =2 mod 4, a contradiction.

Subcase 3.2.2.2.2. w>p-1T.

In this case, w > a+1—7 > 8 — 6 = 2. On the other hand, by (22),
w=p+1=a+1+1=2 mod 4. Hence, w > 6.

Consider vq; thereis a vz, 1 <z <3 or 5 < x < p, such that vyvg €
E(G). By Lemma 3, x = 4 mod 2. Again, by Lemma 5, z > w.

Consider vp; there is a vy, 3 < y < p, such that vy, € E(G). By
Lemma 3, y = 2 mod 2. Again, by Lemmas 4 and 6, 4 < y < z. Since the
two cycles Ci2 = 000y Uy41 - - Upv1 and Ciz = v1V203V4UzVz+1VpY1 BTE
even, [(C12) =2+ (p—y+1)=0and {(Ci3) =4+ (p—z+1) =0 mod
4. Therefore, y = p+ 3 and z = p + 1 mod 4. Thus, for the cycle Cyy =
VgU3UgUzUz—1 ** - Uyt2, I(Cly) =3+ (z—y+1)=z-y=p+1-(p+3)=2
mod 4, a contradiction.

A contradiction is obtained in every case. Therefore, Theorem 1 is true.
(m]

4 PROOF OF THEOREM 2 To the contrary, assume that there is
a 2-connected graph G with p(G) > 6 and §(G) > 3 such that G contains
no (2 mod 4)-cycle. Let p be the set of longest paths in G. Note, for
P =vvy---v, € p, N(v;) € V(P). The following definition is crucial to
this proof. Define

b(P) = max {i:v; € N(v)}

Then, choose P € p, say P = wyvy--- v, such that b(P) is as large as
possible. Let &(P) = b and N = ({v1,v2,---,¥s}}. Since d(v;) > 3, there is
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an a € {3,4,---,t} such that vyv, € E(G). Clearly,
a#Z2 b#2and a#bmod 4, (26)

since, if not, a = b mod 4. Then, the cycle v,Vs41 - - V1Y, is & (2 mod
4)-cycle in G, contradicting the assumption.

By the maximality of b(P) and the length of P, Claim 1 follows imme-
diately.

Claim 1. If v € V(N) and N contains a vvy-hamiltonian path, then
Ng(v) CV(N). D

Claim 2. If 1 <i<a < j <b, then (v;,v;) has P(3, N).

Proof. By way of contradiction, assume that (v;,v;) does not have
P(3,N). The four following paths are distinct v;v;-paths in N:

Py = viviyy -+ v,

Py =vvi_y--- V1VaeVa+1 * * * V5,

P3 = ViV * - V1 VU1 * - - Vg, and

Py = w041 -+ - Ve V1 VpVb—1 * - * V5,

with lengths:

UP)=7—1,

UP)=i+(j—a)=i+j—a,

I(PB)=i+((b—-j)=i—j+b, and

(P)=(@—i+1)+(b-j+1)=(a+d) —(i+7)+2

It follows that,

(P)-Il(P)=2i—a, (27)
UPs) = U(Py) = 2(i — j) + b, (28)
(Py)—UP)=a+b-25+2, (29)
I(P3) —l(P)=a+b-2j, (30)

and
I(P)-UPs)=a—-2i+2 (31)

By (26), there are three cases to be discussed.
Case 1. a=1=bmod 2.

Then, by (26), a+b = 0 mod 4; and by (27), [(P2) - l(P)) =2i—a=1
mod 2.
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If j =1 mod 2, then, by (30), {(P3) —l(P:) =a+b—-2j=2mod 4. It
follows using P;, P, and P; that (v;,v;) has P(3, N), a contradiction.

If j = 0 mod 2, then, by (29), I(Ps) —l(P1)) =a+b—2j+2=2mod
4. Hence (v;,v;) has P(3, N) with P;, P, and P, a contradiction.

Case 2. a = 0 mod 4.

Then, by (26), b = 1 mod 2; and by (28), [(Ps)—I(P) =2(i—j)+b=1
mod 2.

If i = 0 mod 2, then, by (31), {(Py) — {(P3) =a—2i+2 =2 mod 4.
Hence, (v;,v;) has P(3,N) with P, Ps, and P4, a contradiction.

If i = 1 mod 2, then by (27), I{(P2) — {(P1) = 2 —a = 2 mod 4. Hence,
(vi,v;) has P(3, N) with P,, P,, and P3, a contradiction.

Case 3. b =0 mod 4.
Then, by (26), a =1 mod 2.

Subcase 8.1. i —j =1 mod 2.
Then, I(P;)—I(P,) = 2i—a =1mod 2, and l(P3)—I(P,) = 2(i—j)+b=
2 mod 4. Hence (v;,v;) has P(3, N) with P, P, and P, a contradiction.

Subcase 3.2. i — j =0 mod 2.

Consider v,; since va—1¥a—2***V1UgVa+41 *** Up IS & Vg—1vp-hamiltonian
path in N and d(vs—;) > 3, by Claim 1, thereis av; € V(N),z <a—2o0r
z > a+ 1, such that v, vz € E(N). By Lemma 3, z =a — 1 mod 2.

If z < a — 2, then, since the two odd cycles v1¥4ve+1 - Vsv1 and
Va—-1VzVz 41
.--v,_; are connected by the path vivz---v,, by Lemma 8, (v;,v;) has
P(3,N), a contradiction. Therefore, z>a+1.

Subcase 3.2.1. b>a+ 1.

Consider vy_;; by Claim 1, there is a vy € V(N), y > b — 2, such that
vp—1vy € E(N). By Lemma 3, y =b—1=1 mod 2.

If y > a, then, since the odd cycles vivp - - v,v1 and vyvy41 - Vo-17y
are connected by the path v,v,41 - - - vy, by Lemma 8, (v;,v;) has P(3, N),
a contradiction. Therefore, y < a.

If i < y, then the the two odd cycles viva - - - vgv; and vyvy41 -+ - Vo-17y
have an odd number of common vertices vy,'ug.,.l, s g sincey=a=1
mod 2. By Lemma 9, (v;,v;) has P(3,N), a contradiction.
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If ¢ > y, then the two odd cycles v vy -+ -v,v1 and vyvz -+ - VyV_1 U0
have an odd number of common vertices vy, v, -, vy since y = 1 mod 2.
Thus, by Lemma 9, (v;,v;) has P(3, N), a contradiction. Therefore, i = y.

Similarly, by Lemma 9, since v1¥aVa+1 - - - vsv1 and vyvyy1 - - - Up_1Vy are
two odd cycles with an odd number of common vertices, v, Va41,° -, Ub—1,
it follows that j < b—1.

If z = b, then, for the even cycle Cy = VpVa—1Va=2 * - VyUp—1W, I(C1) =
2+ (a—1—y)+1=0mod 4. Therefore,

y=a+2mod 4. (32)

Thus, for the cycle C = vivg + - - UyUp—1Up—2 - - - Va1, by (32), I(Cs) =y +
(b—1)—a+1=y—a=2mod 4, which contradicts the hypothesis that
G contains no (2 mod 4)-cycles. Therefore, z < b— 1.

Ifz < j < b-—1, then, since ¢ = j mod 2 and the two cycles
UyVy41 *** Vp—1Vy 8Nd Ug_1Vg *  * Uz¥e—1 are odd, by Lemma 11, (v;,v;) has
P(3,N), a contradiction.

Let 7 < z. Then, v1v2:--vyUp_10pv1 and Va1V, - - - UzUg—1 are two
odd, cycles, and by Lemma 8, (v;,v;) has P(3, N), a contradiction.

Subcase 3.2.2. b=a+ 1.

Then, b=j.

If b = 4, then N = K, and i = 2. Therefore, (vi,v;) has P(3,N), a
contradiction.

If b#4, then b> 8.

Consider v,_5; by Claim 1, thereisa v, € V(N),z<a—3or z > a~1,
such that v,_ov, € E(N). By Lemma 3, z = a—2 mod 2. Since the two odd
cycles v, U 4] - - - Ug—2U; (OF Ug—2Va—1UaVa—2) and v, vy v, are connected by
one of the paths vjv - - - v; OF Ya_2¥e_1%a (Or ¥a), by Lemma 8, (v;, v;) has
P(3,N), a contradiction.

This contradiction completes the proof of Claim 2. O

Claim 3. If 1 < i < j < a, then (v;,v;) has P(3, N).

Proof. By contradiction, assume that (v;,v;) does not have P(3, N).
The following three paths are distinct v;v;-paths in N:

P, = vvi4y - Yy,

P2 = VUi * - - V1VaVq—1" " V5, and
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Py =vv;_; - vyvpvp—1 - * Yy,

with lengths:
(P)=3—14,
I(P)=a—j+1i,and
(P)=b—j+i.
Thus,
I(P) —UP) =a+2(-3), (33)
and
U(Ps) — U(P1) = b+ 2(i — j). (34)

If a =1 = b mod 2, then the two cycles v vy ---v,v; and vivy - - - vpv; are
odd. Therefore, by Lemma 10, (v;,v;) has P(3, N), a contradiction.
By (26), we have the two following cases to discuss.

Case 1. b=0 mod 4.

Then, by (26), a =1 mod 2.

If i # j mod 2, then, by (33), I(P2) —I(P;) = a+2(i —j) =1 mod
2; and by (34), {(Ps) — I(P1) = b+ 2(i — j) = 2 mod 4. Thus, (v;,v;) has
P(3,N) with Py, P,, and P, a contradiction. Therefore,

i=jmod 2, (35)
and, therefore,
(P) —l(P)=a+2(i—j)=1mod 2. (36)

Consider v,—1; by Claim 1, thereisav, € V(N),1 <z <a—2o0ra <z <b,
such that v,_jv; € E(N). Thus, by Lemma 3,

z=a—1=0mod 2. (37)

Subcase 1.1. j # a.

Subcase 1.1.1. z < a— 2.
Then, by (35) and (37), the cycle C1 = vyv; - - - v;v;v,v; is even. Thus,

[(Cy) =z +2=0mod 4. (38)

Subcase 1.1.1.1. i < z.
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If j # a — 1, then, by (35), the two odd cycles vzvz41 - Va—1v, and
MYq
Vg1 -+ - Upvy are connected by the path v,_;v,. By Lemma 8, (v;,v;) has
P(3,N), a contradiction.

If j = a — 1, then, by (35), ¢ = 0 mod 2, and, for a v;v;-path Py =
ViVip1 - VgV, L(Py) = z — i+ 1. Thus, by (38), I(P) - I(P;) = (i +a—
N=(z—-i+1)=2i—z+a—1—-j=2i—z=—2=2mod 4. Hence, by
(36), (vi,v;) has P(3,N) with P,, P,, and P4, a contradiction.

Subcase 1.1.1.2. i > z.

Then, for the v;v;-path Ps = vv;_1 -+ UzVa-1Ya-2" -V}, I(Ps) = a —
j+z —i. Threfore, by (38), I(Ps) = l(P) =(a—j+i—z)—(a—j+1i) =
—z = 2 mod 4. Hence, by (36), (vi,v;) has P(3,N) with P,, P,, and B,
a contradiction.

Subcase 1.1.2. z > a.
By (37), the cycle C; = v1vs - - - Ug—1¥zVz—1 - - Vg0 IS even; and, there-
fore,
I(C3) =z =0mod 4. (39)

Subcase 1.1.2.1. z>a+ 1.

Consider vz_;; by Claim 1, thereisavy, € V(N),1<y<z—-2o0rz <
y < b, such that v, v, € E(N) since the path vz_1vz_2 - VaV1V2 "+ Va1
UgUzy1 -+ Up IS & Vz_1Vp-hamiltonian path in N. Therefore, by Lemma 3,
y=z—1mod 2.

If y < a — 1, then, by (37), the cycle C3 = vyvyt1 - Va—1VzVz-17y is
even; and, therefore, /(C3) = a —y + 2 = 0 mod 4. Thus, for the cycle
Cy = vVp  VUyUy_1Vz_2+ VeV, by (39), I(Cy) =2 ~-1-(a~-y-1) =
T+y—a=y—a=2mod 4, which contradicts the hypothesis that G
contains no (2 mod 4)-cycles.

If a — 1 < y < z, then, since the cycle Cs = vo_1g - - UyVUz—1Vg Va1
iseven, I(Cs) =2+ (ea—-y+1+1)=y—a+4=y—a=0mod 4
Thus, for the two v;v;-paths Ps = vvi_1+ v1UUp—1 " * Uz¥s—1Va~2 * * * Vj
and Py = v;v;_1 -+ - V1Vp * +  Vz—1UyVy—1 - * V5, U(Fp) = i+b—z+1+a—1-j =
at+b+i—z—jand l(P;)=i+b—(z—-1)+1+y—j=bt+y+i—j—z+2,
respectively. Therefore, {(Pg)—I(P7) = a—y—2 = 2 mod 4. By (36), (vi,v;)
has P(3, N) with either P,, Ps, and P;, or P2, P, and P, a contradiction.
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If y > z, then, for the even cycle Cg = va_1¥s « * - Uz 1UyVUy—1 * - - VpVq1,
l(Ce)=y—(a—1)+1=y—a+2=0mod 4. On the other hand, for the
cycle C7 = v1VaVat1 " * Uz—1UyUy+1 * - - Vb1, by (39), {(C7) =b—((a—2) +
(y—(z-1)-1)) =—(a+y—z —2) = 2a = 2 mod 4, which contradicts
the hypothesis that G contains no (2 mod 4)-cycles.

Subcase‘ 1.1.22. z=a+ 1.
Consider v,—2; by Claim 1, thereis a v, € V(N),1 <y <a-3or
a <y <b, such that vo_svy € E(N). Then, by Lemma 3, y = a —2 mod 2.

Subcase 1.1.2.2.1. y 2 a.

If i < a—2, then v,_2v,—1 * *  VyVa—2 and V1VUaVa+1 - - *Up¥) are two odd
cycles with an odd number of common vertices, v, Va41," - - vy. Therefore,
by Lemma 9, (v;,v;) has P(3, N), a contradiction.

Ifi>a—2 theni=a—2and j =a—1. Thus, the two odd cycles
Va—1YaVa+1Va—1 aNd V1V« - » Vg_aVyVy41 - - UpV1 are connected by the path
VzVUz41 - -+ Uy. By Lemma 8, (v;,v;) has P(3, N), a contradiction.

Subcase 1.1.2.2.2. y<a-—3.

If 1 < i< j <y, then the two odd cycles Cg = vyvy41 - - - Va—2vy and
Cy = Vq_1VsVe4+1Va—1 are connected by the path v,—2v,—;. By Lemma 8§,
(vi,v;) has P(3,N), a contradiction.

Ify <i<j<a-2, then,since a =1 and y = a —2 mod 2, by Lemma
10, (v;,v;) has P(3, N), a contradiction.

Ifl<i<yand y <j<a-—2, then a contradiction follows by Lemma
8asinthecaseof 1 <i<j<y.

Ifl<i<yanda—2<j<a-—1,then sincea=1,y=a-2, and
i = j mod 2, by Lemma 11, (v;,v;) has P(3, N), a contradiction.

Ify<i<a—-2and j =a-1, theni # y since y = a — 2 and
i=j=a—1mod 2. Thus, a contradiction is also obtained as in the case
whena—-2<i<j<a—-1.

Subcase 1.2. j =a.

Then, i =j =1 mod 2.

If z < 1, then the two odd cycles v1v;vj41 -+ - vp¥1 and Vg Vs 41+ Va—1Vx
are connected by the path vyvz - --v;. By Lemma 8, (v;,v;) has P(3,N), a
contradiction. '
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Ifi <x < j, then, since j =1, z=a—1, and i = j mod 2, by Lemma
11, (vi,v;) has P(3, N), a contradiction.

If j < z, then, for the even cycle C1y = v1VjVa_1VzVzt1 - - vpVy,
I(Cih) =b—z+4 = -z =0 mod 4 Now, for the v,v;-path Pyo =
VjVa-1VUz V4] - ° - UpU1V2
vy, U(Pro) =i+ b~z +2. Thus, I(Po) —UP)=(i+b—z+2)—i=
b—z+2 =2 mod 4. Hence, by (36), (v;,v;) has P(3, N) with P;, P,, and
Pyp, a contradiction.

Subcase 2. ¢ =0 mod 4.

Then, by (26), b= 1 mod 2.

If i # j mod 2, then by (33), {(P) — I(P)) = a+2(i — j) = 2 mod
4; and by (34), {(P3) — I(P,) = b+ 2(i — j) = 1 mod 2. Thus, (v;,v;) has
P(3,N) with P;, P», and P, a contradiction. Hence,

i =j mod 2 (40)
and, therefore,
I(Ps) = Il(P))=b+2(i—j) =1mod 2. (41)
Consider v,—1; by Claim 1, thereisav, € V(N),1 <z < a—2ora <z <b,
such that v, v, € E(N).

Subcase 2.1. z < a.
Then, by Lemma 3, z = a — 1 = 0 mod 2. Thus, by (40) and Lemma
12, (v;,v;) has P(3, N), a contradiction.

Subcase 2.2. z > a.

If £ # a—1 mod 2, then the cycle Cia = v4_1V4 * - - Uz Va1 is even.
Hence, {(C12) = 2 —a+ 2 = z + 2 mod 4. Thus, for the cycle Ci3 =
VU2 + -+ Ug—1VgVg—1 - * - Ug¥1, L(C13) = £ = 2 mod 4, which contradicts the
hypothesis that G contains no (2 mod 4)-cycles. Therefore,

z=a—1=1mod?2. (42)
Subcase 2.2.1. z#a+1.

Consider vz_;; by Claim 1 thereis av, € V(N), 1 <y<z—2o0r
z < y < b, such that v._1v, € E(N).
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Subcase 2.2.1.1. y > z.

Then, y = z — 1 mod 2 by Lemma 3 since the cycle v1v,41 - Vo1
is odd. Thus, C14 = Vo—1UzVUg41+* VyVUz—1Vz—2 - VUa—1 is an even. cycle.
Therefore, I(C14) =y—a+2 =y + 2 mod 4. Hence, for the cycle Cy5 =
VIV2 ** * Ug—1VUrUsq] ** * UyVUz—1Uz—2 - * *Ua¥1, {(Ci5) = y = 2 mod 4, which
contradicts the hypothesis that G contains no (2 mod 4)-cycles.

Subcase 2.2.1.2. y <z —2.

Then, since G contains no (2 mod 4)-cycles, y < a by Lemma 4 .

If y = x — 1 mod 2, then the cycle Cig = vyvyq1 -« Ugm1VzVz—10y is
even. Hence, [{(Ci6) = e — y+ 2 =2 — y mod 4. Thus, for the cycle Ci7 =
V1Vg + + + Yy Uz _1VzVa—1YaV1, [(C17) = £+4 = 2 mod 4, which contradicts the
hypothesis that G contains no (2 mod 4)-cycles.

Ify# z—~1mod 2, then, clearly, s -1 —y+1 =2z -y =0 mod 4.
Thus, for the cycle Cig = vjv2: VyVz_1Vz-2- - - Vg1, by (42), {(Cis) =
y+zx—a=y+z =2z =2 mod 4, which contradicts the hypothesis that
G contains no (2 mod 4)-cycles.

Subcase 2.2.2. t=a+1.
Consider v,_3; by Claim 1 there is a v, € V(N), 1 < y<a-—3or
a—1 <y < b, such that v,—v, € E(N).

Subcase 2.2.2.1. y > a—1.

Subcase 2.2.2.1.1. y=a — 2 mod 2.

Then, y = a by Lemma 4.

If 7 < a, then the two odd cycles v,v4-1V,—_2v, and v1VgVs41 - VpU1
are connected by the path v,. By Lemma 8, (v;,v;) has P(3, N), a contra-
diction.

Ifj=aand i >a—1, then, sincea—2 =a and b = 1 mod 2, by
Lemma 10, (v;,v;) has P(3, N), a contradiction.

If j=aand i < a—1, then, since a — 2 =a and b = 1 mod 2, by (40)
and Lemma 11, (v;,v;) has P(3, N), a contradiction.

Subcase 2.2.2.1.2. y #a—2 mod 2.
Then, clearly, y — a + 3 = 0 mod 4. Therefore,

]

y=1 (43)
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If j < a, then, by (40), i < a — 2. Now, by (42) and (43), the two odd
cycles Va—2UyUy—1 * * * VzVa—1Va—2 80d V1VUaVat1 - -+ Uy have an odd num-
ber of common vertices vz,vz41,--*,Vy. Thus, by Lemma 9, (v;,v;) has
P(3, N), a contradiction.

If § = a, then, by (40), i < a — 2, and Clg = Vg—1Va4+1Vat2 " * VpV1V2
-++vs-1 is an even cycle for which I(Cyg) = b~ 1 = 0 mod 4. For the
vivj-path Pjy = VjVg—1Va41Vat2 - - Us¥1V2 - 03, {(P11) = b— (a — 1 — ).
Now, by (40), i = j = a = 0 mod 2; and, therefore, 2i = 0 mod 4. Thus,
(Pn)-l(P)=(b-a+i+1)—(a—i)=b—2a+2i+1 =2 mod 4. Hence,
by (41), (vi,v;) has P(3, N) with Py, P3, and Py, a contradiction.

Subcase 2.2.2.2. y<a—3.

Then, by Lemma 3, y=a — 2.

If i < y and j < a—2, then the two odd cycles Cao = vyvyt1 + + Va—2vy,
and Cy; = V1VUsVUg41 +* - Upvy are connected by the path ve_ov,—_1v,. By
Lemma 8, (v;,v;) has P(3, N), a contradiction.

Ifi<yanda—2<y<a,then,sinceb=1,y=a~2, and i = j mod
2, by Lemma 11, (v;,v;) has P(3, N), a contradiction.

Ify<i<j<a-—2,then, sinceb=1, and y =a—2 mod 2, by Lemma
10, (vi,v;) has P(3, N), a contradiction.

Ify<i<a-2anda-1<j < a, then, Cy and Cy are con-
nected by the path vyv; - - vy. Thus, by Lemma 8, (v;,v;) has P(3,N), a
contradiction. :

Ifi=yanda—1<j<a,then,sinceb=1,y=a—2, and i = j mod
2, by Lemma 11, (v;,v;) has P(3, N), a contradiction.

Claim 3 follows. O

Claim 4. If a <i < j < b, then (v;,v;) has P(3,N).

Proof. By way of contradiction, assume that (v;,v;) does not have
P(3,N). The following three paths are distinct v;v;-paths in N:

Py =viviyy - v,

Py = vivi_y -+ - Vg1 UpVp—1 - - - V5, a0d

P3 = vy - 0 UpVp—1 -+ V5,

with lengths:

(P)=j—1,

(P)=b-—a~(j—1i)+2, and

120



WPs)=b-(j—1i).

Then,
UP) —U(P)=b-a+2(i-j)+2, (44)
UP3) = U(P) =b+2(i - j), (45)
and
U(Ps)—UP) =a-2. (46)

If a = 0 mod 4, then by (26), b =1 mod 2. Thus, by (45), [(Ps) — I(P;) =
b+2(i—j) = 1 mod 2; and by (46), I(P;) —l(P;) = a—2 = 2 mod 4. Thus,
(vi,v;) has P(3, N) with Py, P, and P, a contradiction.

It suffices by (26) to discuss the two following cases.

Case 1. b =0 mod 4.
Then, by (26), a =1 mod 2, and by (44),

I(P2) —l(P,)=1mod 2. (47

If i # j mod 2, then by (45), [(P3) — {(P1) = 2 mod 4. Thus, (v;,v;) has
P(3,N) with P;, P,, and Pj, a contradiction. Therefore, i = j mod 2.

Consider vy_;; by Claim 1, thereis a v; € V(N), 1 <z <b—2, such
that vp_jv; € E(N). Then, by Lemma 3, z = 1 = 0 mod 2.

Subcase 1.1. j #b.

Subcase 1.1.1. = > a.

Note, i = j and z = 1 mod 2 and the cycle v1v,Vq41 - - - Upv; is odd.

If a < i< j<b, then, by Lemma 10, (v;,v;) has P(3, N), a contradic-
tion.

Ifa £1 <z and j < b—1, then the two odd cycles vjvz - vau;
and vgVzy -+ - vp—1¥; are connected by the path v,vv5—,. Therefore, by
Lemma 8, (v;,v;) has P(3, N), a contradiction.

Ifa<i<zand j=b-1, then, by Lemma 11, (v;,v;) has P(3,N), a
contradiction.

Subcase 1.1.2. z < a.

Now, the cycle C) = v1VUs41 * " * Ub1VzUzo1 - - - V1 iS even since ¢ = 1
and z = b—1 mod 2. Therefore, [(C1) =b—1—-(a—z—-1)=b+z~0a=
z —a = 0 mod 4. Thus, for the v;v;-path Py = vjv;_; - - - v;0_1Vp—2 - - - v,
l(Py) =b—x — j+i. Hence, {(Py) — I(P2) = a — z — 2 = 2 mod 4, where
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Py = v;v;_1 - UaU1VpVp—1 - - - v;. Therefore, by (47), (v;,v;) has P(3,N)
with P;, P, and P;, a contradiction.

Subcase 1.2. j =b.

Subcase 1.2.1. = > a.

If a < i < z, then, by Lemma 11, (v;,v;) has P(3, N), a contradiction.

If z < i < b, then the two odd cycles vjv2 -+ - vv; and vy vy -« Vp— Vs
are connected by the path vave41---vz. Thus, by Lemma 8, (v;,v;) has
P(3,N), a contradiction.

Subcase 1.2.1. z < a.

By the argument of Subcase 1.1.2., £ — a = 0 mod 4. Now, for the
v;vj-path Ps = viv;_1 -+ - VoV V2 - - - UzUp—1Y5, I(Ps) = + 2 + i — a. Hence,
I(Ps)—-l(P) = (z+2+i—a)—(b—i) = 2—a+2i+b+2 = 2 mod 4. Therefore,
by (47), (vi,v;) has P(3,N) with P;, P,, and Ps, a contradiction.

Case 2. a=1=bmod 2.
Then, by (26), a — b= 2 mod 4, and by (45),

I(P3)=Il(P)=b+2(i—j)=1mod 2. (48)

If i # j mod 2, then, by (44), {(P2) = l(P)) =b—a+2(i—j) +2 =2 mod
2. Thus, by (48), (vi,v;) has P(3, N) with P;, P,, and P, a contradiction.
Therefore, i = 7 mod 2.

Consider v5—1; by Claim 1, thereis a v, € V(N), 1 <z < b—2, such
that vy_q1v, € E(N).

Subcase 2.1. § #b—1 mod 2.

Then, clearly, b—1—2+4+1 =b—2 = 0 mod 4; and by Lemma 5, z < a.
Thus, for the cycle Cp = v1UaUg41 -+ VeVUp_1tpvy, U(Co) = 4 +a -z =
4+ (a—b)+ (b—z) =2 mod 4 since a — b = 0 mod 4, which contradicts
the hypothesis that G contains no (2 mod 4)-cycles.

Subcase 2.2. z = b -1 mod 2.

Subcase 2.2. j #b.

If i > z, then  <i < j < b—1; and, therefore, by Lemma 10, (v;,v;)
has P(3, N), a contradiction.

Ifi < £ and 7 # b— 1, then the two odd cycles v yvs---vav; and
VzUr41 *** Up—1Vy are connected by the path vp_;vsv;. Thus, by Lemma 8,

122



(vi,v;) has P(3, N), a contradiction.
Ifi <z and j = b— 1, then, by Lemma 11, (vi,v;) has P(3,N), a
contradiction.

Subcase 2.2.2. j =b.

Subcase 2.2.2.1. z > a.

If a <i <z, then, by Lemma 11, (v;,v;) has P(3,N), a contradiction.

If z < 4, then the two odd cycles v;v; - - - v,v; and UgUz41 "+ * Up—1 Uy GTE
connected by the path vavs41---vy. Therefore, by Lemma 8, (vi,v;) has
P(3,N), a contradiction.

Subcase 2.2.2.2. z < a.

Then the cycle C5 = vyvp -+ - vzUp_10pv; is even, and, hence, I(C3) =
z+2 = 0 mod 4. Thus, for the vivj-path Ps = v, - vavvp - - “UgVp—1j,
UPs) =z+2+4i—a. Thus, {B)—UP) =(z+2+i—a)-(j—1) =
2(i-j)+b~a+z+2=2mod 4 Hence, by (48), (v;,v;) has P(3,N)
with P, Ps, and P;, a contradiction.

This contradiction completes the proof of Claim 4. O

Combining Claims 2, 3, and 4, the following claim is established.

Claim 5. If 1 <i < j < b, then (v;,v;) has P(3,N). O

Continuation of the main proof of Theorem 2. Consider v;, the
end vertex with greatest index of the longest path P; if v, = vy, then
V(G) = V(P) and, therefore, G is hamiltonian. Thus, by Theorem 1, G
contains a (2 mod 4)-cycle, contradicting the initial assumption. Hence,
t>b.

By the maximality of P and §(G) > 3, there are z and w € {1,2,---,¢—
2} with z < w such that v,v;, v,v, € E(G). Thus, z > 1.

If 2 > b, then let M = ({v;,v541, - *,v:}). By Lemma 3, either z = ¢,
or w = ¢ mod 2; and, therefore, M contains an odd cycle. Since G is
2-connected, there are two disjoint paths, say a uv-path and an zy-path,
which connect M and N where u, = € V(N) and v, y € V(M). By
Claim 5, (u,z) has P(3, N) and, by Lemma 13, (v,y) has P(2, M). By the
Two-body Lemma, G again contains a (2 mod 4)-cycle, contradicting the
beginning assumption.
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If z < band w > b, then set M = ({vy, V41, --,v:}). Now, the cycle
UwUy+1 - * - UtVy is not a (2 mod 4)-cycle. Hence, (vy,v;) has P(2, M). By
Claim 5, (b, z) has P(3, N). Thus, by the Two-body Lemma, G contains a

(2 mod 4)-cycle, leading to a contradiction.
Finally, we discuss the last case in which 1 < z < w < b.
We assume that:

Vot € E(G) withl1<a<band a=t—1mod 4,
vav € E(G) with1< B <band S=b—t+1 mod 4,
v, € E(G) with1 <y<aand y=a—-t+1 mod 4,

vyve € E(G) withl <np<aandnp=a-—b+t+1mod 4,

d
- vev, € E(G) witha <0 <bandd=a+b—t—1mod 4.
Then,
B-—a=b+2(1-t)mod 4,
y—a=a+2(1—t) mod 4,
N—a=a-—b+2mod4,
and

0—a=a+b+2(1-1t)+2mod 4.

Five cycles are now given together with their lengths:
I(Ca) =t —a+1=2mod 4, where Cy = vovqy1 -+ Ve¥q,

(49)

(50)
(51)
(52)

(53)

(54)
(55)
(56)

(57)

[(Cg) = B+t—b+1 = 2mod 4, where Cp = vgug_ - - - V1UpVps1 * - - VeV,
[(Cy) = v+t—a+1 = 2 mod 4, where C, = UyUy_1 " U1UaUq41 * * - VgV,
UCy) = a—n+2+t—b+1 = 2 mod 4, where Cp = vyvpy1 -+ UgV1VpUpy 1

e vtvﬂ,
and

[(Co) = (t—b+1)+(0—a)+2 = 2 mod 4, where Cp = vgug_; - - - Vo V1 p

VUp41 *° - VeVg.

Since G contains no (2 mod 4)-cycles, the following claim will now be

established.

Claim 6. Both z # f and w # f mod 4 for any f € {e, 8,7,7,6}.

Case 1. ¢ =0 mod 4.
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Then, by (26), b= 1 mod 2.

Subcase 1.1. ¢ =0 mod 2.

Then, by (54) and (56), 8—n = (6—a)~(n—a) = 2b+2(1—t)—a—2 = 2
mod 4. On the other hand, by (54), 8—a =b+2(1—1t) = b+ 2 mod 4
=1mod 2. By (55),y—a=a+2(1-t)=2mod 4. Thus, by Claim 6,
az<w<hb

Now, by (54) and (57), -0 =(B-a)—(f—a) = b+2(1—1t) —
(@+b+2(1—1t)+2) =2 mod 4. On the other hand, by (54), —a =1
mod 2. Therefore, by (49), z=w=a+2 =t+1 mod 4. Thus, the cycle
UzVUz41 -+ Uu¥t¥; iS a (2 mod 4)-cycle, giving a contradiction.

Subcase 1.2. t =1 mod 2.

Then, by (54), 8 —a = b+ 2(1 -~ t) = b mod 4. Hence, by Claim 6,
(49), and (50), either z=b—t+3and w=t+lorw=b—¢t+3 and
z=t+1mod 4.

We assume, without loss of generality, that z = b—¢+3 mod 4. By (54)
and (57), -0 =(f-a)—(#—a)=a+2=2mod 4. Hence,ifa <2< b,
then z # 0 = b— ¢t + 3 mod 4. Therefore, z < a. By the maximality of b,
z<a-1

Consider v,-); by Claim 1, thereisa v, € V(N), 1<z <a—2or
a < z < b, such that v,_ v, € E(N).

If z = a—-1mod 2, then, since b=t = z = 1 mod 2, by Lemma
7, £ < z; and for the even cycle C) = V13- VU174 - - - 01, U(C)) =
z+(b-(a-1)+1)=z+b+2=0mod 4. Hence, for the cycle C; =
VgUz 41 VzUt¥p—1***Va—1Vs, UC2) = (t—(a—1)+ 1)+ (z—z+ 1) =
t+2+(b-t+3)+(b+2)+1=2b= 2 mod 4, which contradicts the
assumption that G contains no (2 mod 4)-cycles.

Ifz #a—1mod 2, then, by Lemma 3,z >aandz—(a—1)+1 =
z + 2 = 0 mod 4. Hence, for the cycle C3 = v1vg+++ Ug_ V05— -+ * Ug¥y,
[(C3) = z = 2 mod 4, which contradicts the hypothesis that G contains no
(2 mod 4)-cycles.

Case 2. a=1=bmod 2.
Then, by (26), a — b= 2 mod 4.

Subcase 2.1. t =0 mod 2.
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Then, by (54), B—a =b+2(1-t) =b+2mod 4 =1 mod 2.
Therefore, by (49) and (50), either z=t+landw=b—-t+3orw=t+1
and z=b—t+ 3 mod 4.

Ifw=t+1and 2z = b—t+ 3 mod 4, then, for the cycle Cy =
NV -V VU
Vwt1 V1, I(Cy) = 2+b—w+2 = (b—t+3)+b—(t+1)+2 = 2b = 2 mod
4, which contradicts the hypothesis that G contains no (2 mod 4)-cycles.
Therefore,

z=t+land w=b—1t+ 3 mod 4. (58)

By the maximality of b, w < b— 1.

Consider vp—1; by Claim 1, there is a v, € V(N), 1 <z < b—2, such
that vp_1v; € E(N).

If z # b—1mod 2, then (b—1)—z+1 = b—z = 0 mod 4; and by Lemma
3, < z. Hence, for the cycle Cs = vzvz41 -+ v, 001 - - - Up—1Vz, by (58),
I(C5) = (z—z+1)+(t—(b-1)+1) = (t+1)—z+t—b+3 = 2t—z-b= —2b =2
mod 4, a contradiction. Therefore, z =b— 1.

Now, by (54) and (55), B—vy=(f—a)—(y—a)=b—-a=2mod 4.
On the other hand, by (54), 8 — a =1 mod 2. Hence, by (49), w =t +1 if
1 < w < a. Thus, w 2 a. Since the cycle Cs = v;v5 - - - v, Vp_10v; is even,

[(Cé) =z +2=0mod 4. (59)

If z > w, then the cycle C7 = v1UaVam1 - V0V Vi1 * - Ve Vb-1V51 (OT
U1VaVat1 ** * Uz VUsUn Vi1 * - UgUp—1UpV1 ) is even, by (58) and (59), [(C7) =
(r—w+1)+4+(a—z+1) =z+a—w—2+6 = 2+a—(b—t+3)—(t+1)+2 =
a—b=2(rl(Cy)=(z—w+1)+4+(z—a+1l)=z+z—w—a+6=
24(t+1)-(b—-t+3)—a+2=2t+(b—a)—2b—2=2b=2mod 4), a
contradiction. Therefore, z < w.

If z < 2z, then, for the cycle Cs = vzUz41 * VUV Vi1 * + * Vp—1Vz, by
(58),l(Cs) =(z—z+1)+((b-1)—w+1)+1=z+b—z—w+2=
(t+1)+b—-2—(b—t+3)+2 =2 mod 4, a contradiction. Therefore, z < .

Since w = b—t+ 3 = 0 mod 2, by (59), w > z + 1. Consider vz4;
by Claim 1, there isa v, € V(N),1 <y <z or z +2 < y < b, such that
Vz41Yy € E(N).

If y # z — 1 mod 2, then, since z # ¢t mod 2, by Lemma 3, y < z
and (z+1)—y+1=z—y+2=0mod 4. Hence, for the cycle Cy =
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V1V - VyUzq1Uz2  *  UpUtVp—y -+ UL, U(Co) = y+ (w—(z+1) + 1) + (¢t -
b+l)=y+wHt—-z-b+1=(z—-2)+(b—-t+3)+t—z—b+1=2
mod 4, a contradiction. Therefore, y = z ~ 1 mod 2.

If y > z + 2, then, by Lemma 4, y = b; and, hence, for the cycle
Clo = VUg41UpVUb41 * * * UtUpVyp—1 * * * Uz 41, by (58) and (59), l(C]o) = (w -
E+D)+1)+(E-b+1l)=w—z+t—b+1=(b—t+3) —2+¢t—
b+ 1 = 2 mod 4, a contradiction. Therefore, ¥y < z. Since the cycle
Ci1 =1V *+ - VyUz 41Uz - - V) iS eVen, U(Chy) = y+(b—(z+1)+1)+1 =
¥+ b—z =2 mod 4, a contradiction.

If y > a, then, Cia = V1VaVat1 - VylUsq1Voq2 - VpUlp—1 - Up¥y, 2
cycle, satisfies by (58), {(C12) = 1+ (y—a+1)+(w—(z+1)+1)+(t—b+1) =
ytw+t—-a—z-b4+3=(-b)+(b-t+3)+t—-a—z—-b+3=
—2b+ (b—a)+2 =2 mod 4, a contradiction. Therefore, y < a. By Lemma
4, a < z + 1. Thus, for the cycle Ci3 = v1v - - - vy 41V - - - v,v1, by (59),
{Cu)=y+(z+1-a+l)=(z-b)+r—a+2=22-2b+(b—a)+2=2
mod 4, a contradiction.

Subcase 2.2. t =1 mod 2.

Then by (54), 8- a = b+2(1 —t) = b = 1 mod 2; and by (57),
0—a=a+b+2(1-t)+2=2mod 4. Hence, if either a < z < b or
a < w < b, then, by (50), either 2= +2=b—-t+3orw=b—-t+3
mod 4. On the other hand, by (54) and (55), —v=(f-a)—(y—a) =
b—a =2 mod 4 Thus, if either 1 < z < aor 1 < w < a, then, by
(49), either z=a+2=t+lorw=t+1mod 4. Hence, z = t+1
and w =b—t+ 3 mod 4. For the cycle C14 = vjv2 -+ V00 Vypi1 * - W01,
(Cly)=z+(b—w+1)+1=t+1+b—(b-t+3)+2=2t=2mod 4,a
contradiction.

Case 3. b=0 mod 4.
Then, by (26), a = 1 mod 2.

Subcase 3.1. t =0 mod 2.

Then, by (54), 8—a=b+2(1—-1t) =2 mod 4; and by (57), § ~a =
a+b+2(1—t)+2=amod4=1mod 2. Hence, if either a < z < b or
a < w < b, then, by (53), either z=0+2=a—-t+lorw=a—t+1mod
4. On the other hand, by (55), vy —a=a+2(1—-t)=a+2mod 4 =1
mod 2. Therefore, if either 1 < 2 < a or 1 < w < a, then, by (51), either
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2=7+2=a-t+3orw=a—t+4+3mod4. Hence,z=a—-1t+3 mod 4
withl<z2<a—landw=a—-t+1mod 4 witha <w<hb.

Consider v,—1; by Claim 1, thereisav, € V(N),1 <z <a—-2o0r
a < z < b, such that v,_jv; € E(N). By Lemma 3, z = a — 1 mod 2.

If z > a, then the cycle Ci5 = vjvg - -Vg1VgVz—1 - Vo¥1 is even.
Therefore, [(Cis) = z = 0 mod 4. Thus, Cig = V;Uz41 * * - VgUsr Vg1 * * * Ve Vs,
a cycle, satisfies [(Cyg) = (t—2+1)—(x—(a—1)-1) =t+a—z—z+1=
t+a—(a—t+3)+1=2t—2=2mod 4, a contradiction.

If £ < a, then the cycle Ci17 = vvp - vg¥e_19av; is even. Hence,
[(C17) =z +2=0mod 4. Thus, Cig = v1Uz - UrVs_1Vs * * - Ve VgV
-+ vy, a cycle, satisfies [(C1g) = (t —b+1)+z+(w—(e—-1)+1) =
t+z+w—-b—a+3=t+2+(a—t+1)—a+3 =2 mod 4, a contradiction.

Subcase 3.2. t =1 mod 2.

Then, by (57),0 —a=a+b+2(1-t)+2=a+ 2 mod 4 =1 mod
2. Hence, if either a < z < b or a < w < b, then, by (49) and (53), either
z=t+lora—t+1mod4,orw=a—-t+1ort+1mod4. On the
other hand, by (55), y —a=a+2(1 —t) = a =1 mod 2; and, by (55) and
(56), n—v=(m—a)—(y—a) =2mod 4. Thus, if either 1 < z < a or
1 < w < a, then, by (49), either 2 = a+2=t+1lorw=t+1 mod 4.
Hence, the two following subcases are left to discuss.

Subcase 3.2.1. w=t+land z=a—-t+1mod4dwitha<z<w<
b—-1.

Then, for the cycle Cig = V1VUaUa41 * * - VzVsVpyVt1 - - - Up¥1, C1g) =
(z—a+1)+(b—w+1)+2=2—-a-w=(a—t+1l)—a—-t-1=-2t=2
mod 4, a contradiction.

Subcase 3.2.2. z=t+landw=a—-t+1mod4withea <w<b-1.

If 2 < a, then, for the cycle Cop = V1VaVa—1 *** VUt Up VU1 * - - VpV1,
[(Cx)=(a—2z+1)+(b—w+1)+2=a—2-w=a—(t+1)—(a—t+1) =2
mod 4, a contradiction. Therefore, z > a.

Consider vp—1; by Claim 1 there is a v; € V(N), 1 <z < b—2, such
that vp—1v; € E(N). By Lemma 3, z=5b—1 mod 2.

If w < z, then the cycle Ca; = v1Y,Va41 - -+ VzUp-1vpY; is even; and,
hence, [(Ca;) =z —a+4 =z —a=0mod 4. Thus, for the cycle Cy; =
VIV - - Uz UpUpyUy] * * * UzVp—10p01, H(Ca2) = 2+ (z—w+1)+3 = 24+z—Ww =
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(t+1)+a—(a—t+1) =2t =2 mod 4, a contradiction. Therefore, z < w.
Thus, the cycle Coz = v1UaUa—1 * * - Uz Vp-1Up¥1 (OF V1UaUat1 * * * VzUp— 1 UpV1)
is even. Therefore, [(Co3) =a-z+4=a—-z=0(orz—a+4=z—a=0)
mod 4. Hence, for the cycle Coqy = v1v3« UzUp—1Vpg - - - Uy UeVp_1 - -  Up¥1,
(C) =xc+(t—-w+1l)=a+t—-(a-t+1)+1=2t=2mod 4, a
contradiction.

This contradiction completes the proof of Theorem 2. O
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