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ABSTRACT. In [1], [2] we can find results concerning kernel-perfect
graphs and solvable graphs. These concepts are related to kernels of
a digraph. The authors of [2] consider two graph constructions: the
join of two graphs and duplication of a vertex. These kinds of graphs
preserve kernel-perfectness and solvability of their orientations. In
this paper we generalize results from (2] applying them to (k,l) -
kernels and two operations: generalized join and duplication of a
subset of vertices. The concept of a (k,1) - kernel of a digraph was
introduced in (8] and was studied in [6], [7] and [9]. In our considera-
tions we take advantage of the asymmetrical part of digraphs, which
was used by H. Galeana-Sanchez in [6] in the proof of a sufficient
condition for a digraph to have a (k,1) - kernel.
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1. INTRODUCTION

Let D denote a finite, directed graph (for short: a digraph) without
loops and multiple arcs, where V(D) is the set of vertices of D and A(D)
is the set of arcs of D. An arc zy € A(D) is called asymmetrical (resp.
symmetrical) if yr ¢ A(D) (resp. yz € A(D)). The asymmetrical part of
D (resp. symmetrical part of D), denoted by Asym(D) (resp. Sym(D))
is the spanning subdigraph of D whose arcs are the asymmetrical (resp.
symmetrical) arcs of D. By D [S] we denote the subdigraph of D induced
by a nonempty subset S C V(D).

By a path from a vertex z; to a vertex T, in D we mean a sequence
of distinct vertices zi,..., zn from V(D) and arcs z;z;41 € A(D) for
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i=1,2,...,n—1 and denote it by [21,... ,Za). A circuit is a path with
1 =Tq.

Let G be an undirected graph. A digraph D we call an orientation of G,
when V(D) = V(G) and two vertices are adjacent in G if and only if they
are adjacent in D. Symmetrical arcs are admitted in D. Simultaneously,
the graph G is called the underlying undirected graph of D. By a clique Q of
a digraph D we mean an induced subdigraph of D such that the underlying
undirected graph of @ is isomorphic to a complete graph. An orientation
D is admissible if every clique of D contains a vertex which is the successor
of all its other vertices (such a vertex is called a sink). A digraph D is an
M-admissible orientation if every circuit in D of length three contains at
least two symmetrical arcs.

In [1] we can find the following proposition:

Proposition 1.1 (C. Berge and P. Duchet). An orientation of a complete
graph is admissible if and only if every circuit has at least one symmetrical
arc.

From this proposition it follows the next corollary:

Corollary 1.2. An orientation of o graph is not admissible if and only if
it contains a circuit whose all arcs are asymmelrical and vertices induce a
clique (such a circuit is called a whirl).

We denote by dp(z,y) the length of the shortest path from z to y in D.
For any X,Y C V(D) and z € V(D) \ X we put dp(z,X) = Héi}l{ldp(w,y),
v

dp(X,z) = ;rg}r{xdp(y,x) and dp(X,Y) = zeg(lfyneydp(z,y). Let k,1 be

integers, k > 2 and ! > 1. We say that subset J C V(D) is a (k, 1) - kernel
of D if

(i) for each z,y € J and = # y,dp(z,y) > k and
(ii) for each z € V(D) \ J there exists y € J that dp(z,y) <.

If k=2 and Il = 1, then we obtain the definition of a kernel or in other
words a (2, 1) - kernel of digraph.

If J satisfies the condition (i), then we say that J is k - stable in D (if
k = 2, then we write that J is stable in D). Moreover, we assume that the
subset including exactly one vertex also is k - stable in D. We say that J
is I - dominating in D (for short: dominating in D, when I = 1), when the
condition (ii) is fulfilled. More precisely with respect to the vertex z we
say: z is { - dominated by J in D or J | - dominates = in D.

A directed graph such that every induced subdigraph has a (k, {) - kernel
is called (k,!) - kernel-perfect. An undirected graph is (k,) - solvable (resp.
(k,1) - M-solvable) if every its admissible (resp. M-admissible) orientation
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has a (k,!) - kernel. Three last concepts are generalizations of kernel-
perfect, solvable and M-solvable graph, respectively, which are considered
in (1], [2], [3] and [5].

Let Go,G1y,... ,Gp, p 2> 1, denote p + 1 pairwise vertex-disjoint undi-
rected graphs (not necessarily with the same cardinalities of vertex sets).
The generalized join of graphs Go, G, ... , Gp is a graph J (Go, G1, ... ,Gp)
obtained by adding a new edge zy, for every z € V(Gy), y € V(G;), where
i=1,2,...,p, to the disjoint union of the graphs Gy, G1,... ,Gp. It may
be to note that for p = 1 we receive the join of two graphs Go o G.

Let G be an undirected graph and X be an arbitrary subset
of V(G). Let H be a graph isomorphic to G[X]. The vertex
from V(H) corresponds to £ € X we will denote by z'. Duplica-
tion of X in G, denoted by GX, is a graph such that V(GX) =
V(G) UV(H) and E(GX) = E(G) U E(H) U Eg U Ey, where Ep =
{z'y:z' € V(H) and y is a vertex adjacent to z € X in G} and
E, C{zy:z € V(H) and y € V(G)}. If E; # 0, then duplication is called
adjacent. Otherwise duplication is non-adjacent. Put X' = V(H). The
vertex 2’ € X' is called a duplicate of x € X and X' is a duplicate of X.

Other more precisely notations will be introduced in the parts of the
paper in which they will be used. For concepts not defined here, see [4].

2. DUPLICATION AND (k,l) - KERNELS OF ITS ORIENTATIONS

We will start with some definitions. Let G be an undirected graph, X
be an arbitrary subset of V(G) and D be an orientation of duplication GX.
For z € X by N(x) we denote the subset of vertices not belonging to X
and adjacent to = in D (of course they are adjacent to its duplicate z’ € X'
in D). Now create a partition of N(z) in the following way:

Ny(z) = {y € N (z) : the arcs zy, z'y € Asym(D)},

Na(z) = {y € N (z) : the arc yz € Asym(D) or yz' € Asym(D)},

Na(z) = N(z) \ (N1(z) U N2(z)).

It may be to note that if y € N;(z) U Naz(z), then there exist both of the
arcs zy, 'y in D.

By G — X we mean a subgraph of G obtained from G by deleting the
subset X. We define an orientation D* of G as follows: every edge belonging
to A(G — X)U A(X) is directed as in D and for any z € X

(i) if y € Ny(z), then the arc zy € Asym(D*) and

(ii) if y € Na(x), then the arc yz € Asym(D*) and

(iii) if ¥ € Na(z), then the arc zy € Sym(D*).

The idea used in the construction of the orientation D* is closely related
to a construction included in [2].
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Let us observe the following result.

Lemma 2.1. Let G be an undirected graph and X C V(G) and D be an
admissible orientation of duplication GX . If either (a) or (b) be satisfied:
(8) duplication GX is non-adjacent and D [X] is isomorphic to D [X'),
(b) duplication GX is adjacent, for every z € X and its duplicate ' € X'
there ezists an edge zz' € E(GX) and an arc 'z € Asym(D),

then the orientation D* of G is admissible.

Proof. Assume on the contrary that D* is not admissible. Then D* con-
tains a whirl W in view of Corollary 1.2. It is easy to observe that there exist
two vertices from W such that one belongs to X and another one belongs
to V(G) \ X. Otherwise, D also contains the whirl W. Thus, we obtain
a contradiction with that D is an admissible orientation of GX. Hence
there exists a path [y1,¥2,... y¥n—1,¥s] in W such that y1,y, € V(G)\ X
and yg,...,¥n-1 € X. Since the arcs y1y2, Yn—1yn € Asym(D*) and
Y2,Yn—1 € X, then y; € Na(y2) and y, € Ny(y,_1). By the definition of
N1(yn-1) there exist the arcs Yn—1Yn, ¥4_1¥n in D and both are asym-
metrical. By the definition of N2(y2) at least one of the arcs ¥192, ¥1%5,
belongs to A(D) and is asymmetrical in D. If 4,2 € Asym(D), then there
exists the path [y1,%2,.. - y¥n-1,¥s) in D and it contains only asymmetrical
arcs. If y;95 € Asym(D), then two cases are to consider. If the condition
(a) holds, then replacing vertices y,... ,¥n—1 With y5,... ,y._, we create
a path [y1,%3,...,¥,_1,¥n) in D, whose all arcs belong to Asym(D). If
condition (b) holds, then putting the arcs y1¥5, y4y2 instead the arc ¥y,
we receive a path [y1,%5,%2,.-- y¥n—1,¥s] in D, whose arcs are included in
the asymmetrical part of D. Repeating the same operation for every path
1,92, .. 1¥s—1,%s] in W such that y1,y, € G(V)\ X and ya,... ,¥s-1 € X
we receive a whirl in D, a contradiction, with the assumption. So D* is
admissible orientation of G. 1
)

Now we prove the related result with respect to D* being M-admissible.

Lemma 2.2. Let G be an undirected graph and X C V(G). If D is an
M-admissible orientation of duplication GX such that D [X] is isomorphic
to D[X'], then the orientation D* of G is M-admissible.

Proof. Assume on the contrary that D* is not M-admissible i.e., there
exists circuit C = [z,y, 2,z] in D* having at least two asymmetrical arcs.
It is clear that there exist two vertices from C such that one belongs to
X and another one belongs to V(G) \ X. Otherwise, D also contains the
circuit C, a contradiction with that D is M-admissible. Without loss of
generality we consider two cases:
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(a) z,ye X and z€e V(G)\ X,
(b) ze X and y,2 € V(G) \ X.

At first assume that condition (a) holds. From the definition of D*
and the assumption that D [X] is isomorphic to D [X'] it follows that if
zy € Asym(D®), then zy,z'y’ € Asym(D) and if zy € Sym(D*), then
zy,2'y’ € Sym(D). First we assume that yz € Asym(D*). This implies
that z € N1(y). By the definition of Ny(y) the arcs yz,y'2 € Asym(D).
If yz € Sym(D"*), then z € N3(y). From the definition of Na(y) it follows
that yz,y'z € A(D). Now we suppose that zz € Asym(D*). Therefore
z € Np(z). It follows that 2z € Asym(D) or zz’ € Asym(D). If 2z €
Sym(D*), then z € N3(y). For this reason 2z, 2z’ € A(D). From facts
given above it follows that if at least two arcs of C are asymmetrical in
D*, then one of the circuits [z,¥, 2,z] and [z',y’, 2, ] contains at least two
asymmetrical arcs in D, a contradiction.

It remains to analyze the condition (b). Arguing like in case (a) we have:

yz € Asym(D*) if and only if yz € Asym(D),

if 2z € Asym(D?*), then 2z € Asym(D) or zz' € Asym(D),

if zz € Sym(D*), then 2z, 2z’ € A(D),

if zy € Asym(D*), then zy,z'y € Asym(D) and

if zy € Sym(D*), then 2y, z'y € A(D).

From these facts it follows that if C' contains at least two asymmetrical
arcs in D*, then there exists one of the cireuits [z,y, 2,z], [z',¥,2,2] in D
and has at most one symmetrical arc, a contradiction with the assumption
about D. This means that the orientation D* of G is M-admissible. i

We recall that k, ! are integers, k > 2 and ! > 1. Using the above Lemma
2.1 we prove:

Theorem 2.3. Let G be a (k,l) - solvable graph, X be a subset of V(G)
and GX be non-adjacent duplication of X in G. If D is an admissible
orientation of GX such that D [X] is isomorphic to D [X'), dp(X,X') >k
and dp(X',X) > k, then D has a (k,l) - kernel.

Proof. At first we prove that D has a (k, 1) - kernel, for k¥ = 2. It is clear that
in this case we need only to show it for I = 1. From Lemma 2.1 it follows
that D* is an admissible orientation of G. Hence D* has a (2,1) - kernel
J (i.e., J is a kernel of D*). It is not difficult to see that if ¥ = JNX # 0,
then JUY" is a kernel of D, where Y’ C X' is duplicate of Y. Indeed, it
is easy to observe that the set JUY" is stable in D. So what remains is to
show that it is dominating in D. Obviously, every z € XUX' is dominating
by JUY' in D. From the definitions of J and the orientation D* of G it
follows that every y € V(D) such that dp (Y,y) > 2 and dp (y,Y) > 2 is
dominated by JUY" in D. Now, let ¥ € V(D) \ X be the vertex adjacent
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to some vertex from Y. If there exists z € Y such that y € N2(z) U N3(z),
then at least one of the arcs yz, yz' exists in D. Consequently, the subset
JUY’ dominates the vertex y. If for every x € Y the vertex y belongs to
Nj(z), then the arcs yz and yz' do not exist in D. This means that for
every z € Y the arc 2y € Asym(D*) and so y must be dominated in D*
by some vertex of J\Y. Then JUY" dominates y in D. Now consider the
case, when JNX = §. In this case for every z € X there exists y € J such
that the arc zy € A(D*). A consequence of this is that y € N;(z) U N3(z).
This means that y is a successor of z and z'. Then J is a kernel of D.

Now consider k& > 3. In this case for every z € X and z' € X' we have
that dp (z,2') > k and dp (z',z) > k. This means that if y € N(z) =
N(z'), then either the arcs yx, yz' € Asym(D) or the arcs zy, z'y €
Asym(D). Let J be a (k,I) - kernel of D[V(G)]. IfY =JNX # 0,
then the subset JUY" is k - stable. Additionally, from this that D [X] is
isomorphic to D [X'] it follows that this subset is ! - dominating in D. It
is not difficult to observe that if JNX = @, then J is a (k,1) - kernel of D.
This completes the proof. §

Note that.if ¥ = 2, then every orientation D of non-adjacent duplication
of GX satisfies inequalities dp(X, X’) > k and dp(X’, X) > k. Addition-
ally, if the subset X contains only one vertex, then D [X] is isomorphic to
D [X']. From these facts it follows that Theorem 2.3 is a generalization of
the result announced in [2] and concerns duplication of one vertex and a
kernel.

Theorem 2.4. [2]Let G be a solvable graph, x € V(G) and G' be the graph
obtained from G by adjacent duplication of x with a new vertex x'. If D' is
an admissible orientation of G' in which the arc =’z is asymmetrical, then
D' has a kernel.

Taking Lemma 2.2 into consideration and proceeding like in the proof
of Theorem 2.3 we can prove the following result.

Theorem 2.5. Let G be a (k,l) - M-solvable graph, X be an arbitrary
subset of V(G) and GX be non-adjacent duplication of X in G. If D is an
M-admissible orientation of GX such that D [X] = D[X'], dp(X,X') > k
and dp(X',X) > k, then D has a (k,l) - kernel

The next theorem gives a sufficient condition for an admissible orienta-
tion of adjacent duplication to have a (k,!) - kernel.
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Theorem 2.6. Let G be (k,l) - solvadle, X be a subset of V(G) and GX
be adjacent duplication of X, such that there exists an edge zx', for every
z € X and its duplicate z' € X'. If D is an admissible orientation of GX
such that the following conditions are satisfied:

(a) D[X] is isomorphic to D[X'],

(b) an arc 'z € Asym(D) and

(c) for everyz € X andy € V(G)\ X if zy € Asym(D), then z'y €

Asym(D),
then D has a (k,1) - kernel.

Proof. From Lemma 2.1 it follows that D* is an admissible orientation of
G. As aresult of this D* has a (k,1) - kernel, say J. We shall prove that J
is a (k,1) - kernel of D. We need only to show that J is ! - dominating in
D, because J is k - stable in D. If z € V(G) \ J, then there exists a path
P from x to some vertex w € J of length at most I in D*. If all arcs from
P belong to A(D), then z is ! - dominated by J in D. Assume that there
exists an arc yz belongs to the path P, such that 2y € Asym(D). Observe
that 2 € X and y € Np(2) UN3(2). It is a consequence of the construction
of the orientation D*. This means that at least one of the arcs yz, yz'
belongs to A(D). Moreover, by (c) we have z'y € Asym(D). Combining
two facts given above we have that yz, yz' € A(D), a contradiction that
2y € Asym(D). This means that P also is in D. Hence every z € V(G)\ J
is - dominating by J in D. In that case it remains to prove that all vertices
from X' are I - dominating by J in D. Let z’ € X'. If x corresponding
to z' belongs to J, then dp(z’,J) =1 < I. If z € X \ J, then from the
fact proved earlier it follows that there exists a path {z,y1,¥2,-- ,¥n,¥]
from z to some vertex y € J of length at most I in both D* and D. Let
i be the smallest integer such that y; € V(G) \ X. By (a) there is a path
[:z:’,yi,yé,... ,y{_l] in D. In view of the fact that y; € V(G) \ X we
have y; € Ny (y;-1) U N3(y;—1)- In consequence, the arcs y;_,y; and y!_,¥;
belong to A(D). This means that there exists a path [yé_l,y,-,. .. ,y] in
D. So [#',yl,... ,¥}_1,¥%is--. ,¥] is & path of length at most I in D, hence
dp(z',J) < I. All this together shows that J is ! - dominating in D and
consequently, J is a (k,1) - kernel of D, what completes the proof. §

Replacing Lemma 2.1 in the proof of Theorem 2.6 to Lemma 2.2 we can
formulate the following result.

Theorem 2.7. Let G be (k,l) - M-solvable, X be an arbitrary subset of
V(G), and GX be adjacent duplication of X, such that there ezists an edge
zz'; for every z € X and its duplicate z' € X'. If D is an M-admissible
orientation of GX such that the following conditions are satisfied:

(a) D[X] is isomorphic to D[X'],
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(b) an arc 2’z € Asym(D) and
(c) for everyz € X andy € V(G)\ X if zy € Asym(D), then z'y €
Asym(D),
then D has a (k,1) - kernel.

3. ON (k,k — 1) - KERNELS OF AN ORIENTATION OF THE GENERALIZED
JOIN

At first we give some propositions about the generalized join, which are
necessary to prove the main result of this section.

Let Gy, Gy,... ,G, be undirected graphs and k& > 2. We say that an
orientation D of the generalized join J (Go,G41,... ,Gp) has a property a
with respect to G; for a fixed integer 1 < ¢ < p, if every circuit C of length
3<m<k+1in D containing at least one vertex from V(Gp) and from
V(G;) has at least m — 1 symmetrical arcs.

The next result is obvious.

Proposition 3.1. Every induced subgraph of the generalized join also is
the generalized join or an induced subgraph of disjoint union of some com-
ponents of the generalized join.

Proposition 3.2. Let Gy, Gi,... ,Gp be undirected graphs and D be an
orientation of the generalized join J (Go,Gh,. .. ,Gp) having a property o
with respect to G; for a fived integer 1 < i < p. Let S be a (k—1)
- dominating subset of D[V(Go)] and = € V(G;) be a verter such that
dp(z,S) > 2. Then there exists an arc yz for every y € V(Go).

Proof. Let y € V(Gp). By the definition of the generalized join there exists
at least one of the arcs zy, yz in D. If y € S, then the asymmetrical arc
yz € A(D) because of dp(z, S) > 2. Now consider y € V(Go) \ S. Seeing
as S is (k — 1) - dominating in D [V'(Gp)], we have that there exists z € §
such that dp(y,2) < k — 1. Moreover, from the hypothesis it follows that
dp(y,2) > 2 (i.e., the arc 2y is asymmetrical in D). We state that the arc
yz € V(D). Otherwise, zy € Asym(D). But this means that there exists a
circuit of length m < k + 1 containing the vertices z,y, 2 and at least two
asymmetrical arcs, a contradiction. [
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Proposition 3.3. Let Go, Gy,... ,Gp be the undirected graphs and D be
an orientation of the generalized join J (Go, Gy, ... ,Gp) having a property
a with respect to G; for a fized integer 1 < i < p. Let ¢ € D[V(G;)),
y € D[V(G;)] with 1 < j < p and for every w € D [V(Gy)] wz € A(D). If
dp(z,y) < k-1, thendp(y,z) < k—1 or for everyw € D [V(Go)] wy €
Asym(D).

Proof. Assume on the contrary that dp(z,%) < k— 1, but dp(y,z) > k
and there exists w € D [V(Gy)] such that yw € A(D). At first we consider
the case, when ¢ = j. Since dp(z,y) < k¥ — 1 and dp(y,z) > k,then at
least one arc from the shortest path from z to y is asymmetrical. This
means that for every vertex w € D [V(Go)] there exists a circuit of length
m < k+1 containing the vertices z,y,w and at least two asymmetrical arcs,
a contradiction. Now we take into consideration ¢ # j. It is not difficult to
observe that for k£ = 2 the proposition is true, since dp(z,y) = 2 = k. Let
k > 3. From the assumptions it follows that there exists w € D [V(Gp))
such that yw € A(D) and wx € A(D). This means that dp(y,z) = 2 <
k — 1, a contradiction with the assumption that dp(y,z) > k. §

The following theorem is the main result of this section. It gives a
sufficient condition for an orientation of the generalized join of graphs to
be (k,k — 1) - kernel-perfect.

Theorem 3.4. Let Dy, Dy,... ,D, be p+ 1 vertex - disjoint (k,k — 1) -
kernel-perfect digraphs and let Go, G1,... ,G, be the underlying undirected
graphs. Let D be an orientation of the generalized join J (Go,Gh, ... ,Gp)
such that for every 0 < i < p we have D [V(D;)] = D;. If the orientation
D has a property o with respect to every 0 < i < p and D([V(D;)] is
isomorphic to D;, then D is (k,k — 1) - kernel-perfect.

Proof. From Proposition 3.1 it follows that we need only to prove that D
has a (k,k—1) - kernel. For better clarity we split the proof into two parts.
I. Assume that & > 3 and there exist an integer s with 1 < s < p
and z € V(D,) such that for every y € V(D) an arc yz € A(D) is
asymmetrical in D. For every 1 < ¢ < p, we denote by B; the subset of
V(D;) such that = € B; if and only if for every y € V(Do) yz € Asym(D).
Let I = {¢: B; # 0}. 1t follows from the assumption that I is not empty,
since s € I. Further, from the assumption that D; is (k,k — 1) - kernel-
perfect and D [V;] is isomorphic to D; it follows that for ¢ € I the subdigraph
D|[B;] has a (k,k — 1) - kernel, say J;. Note that |JJ; is k - stable in D,

i€l
by the definitions of the subsets B; J; and of the generalized join. Now

we show that |JJ; is (k—1) - dommatmg in D. Let y € V(D) \ U Ji. If
1€l
y € V(Do), then dp(y,J;) =1 < k —1 for every i € I by the deﬁmtxon
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of B;. f y € U (V(Ds)\ Bi), then there exists an arc yw in D, where
<r

w.€ V(Dp). Comblmng two facts given above we have that dp(y, UJ )=

2<k-1l.Ifye U (Bi \ Ji), then dp(y, UJ) <k-1, bythedeﬁmtlon

of J;. This means that UJiisa (k,k— 1) kernel of D.
iel
II. Now assume that & = 2 or for every 1 < i < p and every z € V(D;)

there exists y € V(Do) such that zy € A(D). Let Jo be a (k,k — 1)
- kernel of Dp. If every vertex x € V(D;) with 1 < i < p.is (k—1)
- dominated by Jp, then Jy is a (k,k — 1) - kernel of D and the the-
orem. follows. So assume that there exist integer j and z € V(D;)
such that dp(z,Jp) > k. Then from Proposition 3.2 it follows that
R = {y € V(D;) : for every z € V(Do) we have dp(z,y) = 1} is not empty.
Let Jg be a (k,k — 1) - kernel of D [R)]. Note that

(3.1) if y € V(Do) U R\ Jg, then dp(y, Jr)<k-1
This follows from the definition of R and Jg. Now we show that
(3.2) fory € V(D)\ Jg if dp(Jr,y) < k — 1, then dp(y, Jg) < k — 1.

Owing to (3.1), it is enough to consider y € (J V(D;) \ R . By the
1<i<p
definition of Jp C R, for every z € Jr and w € V(Dg) we have wz € V(D).
From this fact it follows that if dp(z,y) < k — 1, then dp(y,z) < k—1
or for every w € D[V(Gy)], wy € Asym(D), in view of Proposition 3.3
At the same time taking the assumption from the beginning of this part
of the proof we have that if dp(z,y) < k — 1, then dp(y,z) < k— 1. So
(3.2) is fulfilled. Let S; be a subset of V(D;) such.that = € S;.if and only
if dp (Jr,z) > k and dp (z,Jr) > k, for every 1 < i < p. Notice that
for @ # j and k = 2 we have that S; = V(D;). Since every. digraph. D; is
(k, k—1) - kernel-perfect, then the induced subdigraph D [S;] has a (k, k—1)
- kernel, say. J;, for 1 <4 < p.. We show that JpU |J. J; isa (k,k—1)
1<i<
- kernel of D. At first we show k - stability of this gu%l;et. It is easy to

observe that for k = 2 the subset Jgp U |J J; is.stable in. D. Let k > 3.
1LiLp

From.the definitions of Jg,.S; and J; if follows that we need only to. prove
that dp (J,,J;) > k for every integers s # t. Assume on the contrary that
there exist z € J, and y € J; such that dp {(z,y) < k — 1. Therefore, there
exists w € V(Do) such that dp (z,w) = 1. Moreover, dp (z,Jg) = 1 (from
the definition of R). This means that dp (z,Jg) = 2 < k, a contradiction
with fact that z € J, C S,. To complete the proof we need to show that

JrU |J J;is (k—1)-dominating in D. Let y € V(D)\ <JR u Jg) be
1<i<p 1<i<p
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the vertex such that dp (y, Jg) = k. From (3.2) it follows that dp (Jr,y) >

k. Soye€ |J S;. Henceyis (k— 1) - dominated by |J J; and the
1<i<p 1<i<p

theorem is proved. i

It may by to note that for p = 1 and k& = 2 we receive the result
announced in [2] considering the join two graphs and a kernel.

Theorem 3.5. ([2])Let Dy, Do be two vertex - disjoint kernel-perfect di-
graphs and let G, G, be the underlying undirected graphs. Let D be an ori-
entation of the join J (G1,Gz2) such that D[V(D,)] = D1, D[V (Dz)] = D,
and every circuit C in D of length three such that V(C)NV(D,) # 0 and
V(C)NV(Dz2) # 0 has at least two symmetrical arcs. Then D is kernel-

perfect.
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