ON (k,l) - KERNELS OF ORIENTATIONS OF SPECIAL GRAPHS

MAGDALENA KUCHARSKA

Institute of Mathematics Technical University of Szczecin ul. Piastów 48/49 70-310 Szczecin e-mail: magdakucharska@wp.pl

ABSTRACT. In [1], [2] we can find results concerning kernel-perfect graphs and solvable graphs. These concepts are related to kernels of a digraph. The authors of [2] consider two graph constructions: the join of two graphs and duplication of a vertex. These kinds of graphs preserve kernel-perfectness and solvability of their orientations. In this paper we generalize results from [2] applying them to (k,l)-kernels and two operations: generalized join and duplication of a subset of vertices. The concept of a (k,l)- kernel of a digraph was introduced in [8] and was studied in [6], [7] and [9]. In our considerations we take advantage of the asymmetrical part of digraphs, which was used by H. Galeana-Sanchez in [6] in the proof of a sufficient condition for a digraph to have a (k,l)- kernel.

Keywords: kernel, (k, l) - kernel, orientation **Mathematics Subject Classification 2000:** 05C20, 05C69

1. Introduction

Let D denote a finite, directed graph (for short: a digraph) without loops and multiple arcs, where V(D) is the set of vertices of D and A(D) is the set of arcs of D. An arc $xy \in A(D)$ is called asymmetrical (resp. symmetrical) if $yx \notin A(D)$ (resp. $yx \in A(D)$). The asymmetrical part of D (resp. symmetrical part of D), denoted by Asym(D) (resp. Sym(D)) is the spanning subdigraph of D whose arcs are the asymmetrical (resp. symmetrical) arcs of D. By D[S] we denote the subdigraph of D induced by a nonempty subset $S \subseteq V(D)$.

By a path from a vertex x_1 to a vertex x_n in D we mean a sequence of distinct vertices x_1, \ldots, x_n from V(D) and arcs $x_i x_{i+1} \in A(D)$ for

 $i = 1, 2, \ldots, n-1$ and denote it by $[x_1, \ldots, x_n]$. A *circuit* is a path with $x_1 = x_n$.

Let G be an undirected graph. A digraph D we call an orientation of G, when V(D) = V(G) and two vertices are adjacent in G if and only if they are adjacent in D. Symmetrical arcs are admitted in D. Simultaneously, the graph G is called the underlying undirected graph of D. By a clique Q of a digraph D we mean an induced subdigraph of D such that the underlying undirected graph of Q is isomorphic to a complete graph. An orientation D is admissible if every clique of D contains a vertex which is the successor of all its other vertices (such a vertex is called a sink). A digraph D is an M-admissible orientation if every circuit in D of length three contains at least two symmetrical arcs.

In [1] we can find the following proposition:

Proposition 1.1 (C. Berge and P. Duchet). An orientation of a complete graph is admissible if and only if every circuit has at least one symmetrical arc.

From this proposition it follows the next corollary:

Corollary 1.2. An orientation of a graph is not admissible if and only if it contains a circuit whose all arcs are asymmetrical and vertices induce a clique (such a circuit is called a whirl).

We denote by $d_D(x,y)$ the length of the shortest path from x to y in D. For any $X,Y\subseteq V(D)$ and $x\in V(D)\setminus X$ we put $d_D(x,X)=\min_{y\in X}d_D(x,y),$ $d_D(X,x)=\min_{y\in X}d_D(y,x)$ and $d_D(X,Y)=\min_{x\in X,y\in Y}d_D(x,y).$ Let k,l be integers, $k\geq 2$ and $l\geq 1$. We say that subset $J\subseteq V(D)$ is a (k,l) - kernel of D if

- (i) for each $x, y \in J$ and $x \neq y, d_D(x, y) \geq k$ and
- (ii) for each $x \in V(D) \setminus J$ there exists $y \in J$ that $d_D(x,y) \le l$.

If k=2 and l=1, then we obtain the definition of a kernel or in other words a (2,1) - kernel of digraph.

If J satisfies the condition (i), then we say that J is k - stable in D (if k=2, then we write that J is stable in D). Moreover, we assume that the subset including exactly one vertex also is k - stable in D. We say that J is l - dominating in D (for short: dominating in D, when l=1), when the condition (ii) is fulfilled. More precisely with respect to the vertex x we say: x is l - dominated by J in D or J l - dominates x in D.

A directed graph such that every induced subdigraph has a (k, l) - kernel is called (k, l) - kernel-perfect. An undirected graph is (k, l) - solvable (resp. (k, l) - M-solvable) if every its admissible (resp. M-admissible) orientation

has a (k, l) - kernel. Three last concepts are generalizations of kernel-perfect, solvable and M-solvable graph, respectively, which are considered in [1], [2], [3] and [5].

Let G_0, G_1, \ldots, G_p , $p \geq 1$, denote p+1 pairwise vertex-disjoint undirected graphs (not necessarily with the same cardinalities of vertex sets). The generalized join of graphs G_0, G_1, \ldots, G_p is a graph $J(G_0, G_1, \ldots, G_p)$ obtained by adding a new edge xy, for every $x \in V(G_0)$, $y \in V(G_i)$, where $i = 1, 2, \ldots, p$, to the disjoint union of the graphs G_0, G_1, \ldots, G_p . It may be to note that for p = 1 we receive the join of two graphs $G_0 \circ G_1$.

Let G be an undirected graph and X be an arbitrary subset of V(G). Let H be a graph isomorphic to G[X]. The vertex from V(H) corresponds to $x \in X$ we will denote by x'. Duplication of X in G, denoted by G^X , is a graph such that $V(G^X) = V(G) \cup V(H)$ and $E(G^X) = E(G) \cup E(H) \cup E_0 \cup E_1$, where $E_0 = \{x'y : x' \in V(H) \text{ and } y \text{ is a vertex adjacent to } x \in X \text{ in } G\}$ and $E_1 \subseteq \{xy : x \in V(H) \text{ and } y \in V(G)\}$. If $E_1 \neq \emptyset$, then duplication is called adjacent. Otherwise duplication is non-adjacent. Put X' = V(H). The vertex $x' \in X'$ is called a duplicate of $X \in X$ and X' is a duplicate of X.

Other more precisely notations will be introduced in the parts of the paper in which they will be used. For concepts not defined here, see [4].

2. Duplication and (k,l) - kernels of its orientations

We will start with some definitions. Let G be an undirected graph, X be an arbitrary subset of V(G) and D be an orientation of duplication G^X . For $x \in X$ by N(x) we denote the subset of vertices not belonging to X and adjacent to x in D (of course they are adjacent to its duplicate $x' \in X'$ in D). Now create a partition of N(x) in the following way:

 $N_1(x) = \{ y \in N(x) : \text{the arcs } xy, x'y \in Asym(D) \},$

 $N_2(x) = \{ y \in N(x) : \text{the arc } yx \in \text{Asym}(D) \text{ or } yx' \in \text{Asym}(D) \},$

 $N_3(x) = N(x) \setminus (N_1(x) \cup N_2(x)).$

It may be to note that if $y \in N_1(x) \cup N_3(x)$, then there exist both of the arcs xy, x'y in D.

By G-X we mean a subgraph of G obtained from G by deleting the subset X. We define an orientation D^* of G as follows: every edge belonging to $A(G-X) \cup A(X)$ is directed as in D and for any $x \in X$

- (i) if $y \in N_1(x)$, then the arc $xy \in Asym(D^*)$ and
- (ii) if $y \in N_2(x)$, then the arc $yx \in Asym(D^*)$ and
- (iii) if $y \in N_3(x)$, then the arc $xy \in \text{Sym}(D^*)$.

The idea used in the construction of the orientation D^* is closely related to a construction included in [2].

Let us observe the following result.

Lemma 2.1. Let G be an undirected graph and $X \subset V(G)$ and D be an admissible orientation of duplication G^X . If either (a) or (b) be satisfied:

- (a) duplication G^X is non-adjacent and D[X] is isomorphic to D[X'],
- (b) duplication G^X is adjacent, for every $x \in X$ and its duplicate $x' \in X'$ there exists an edge $xx' \in E(G^X)$ and an arc $x'x \in Asym(D)$,

then the orientation D^* of G is admissible.

Proof. Assume on the contrary that D^* is not admissible. Then D^* contains a whirl W in view of Corollary 1.2. It is easy to observe that there exist two vertices from W such that one belongs to X and another one belongs to $V(G) \setminus X$. Otherwise, D also contains the whirl W. Thus, we obtain a contradiction with that D is an admissible orientation of G^X . Hence there exists a path $[y_1, y_2, \dots, y_{n-1}, y_n]$ in W such that $y_1, y_n \in V(G) \setminus X$ and $y_2, \ldots, y_{n-1} \in X$. Since the arcs $y_1y_2, y_{n-1}y_n \in \text{Asym}(D^*)$ and $y_2, y_{n-1} \in X$, then $y_1 \in N_2(y_2)$ and $y_n \in N_1(y_{n-1})$. By the definition of $N_1(y_{n-1})$ there exist the arcs $y_{n-1}y_n$, $y'_{n-1}y_n$ in D and both are asymmetrical. By the definition of $N_2(y_2)$ at least one of the arcs y_1y_2 , y_1y_2' , belongs to A(D) and is asymmetrical in D. If $y_1y_2 \in Asym(D)$, then there exists the path $[y_1, y_2, \dots, y_{n-1}, y_n]$ in D and it contains only asymmetrical arcs. If $y_1y_2' \in Asym(D)$, then two cases are to consider. If the condition (a) holds, then replacing vertices y_2, \ldots, y_{n-1} with y'_2, \ldots, y'_{n-1} we create a path $[y_1, y'_2, \dots, y'_{n-1}, y_n]$ in D, whose all arcs belong to Asym(D). If condition (b) holds, then putting the arcs y_1y_2' , $y_2'y_2$ instead the arc y_1y_2 we receive a path $[y_1, y_2', y_2, \dots, y_{n-1}, y_n]$ in D, whose arcs are included in the asymmetrical part of D. Repeating the same operation for every path $[y_1, y_2, \dots, y_{s-1}, y_s]$ in W such that $y_1, y_s \in G(V) \setminus X$ and $y_2, \dots, y_{s-1} \in X$ we receive a whirl in D, a contradiction, with the assumption. So D^* is admissible orientation of G.

Now we prove the related result with respect to D^* being M-admissible.

Lemma 2.2. Let G be an undirected graph and $X \subset V(G)$. If D is an M-admissible orientation of duplication G^X such that D[X] is isomorphic to D[X'], then the orientation D^* of G is M-admissible.

Proof. Assume on the contrary that D^* is not M-admissible i.e., there exists circuit C = [x, y, z, x] in D^* having at least two asymmetrical arcs. It is clear that there exist two vertices from C such that one belongs to X and another one belongs to $V(G) \setminus X$. Otherwise, D also contains the circuit C, a contradiction with that D is M-admissible. Without loss of generality we consider two cases:

- (a) $x, y \in X$ and $z \in V(G) \setminus X$,
- (b) $x \in X$ and $y, z \in V(G) \setminus X$.

At first assume that condition (a) holds. From the definition of D^* and the assumption that D[X] is isomorphic to D[X'] it follows that if $xy \in \operatorname{Asym}(D^*)$, then $xy, x'y' \in \operatorname{Asym}(D)$ and if $xy \in \operatorname{Sym}(D^*)$, then $xy, x'y' \in \operatorname{Sym}(D)$. First we assume that $yz \in \operatorname{Asym}(D^*)$. This implies that $z \in N_1(y)$. By the definition of $N_1(y)$ the arcs $yz, y'z \in \operatorname{Asym}(D)$. If $yz \in \operatorname{Sym}(D^*)$, then $z \in N_3(y)$. From the definition of $N_3(y)$ it follows that $yz, y'z \in A(D)$. Now we suppose that $zx \in \operatorname{Asym}(D^*)$. Therefore $z \in N_2(x)$. It follows that $zx \in \operatorname{Asym}(D)$ or $zx' \in \operatorname{Asym}(D)$. If $zx \in \operatorname{Sym}(D^*)$, then $z \in N_3(y)$. For this reason $zx, zx' \in A(D)$. From facts given above it follows that if at least two arcs of C are asymmetrical in D^* , then one of the circuits [x, y, z, x] and [x', y', z, x'] contains at least two asymmetrical arcs in D, a contradiction.

It remains to analyze the condition (b). Arguing like in case (a) we have: $yz \in Asym(D^*)$ if and only if $yz \in Asym(D)$,

if $zx \in Asym(D^*)$, then $zx \in Asym(D)$ or $zx' \in Asym(D)$,

if $zx \in \text{Sym}(D^*)$, then $zx, zx' \in A(D)$,

if $xy \in Asym(D^*)$, then $xy, x'y \in Asym(D)$ and

if $xy \in \text{Sym}(D^*)$, then $xy, x'y \in A(D)$.

From these facts it follows that if C contains at least two asymmetrical arcs in D^* , then there exists one of the circuits [x,y,z,x], [x',y',z,x'] in D and has at most one symmetrical arc, a contradiction with the assumption about D. This means that the orientation D^* of G is M-admissible.

We recall that k, l are integers, $k \ge 2$ and $l \ge 1$. Using the above Lemma 2.1 we prove:

Theorem 2.3. Let G be a (k,l) - solvable graph, X be a subset of V(G) and G^X be non-adjacent duplication of X in G. If D is an admissible orientation of G^X such that D[X] is isomorphic to D[X'], $d_D(X, X') \ge k$ and $d_D(X', X) \ge k$, then D has a (k, l) - kernel.

Proof. At first we prove that D has a (k,l)-kernel, for k=2. It is clear that in this case we need only to show it for l=1. From Lemma 2.1 it follows that D^* is an admissible orientation of G. Hence D^* has a (2,1)-kernel J (i.e., J is a kernel of D^*). It is not difficult to see that if $Y=J\cap X\neq\emptyset$, then $J\cup Y'$ is a kernel of D, where $Y'\subseteq X'$ is duplicate of Y. Indeed, it is easy to observe that the set $J\cup Y'$ is stable in D. So what remains is to show that it is dominating in D. Obviously, every $x\in X\cup X'$ is dominating by $J\cup Y'$ in D. From the definitions of J and the orientation D^* of G it follows that every $y\in V(D)$ such that $d_D(Y,y)\geq 2$ and $d_D(y,Y)\geq 2$ is dominated by $J\cup Y'$ in D. Now, let $y\in V(D)\setminus X$ be the vertex adjacent

to some vertex from Y. If there exists $x \in Y$ such that $y \in N_2(x) \cup N_3(x)$, then at least one of the arcs yx, yx' exists in D. Consequently, the subset $J \cup Y'$ dominates the vertex y. If for every $x \in Y$ the vertex y belongs to $N_1(x)$, then the arcs yx and yx' do not exist in D. This means that for every $x \in Y$ the arc $xy \in A\text{sym}(D^*)$ and so y must be dominated in D^* by some vertex of $J \setminus Y$. Then $J \cup Y'$ dominates y in D. Now consider the case, when $J \cap X = \emptyset$. In this case for every $x \in X$ there exists $y \in J$ such that the arc $xy \in A(D^*)$. A consequence of this is that $y \in N_1(x) \cup N_3(x)$. This means that y is a successor of x and x'. Then J is a kernel of D.

Now consider $k \geq 3$. In this case for every $x \in X$ and $x' \in X'$ we have that $d_D(x,x') \geq k$ and $d_D(x',x) \geq k$. This means that if $y \in N(x) = N(x')$, then either the arcs yx, $yx' \in \operatorname{Asym}(D)$ or the arcs xy, $x'y \in \operatorname{Asym}(D)$. Let J be a (k,l) - kernel of D[V(G)]. If $Y = J \cap X \neq \emptyset$, then the subset $J \cup Y'$ is k - stable. Additionally, from this that D[X] is isomorphic to D[X'] it follows that this subset is l - dominating in D. It is not difficult to observe that if $J \cap X = \emptyset$, then J is a (k,l) - kernel of D. This completes the proof. \blacksquare

Note that if k=2, then every orientation D of non-adjacent duplication of G^X satisfies inequalities $d_D(X,X') \geq k$ and $d_D(X',X) \geq k$. Additionally, if the subset X contains only one vertex, then D[X] is isomorphic to D[X']. From these facts it follows that Theorem 2.3 is a generalization of the result announced in [2] and concerns duplication of one vertex and a kernel.

Theorem 2.4. [2]Let G be a solvable graph, $x \in V(G)$ and G' be the graph obtained from G by adjacent duplication of x with a new vertex x'. If D' is an admissible orientation of G' in which the arc x'x is asymmetrical, then D' has a kernel.

Taking Lemma 2.2 into consideration and proceeding like in the proof of Theorem 2.3 we can prove the following result.

Theorem 2.5. Let G be a (k,l) - M-solvable graph, X be an arbitrary subset of V(G) and G^X be non-adjacent duplication of X in G. If D is an M-admissible orientation of G^X such that D[X] = D[X'], $d_D(X, X') \ge k$ and $d_D(X', X) \ge k$, then D has a (k, l) - kernel.

The next theorem gives a sufficient condition for an admissible orientation of adjacent duplication to have a (k, l) - kernel.

Theorem 2.6. Let G be (k,l) - solvable, X be a subset of V(G) and G^X be adjacent duplication of X, such that there exists an edge xx', for every $x \in X$ and its duplicate $x' \in X'$. If D is an admissible orientation of G^X such that the following conditions are satisfied:

- (a) D[X] is isomorphic to D[X'],
- (b) an arc $x'x \in Asym(D)$ and
- (c) for every $x \in X$ and $y \in V(G) \setminus X$ if $xy \in Asym(D)$, then $x'y \in Asym(D)$,

then D has a (k,l) - kernel.

Proof. From Lemma 2.1 it follows that D^* is an admissible orientation of G. As a result of this D^* has a (k,l) - kernel, say J. We shall prove that J is a (k, l) - kernel of D. We need only to show that J is l - dominating in D, because J is k - stable in D. If $x \in V(G) \setminus J$, then there exists a path P from x to some vertex $w \in J$ of length at most l in D^* . If all arcs from P belong to A(D), then x is l - dominated by J in D. Assume that there exists an arc yz belongs to the path P, such that $zy \in Asym(D)$. Observe that $z \in X$ and $y \in N_2(z) \cup N_3(z)$. It is a consequence of the construction of the orientation D^* . This means that at least one of the arcs yz, yz'belongs to A(D). Moreover, by (c) we have $z'y \in Asym(D)$. Combining two facts given above we have that $yz, yz' \in A(D)$, a contradiction that $zy \in Asym(D)$. This means that P also is in D. Hence every $x \in V(G) \setminus J$ is l - dominating by J in D. In that case it remains to prove that all vertices from X' are l - dominating by J in D. Let $x' \in X'$. If x corresponding to x' belongs to J, then $d_D(x',J)=1 \leq l$. If $x \in X \setminus J$, then from the fact proved earlier it follows that there exists a path $[x, y_1, y_2, \dots, y_n, y]$ from x to some vertex $y \in J$ of length at most l in both D^* and D. Let i be the smallest integer such that $y_i \in V(G) \setminus X$. By (a) there is a path $[x', y'_1, y'_2, \dots, y'_{i-1}]$ in D. In view of the fact that $y_i \in V(G) \setminus X$ we have $y_i \in N_1(y_{i-1}) \cup N_3(y_{i-1})$. In consequence, the arcs $y_{i-1}y_i$ and $y'_{i-1}y_i$ belong to A(D). This means that there exists a path $[y'_{i-1}, y_i, \ldots, y]$ in D. So $[x', y'_1, \ldots, y'_{i-1}, y_i, \ldots, y]$ is a path of length at most l in D, hence $d_D(x',J) \leq l$. All this together shows that J is l - dominating in D and consequently, J is a (k,l) - kernel of D, what completes the proof.

Replacing Lemma 2.1 in the proof of Theorem 2.6 to Lemma 2.2 we can formulate the following result.

Theorem 2.7. Let G be (k,l) - M-solvable, X be an arbitrary subset of V(G), and G^X be adjacent duplication of X, such that there exists an edge xx'; for every $x \in X$ and its duplicate $x' \in X'$. If D is an M-admissible orientation of G^X such that the following conditions are satisfied:

(a) D[X] is isomorphic to D[X'],

- (b) an arc $x'x \in Asym(D)$ and
- (c) for every $x \in X$ and $y \in V(G) \setminus X$ if $xy \in Asym(D)$, then $x'y \in Asym(D)$,

then D has a (k,l) - kernel.

3. On (k,k-1) - Kernels of an orientation of the generalized join

At first we give some propositions about the generalized join, which are necessary to prove the main result of this section.

Let G_0, G_1, \ldots, G_p be undirected graphs and $k \geq 2$. We say that an orientation D of the generalized join $J(G_0, G_1, \ldots, G_p)$ has a property α with respect to G_i for a fixed integer $1 \leq i \leq p$, if every circuit C of length $3 \leq m \leq k+1$ in D containing at least one vertex from $V(G_0)$ and from $V(G_i)$ has at least m-1 symmetrical arcs.

The next result is obvious.

Proposition 3.1. Every induced subgraph of the generalized join also is the generalized join or an induced subgraph of disjoint union of some components of the generalized join.

Proposition 3.2. Let G_0, G_1, \ldots, G_p be undirected graphs and D be an orientation of the generalized join $J(G_0, G_1, \ldots, G_p)$ having a property α with respect to G_i for a fixed integer $1 \leq i \leq p$. Let S be a (k-1)-dominating subset of $D[V(G_0)]$ and $x \in V(G_i)$ be a vertex such that $d_D(x, S) \geq 2$. Then there exists an arc yx for every $y \in V(G_0)$.

Proof. Let $y \in V(G_0)$. By the definition of the generalized join there exists at least one of the arcs xy, yx in D. If $y \in S$, then the asymmetrical arc $yx \in A(D)$ because of $d_D(x,S) \geq 2$. Now consider $y \in V(G_0) \setminus S$. Seeing as S is (k-1) - dominating in $D[V(G_0)]$, we have that there exists $z \in S$ such that $d_D(y,z) \leq k-1$. Moreover, from the hypothesis it follows that $d_D(y,z) \geq 2$ (i.e., the arc zy is asymmetrical in D). We state that the arc $yx \in V(D)$. Otherwise, $xy \in A\text{sym}(D)$. But this means that there exists a circuit of length $m \leq k+1$ containing the vertices x,y,z and at least two asymmetrical arcs, a contradiction.

Proposition 3.3. Let G_0, G_1, \ldots, G_p be the undirected graphs and D be an orientation of the generalized join $J(G_0, G_1, \ldots, G_p)$ having a property α with respect to G_i for a fixed integer $1 \leq i \leq p$. Let $x \in D[V(G_i)]$, $y \in D[V(G_j)]$ with $1 \leq j \leq p$ and for every $w \in D[V(G_0)]$ wx $\in A(D)$. If $d_D(x,y) \leq k-1$, then $d_D(y,x) \leq k-1$ or for every $w \in D[V(G_0)]$ wy $\in Asym(D)$.

Proof. Assume on the contrary that $d_D(x,y) \leq k-1$, but $d_D(y,x) \geq k$ and there exists $w \in D[V(G_0)]$ such that $yw \in A(D)$. At first we consider the case, when i=j. Since $d_D(x,y) \leq k-1$ and $d_D(y,x) \geq k$, then at least one arc from the shortest path from x to y is asymmetrical. This means that for every vertex $w \in D[V(G_0)]$ there exists a circuit of length $m \leq k+1$ containing the vertices x,y,w and at least two asymmetrical arcs, a contradiction. Now we take into consideration $i \neq j$. It is not difficult to observe that for k=2 the proposition is true, since $d_D(x,y) \geq 2 = k$. Let $k \geq 3$. From the assumptions it follows that there exists $w \in D[V(G_0)]$ such that $yw \in A(D)$ and $wx \in A(D)$. This means that $d_D(y,x) \geq k$.

The following theorem is the main result of this section. It gives a sufficient condition for an orientation of the generalized join of graphs to be (k,k-1) - kernel-perfect.

Theorem 3.4. Let D_0, D_1, \ldots, D_p be p+1 vertex - disjoint (k,k-1) - kernel-perfect digraphs and let G_0, G_1, \ldots, G_p be the underlying undirected graphs. Let D be an orientation of the generalized join $J(G_0, G_1, \ldots, G_p)$ such that for every $0 \le i \le p$ we have $D[V(D_i)] = D_i$. If the orientation D has a property α with respect to every $0 \le i \le p$ and $D[V(D_i)]$ is isomorphic to D_i , then D is (k,k-1) - kernel-perfect.

Proof. From Proposition 3.1 it follows that we need only to prove that D has a (k, k-1) - kernel. For better clarity we split the proof into two parts.

I. Assume that $k \geq 3$ and there exist an integer s with $1 \leq s \leq p$ and $x \in V(D_s)$ such that for every $y \in V(D_0)$ an arc $yx \in A(D)$ is asymmetrical in D. For every $1 \leq i \leq p$, we denote by B_i the subset of $V(D_i)$ such that $x \in B_i$ if and only if for every $y \in V(D_0)$ $yx \in Asym(D)$. Let $I = \{i : B_i \neq \emptyset\}$. It follows from the assumption that I is not empty, since $s \in I$. Further, from the assumption that D_i is (k, k-1) - kernel-perfect and $D[V_i]$ is isomorphic to D_i it follows that for $i \in I$ the subdigraph $D[B_i]$ has a (k, k-1) - kernel, say J_i . Note that $\bigcup_{i \in I} J_i$ is k - stable in D, by the definitions of the subsets B_i , J_i and of the generalized join. Now we show that $\bigcup_{i \in I} J_i$ is (k-1) - dominating in D. Let $y \in V(D) \setminus \bigcup_{i \in I} J_i$. If $y \in V(D_0)$, then $d_D(y, J_i) = 1 \leq k-1$ for every $i \in I$ by the definition

of B_i . If $y \in \bigcup_{1 \le i \le p} (V(D_i) \setminus B_i)$, then there exists an arc yw in D, where $w \in V(D_0)$. Combining two facts given above we have that $d_D(y, \bigcup_{i \in I} J_i) = 2 \le k-1$. If $y \in \bigcup_{i \in I} (B_i \setminus J_i)$, then $d_D(y, \bigcup_{i \in I} J_i) \le k-1$, by the definition of J_i . This means that $\bigcup_{i \in I} J_i$ is a (k, k-1) - kernel of D.

II. Now assume that k=2 or for every $1 \leq i \leq p$ and every $x \in V(D_i)$ there exists $y \in V(D_0)$ such that $xy \in A(D)$. Let J_0 be a (k,k-1) - kernel of D_0 . If every vertex $x \in V(D_i)$ with $1 \leq i \leq p$ is (k-1) - dominated by J_0 , then J_0 is a (k,k-1) - kernel of D and the theorem follows. So assume that there exist integer j and $x \in V(D_j)$ such that $d_D(x,J_0) \geq k$. Then from Proposition 3.2 it follows that $R = \{y \in V(D_j) : \text{ for every } z \in V(D_0) \text{ we have } d_D(z,y) = 1\}$ is not empty. Let J_R be a (k,k-1) - kernel of D[R]. Note that

$$(3.1) if $y \in V(D_0) \cup R \setminus J_R, \text{ then } d_D(y, J_R) \leq k - 1.$$$

This follows from the definition of R and J_R . Now we show that

$$(3.2) \quad \text{for } y \in V(D) \setminus J_R \text{ if } d_D(J_R, y) \leq k - 1, \text{ then } d_D(y, J_R) \leq k - 1.$$

Owing to (3.1), it is enough to consider $y\in\bigcup_{1\leq i\leq p}V(D_i)\setminus R$. By the definition of $J_R\subseteq R$, for every $x\in J_R$ and $w\in V(D_0)$ we have $wx\in V(D)$. From this fact it follows that if $d_D(x,y)\leq k-1$, then $d_D(y,x)\leq k-1$ or for every $w\in D[V(G_0)]$, $wy\in \operatorname{Asym}(D)$, in view of Proposition 3.3 At the same time taking the assumption from the beginning of this part of the proof we have that if $d_D(x,y)\leq k-1$, then $d_D(y,x)\leq k-1$. So (3.2) is fulfilled. Let S_i be a subset of $V(D_i)$ such that $x\in S_i$ if and only if $d_D(J_R,x)\geq k$ and $d_D(x,J_R)\geq k$, for every $1\leq i\leq p$. Notice that for $i\neq j$ and k=2 we have that $S_i=V(D_i)$. Since every digraph D_i is (k,k-1) - kernel-perfect, then the induced subdigraph $D[S_i]$ has a (k,k-1) - kernel, say J_i , for $1\leq i\leq p$. We show that $J_R\cup\bigcup_{1\leq i\leq p}J_i$ is a (k,k-1)

- kernel of D. At first we show k - stability of this subset. It is easy to observe that for k=2 the subset $J_R \cup \bigcup_{1 \le i \le p} J_i$ is stable in D. Let $k \ge 3$.

From the definitions of J_R , S_i and J_i if follows that we need only to prove that $d_D(J_s, J_t) \ge k$ for every integers $s \ne t$. Assume on the contrary that there exist $x \in J_s$ and $y \in J_t$ such that $d_D(x, y) \le k - 1$. Therefore, there exists $w \in V(D_0)$ such that $d_D(x, w) = 1$. Moreover, $d_D(x, J_R) = 1$ (from the definition of R). This means that $d_D(x, J_R) = 2 < k$, a contradiction with fact that $x \in J_p \subseteq S_p$. To complete the proof we need to show that

$$J_R \cup \bigcup_{1 \le i \le p} J_i$$
 is $(k-1)$ -dominating in D . Let $y \in V(D) \setminus \left(J_R \cup \bigcup_{1 \le i \le p} J_i\right)$ be

the vertex such that $d_D(y, J_R) \ge k$. From (3.2) it follows that $d_D(J_R, y) \ge k$. So $y \in \bigcup_{1 \le i \le p} S_i$. Hence y is (k-1) - dominated by $\bigcup_{1 \le i \le p} J_i$ and the theorem is proved.

It may by to note that for p = 1 and k = 2 we receive the result announced in [2] considering the join two graphs and a kernel.

Theorem 3.5. ([2])Let D_1 , D_2 be two vertex - disjoint kernel-perfect digraphs and let G_1 , G_2 be the underlying undirected graphs. Let D be an orientation of the join $J(G_1, G_2)$ such that $D[V(D_1)] = D_1$, $D[V(D_2)] = D_2$, and every circuit C in D of length three such that $V(C) \cap V(D_1) \neq \emptyset$ and $V(C) \cap V(D_2) \neq \emptyset$ has at least two symmetrical arcs. Then D is kernel-perfect.

REFERENCES

- C. Berge and P. Duchet, Recent problems and results about kernels in directed graphs, Discrete Mathematics 86 (1990) 27-31.
- [2] M. Blidia, P. Duchet, H. Jacob, F. Maffray and H. Meyniel, Some operations preserving the existence of kernels, Discrete Mathematics 205 (1999) 211-216.
- [3] E. Boros and V. Gurvich, Perfect graphs are kernel-solvable, Discrete Mathematics 159 (1996) 35-55.
- [4] R. Diestel, Graph theory, Springer-Verlag New-York, Inc., 1997.
- [5] P. Duchet, A sufficient condition for a digraph to be kernel-perfect, Journal of Graph Theory 11 (1987) 81-85.
- [6] H. Galeana-Sánchez, On the existence of (k, l) kernels in digraphs, Discrete Mathematics 85 (1990) 99-102.
- [7] H. Galeana-Sanchez and Xueliang Li, Semikernels and (k, l) kernels in digraphs, SIAM J. Discrete Mathematics 11 (1998) 340-346.
- [8] M. Kwaśnik, On (k, l) kernels in graphs and their products, The doctoral dissertation, Technical University of Wrocław, Wrocław 1980.
- [9] A. Włoch and I. Włoch, On (k, l) kernels in generalized products, Discrete Mathematics 164 (1997) 295-301.