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Abstract

For a graph G = (V, E), a set S C V is total irredundant if for
every vertex v € V, the set N[v] — N[S — {v}] is not empty. The
total irredundance number ir,(G) is the minimum cardinality of a
maximal total irredundant set of G. We study the structure of the
class of graphs which do not have any total irredundant sets; these
are called ir;(0)-graphs. Particular attention is given to the subclass
of ir¢(0)-graphs whose total irredundance number either does not
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change (stable) or always changes (unstable) under arbitrary single
edge additions. Also studied are ir,(0)-graphs which are either stable
or unstable under arbitrary single edge deletions.

1 Introduction

Let G = (V, E) be a graph of order |V| = n. For any vertex v € V, the
open neighborhood of v is defined by N(v) = {u € V | uwv € E(G)} and its
closed neighborhood by N{v] = N(v)U {v}. The open neighborhood of a set
S is the set N(S) = UyesN(v) and the closed neighborhood of S is the set
N[S] = N(S)US. The neighbor of an endvertex is called a support vertex.
Graph theory terminology not presented here can be found in {1} and [2].

The private neighbor set of a vertex v with respect to a set S is denoted
by PN[v,S) = N[v] — N[S — {v}]. If PN[v,S] # 0 for some vertex v and
some S C V, then every vertex of PN[v, 5] is called a private neighbor of
v with respect to S, or just an S-pn.

A set S C V of vertices is a dominating set if cvery vertexve V — S is
adjacent to at least one vertex u € S, and is a total dominating set if every
vertex v € V is adjacent to at least one vertex u € S. Dominating sets and
total dominating sets, and their many applications have been well-studied;
the interested reader is referred to two recent comprchensive books on this
subject (cf. [2] and [3]).

Of particular interest in the study of dominating scts in graphs are min-
imal dominating séts. It is easy to see that a set S is a minimal dominating
set if and only if the following condition holds:

(1) for every vertex v € S, there exists a vertex w € V — (§ — {v})
which is not dominated by S — {v}, i.e., w ¢ N[S — {v}].

Equivalently, one can say that a dominating set is a minimal dominating
set if and only if the following condition holds:

(2) for every vertex v € S, PN[v,S] # 0.

We say that a set S of vertices is irredundant if condition (2) holds.
Thus, the minimality condition for a dominating set is the definition of
an irredundant set. Irredundant sets have also been well studied in the
literature; the reader is again referred to [2] and [3]. However, the concept
of a total irredundant set has only recently been defined and studied. A
set S is total irredundant if and only if the following condition holds:

(3) for every vertex v € V, PN[v,S] # 0.

Notice that for an irredundant set S, only the vertices in S are required
to have a private ncighbor with respect to S, while for a total irredundant
set every vertex in V must have an S-pn. The total irredundance number
ir¢(G) of a graph G is the minimum cardinality of a maximal total irredun-
dant set in G, and a total irredundant set with cardinality ir;(G) is called
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an ir-set. If a graph G has no total irredundant set, then iry(G) is defined
to be zero, and it is convenient to refer to such graphs as ir.(0)-graphs.

Total irredundance in graphs was first defined and algorithmically stud-
ied by Hedetniemi, Hedetniemi, and Jacobs in [4], who presented a linear
algorithm for computing ir,(T") for any tree T, and an NP-completeness
proof for the UPPER TOTAL IRREDUNDANT SET problem. In this
problem one seeks the maximum cardinality of a total irredundant set in a
graph G.

Recently, Favaron, Haynes, Hedetniemi, Henning, and Knisley (5] initi-
ated the graph theoretic study of total irredundance in graphs. In [5] the
parameters ir¢(G) and IR.(G) are studied, where IR;(G) equals the max-
imum cardinality of a total irredundant set in a graph G. Also presented
in [5] are:

(i) a characterization of ir,(0)-graphs,

(ii) several results on regular graphs with ir,(G) > 1,

(iii) a characterization of trees with ir,(T") = 1, and

(iv) several upper bounds on total irredundance numbers.

This paper is motivated by the somewhat unique properties of the class
of graphs G for which ir,(G) = 0. Consider any typical integer-valued pa-
rameter of a graph G, like the independence number Bo(G), the domination
number ¥(G), the vertez covering number ag(G), the irredundance number
ir(G), the matching number B, (G) and the chromatic number x(G) (for de-
finitions the reader is referred to [2]). Let ((G) denote a generic parameter
of a graph G and let {(¢) denote the class of graphs for which ¢ (G) =i. For
most parameters ((G), it is almost trivial to characterize the class of ¢(0)
or {(1) graphs. However, the total irredundance number ir¢(G) is one of
the few examples where it is anything but trivial to characterize the class
of iry(0)-graphs.

To illustrate the concept of total irredundance, we present some exam-
ples. The complete graph K, is an example of a graph having no total
irredundant sets, and hence ir;(K,) = 0. However the complement of the
complete graph K, has only one maximal total irredundant set, i.e., the
entire vertex set, and ir,(K,) = n. Note that for a graph G of order n, a
total irredundant set is dominating if and only if ire(G) =mn, ie., G=K,.

The central vertex, say v, of a star Ky, with order n = m+1 for m >2
is a maximal irredundant set, but it is not a maximal total irredundant set,
since the endvertices do not have private neighbors with respect to {v}.
On the other hand, the set of all leaves except one is a maximal total
irredundant set. It can be seen that iry(Kim) =m—-1=n-2. In fact,
it is shown in [5] that for any graph G of order n without isolated vertices,
iry(G) < n—2 and the stars K ,, for m > 2 are the only graphs achieving
this upper bound.
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The complete bipartite graph K., has iry(K,,) = r — 1, since r — 1
vertices from a partite set form an ir,-set. For n even, let G be K, minus a
perfect matching. Since for every vertex v in G, {v} is a total irredundant
set of G, ir¢(G) > 1. However, any two vertices of G form a dominating set
of G and therefore cannot be a total irredundant set. Hence, ir(G) < 1,
and so ir(G) = 1.

Also, the graphs G and H shown in Figure 1 have ir,(G) = ir,(H) = 1
(the set {z} is an ir-set).

P -

Figure 1: iry(G) = iry(H) = 1.

The trees T with ir,(T) = 1 were characterized in [5] as one of the
following three types: type Ti is a star Ky, k£ > 1, with exactly one
subdivided edge, type T» is a corona of a star K; x o K; for £ > 2, and
type T3 is a subdivided star K7 , for k > 2. These types are 1llustrated in
Figure 2, where for each type of tree, the set {z} is an ir;-set.

T Z Te: T T3:

* |

1 2 k 1 2 k 1 2 k
k21 k22 k22

Figure 2: Types of trees T having ir,(T) = 1.
In this paper we examine the effects on the total irredundance number of

a graph G when G is modified by deleting or adding an edge. It is interesting
that by adding an edge to a graph, it is possible to either increase or
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decrease the total irredundance number. In fact, the increase (respectively,
decrease) can be arbitrarily large. For an example of an arbitrarily large
decrease, consider the graph G, formed from K, where two of its vertices
are labelled u and v, by identifying each vertex in Kp4o — {u,v} with
an endvertex of a copy of Ps. See Figure 3 for the graph G3. The only
maximal total irredundant set of G,, is the set of endvertices, so ir,(G,) = p.
Consider Gp, + uz where z is an endvertex. Then {v} is a maximal total
irredundant set of G, +ux, and hence, ir;(Gp+uz) = 1. On the other hand,
for the subdivided star K7, ire(K}n) = 1 and ir(KS,, +€) =m -1
for any edge added from the center to an endvertex, demonstrating an
arbitrarily large increase. By the same token deleting an edge can also result
in an arbitrarily large increase or decrease. Note that adding or deleting
an edge need not change the total irredundance number. The graph G in
Figure 4 has 0 = ir,(G) = ir(G — wv) = iry(G + zv). Moreover, iry(G —
vy) = 1 showing that a graph can have both “changing” and “unchanging”
edges.

Figure 4: Graph G with “changing” and “unchanging” edges.

We say that a graph G is k*-stable if iry(G) = iry(G + e) = k for

an arbitrary edge e € E(G). And similarly, a graph G is k~-stable if
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iry(G) = iry(G — e) = k for any edge e € E(G). A graph G is k*-unstable
if ire(G) = k # ir(G + e) and k~-unstable if ir;(G) = k # ir,(G — e) for
any arbitrary edge e € E(G) and e € E(G), respectively.

Here we characterize the 0%-stable, 0—-stable, 0*-unstable, and 0~-
unstable graphs. We begin with some background on ir;(0)-graphs.

2 Graphs G with ir,(G) =0

Although ér(G) > 1 for all graphs G, as noted in the introduction, ir;(G)
can equal zero. For example, the complete graph K, has iri(K,) = 0.
Moreover, the graphs in Figures 4, 5, and 7 are ir;(0)-graphs.

Figure 5: An ir,(0)-graph.

The ir¢(0)-graphs were characterized in [5]. Before giving the charac-
terization, we present some more terminology. For distinct vertices u and
v, if Nfu] = N[v], we say that u and v are clones (also called twins in
the literature). If N[u] C N[v], that is, the neighborhood of v properly
contains the neighborhood of u, then we say that v is superior to u and u
is inferior to v. If a vertex v is not inferior, superior, or clone to any other
vertex, then we say that v is normal. If v is superior (inferior) to every
vertex in a set S, then we say that v is superior (inferior) to set S.

Notice that the relation “is a clone of” partitions the vertex set V into
sets of clones and singleton sets (vertices with no clones). We call the sets
of the partition clone-sets. Note that each singleton, although not a clone,
is referred to as a clone-set. Note also that between any pair of clone-sets,
either no edge is present or every possible edge is present. If every possible
edge is present between two clone-sets A and B, we say that the vertices
of A are clone-adjacent to the vertices of B, or just that the clonc-sets A
and B are clone-adjacent.

We repeat some observations from [5).

Observation 1 Every clone-set induces a complete subgraph.
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Observation 2 IfG # K, then the complete subgraph induced by a clone-
set is not mazimal.

Observation 3 If G is an ir,(0)-graph, then every vertez of minimum
degree must have a clone.

Note that a singleton set consisting of a normal vertex, or an inferior
vertex that is not superior or clone vertex to another vertex, is a total
irredundant set (though not necessarily maximal), so any graph G with
such a vertex has ir;(G) > 1. We now give the characterization of iry(0)-
graphs.

Theorem 4 A graph G is an iry(0)-graph if and only if every verter is
either superior or clone to another vertez.

3 Edge Deletion

For any ir;(0)-graph, deleting an edge cannot decrease the total irredun-
dance number and hence we will be interested only in whether ir; stays
the same or increases. Recall from the introduction that deleting an edge
can cause an arbitrarily large increase in the total irredundance number.
However, our first result shows that this is not the case for ir,(0)-graphs.

Theorem 5 If G is an ir,(0)-graph G and e € E(G), then ir,(G — e) <
ir(G)+2=2.

Proof. Let G be an 4r,(0)-graph. Suppose that for some edge uv € E(G),
iry(G —uv) > 3. Let S be an #ry-set of G —uv. Since |S| > 3, there exists a
vertex, say z, in S such that = ¢ {u,v}. Hence, Ng_yy[z] = Ng[z]. Since
G is an ir,(0)-graph, Theorem 4 implies that z is either a superior or clone
vertex in G. If z is superior in G, then z is superior in G — uv. Hence,
T cannot be in any total irredundant set of G — uv, contradicting the fact
that z € S. Therefore, = has a clone, say y, in G. If y & {u,v}, then y
is a clone of z in G — wv, again contradicting the fact that z € S. Hence,
y € {u,v}. But then z is superior to ¥ in G — uv, contradicting the fact
that z€ §. O

We note that the bound of Theorem 5 is sharp as can be seen with the
graph G = mKj, where ir,(G — e) = ir,(G) + 2 for any edge e € E(G).
Our next result characterizes the edges e € E(G) for which ir(G—-e) =
i”'t(G) = (.

Theorem 6 For any ir,(0)-graph G and edge uwv € E(G), ir(G — wv) =
iry(G) = 0 if and only if u and v are clone-adjacent, superior vertices in
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Proof. Let G be a graph with ir;(G) = 0, and assume that ir;(G — wv) =
ir¢(G) for an edge uv € E(G). Then either v and v are clone-adjacent or
u and v are in the same clone-set in G. First, if © and v are clones, let
S = {u}. Then, in G — uv, u is its own S-pn, and every vertex in the
N(u) has v as a private neighbor. Thus, S is a total irredundant set of
G — uv implying that ir¢(G — wv) > ir,(G), a contradiction. Therefore, u
and v are clone-adjacent in G. If one of v and v, say u, is not a superior
vertex, then since ir;(G) = 0, u is in a clone-set of cardinality at least
2. Again let S = {u}. Then u is its own S-pn, and every vertex in the
same clone-set as u has v as an S-pn. Furthermore, since « is not superior,
any vertex £ € N(u) that is not in the same clone-set as u, has an S-pn.
Thus, S is a total irredundant set of G — uv, contradicting the fact that
iry(G) = ir¢(G — wv). Thus, v and v must be superior vertices in different
clone-sets.

Conversely, let © and v be clone-adjacent, superior vertices in G and
consider G — uv. Since v and v are clone-adjacent and both are superior,
they are not superior to each other. Moreover, u (respectively, v) is not
superior to a clone of v (respectively, u). Thus, v and v remain superior in
G — uv and hence cannot be in any total irredundant set, that is, ir,(G) =
iry(G—uv) =0. O

We can now show there are no 0~ -stable graphs.
Theorem 7 No graph G is 0~ -stable.

Proof. If G is 0~-stable, then for cvery edge uv € E(G), iri(G) = ire(G -
uv) = 0. Hence, by Theorem 6, u and v must be clone-adjacent, superior
vertices. But G must have vertices that are not superior and each vertex
that is not superior must have a clone (since ir,(G) = 0). As in the proof
to Theorem 6, if e is an edge between clones, then ir(G) < ir (G — e),
contradicting the fact that G is 0~-stable. O

The characterization of 0~ -unstable graphs follows directly.

Theorem 8 A connected ir;(0)-graph G is 0~ -unstable if and only if no
two superior vertices in G are clone-adjacent.

As previously mentioned, G = mKj is 0" -unstable. For other examples
of 0~ -unstable graphs, see Figures 6 and 7.

4 Edge Addition

We now consider the cases 0*-stable and 0*-unstable. Again since we
are assuming that the graphs G have ir¢(G) = 0, the addition of an cdge
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Figure 6: A 0~-unstable graph.

cannot decreasc the total irredundance number, so the total irredundance
number either stays the same or increases. Although as we showed in the
introduction adding an edge can result in an arbitrarily large increase in
the total irredundance number, for ir¢(0)-graphs this increase is at most 1.

Theorem 9 If G is an ir(0)-graph G and e € E(G), then ir,(G +e) < 1.

Proof. Let G be an ir,(0)-graph and let uv € E(G). Suppose that ir,(G +
uv) > 1. Let § be an iry-set of G+uv and let = € §. We show that |S| = 1.
By Theorem 4, every vertex of G belongs to a clone-set of cardinality at
least 2 or is a superior vertex.

The set S contains no superior vertex of G+ wuwv and no vertex of G +uw
that belongs to a clone-set of cardinality 2 or more. In particular, since
each of v and v is a superior vertex in G + uw, neither « nor v is in S.

Let w be a superior vertex in G. Then there is a vertex w' that is
inferior to w, i.c., N[w'] C Nfw]. Since G is an ir,(0)-graph, v’ is in a
clone-set of cardinality at least 2. Every vertex in this clone-set containing
w’ is inferior to w, and so w is superior to at least two vertices in G. It
follows that w is also a superior vertex in G+uv. Hence any superior vertex
in G is also a superior vertex in G + uv. Thus, no superior vertex of G is
in S.

Let z belong to a clone-set of G not containing u or v. Suppose z is
not a superior vertex of G. Then, z belongs to a clone-set of cardinality at
least 2 in G. Let 2’ be a clone of z. Then, in G + uv, N[z] = N[2] and so
z and 2’ are clones in G + uv. Thus, z ¢ S. Hence, S contains no vertex
that is in a clone-set of G not containing u or v.

Let X and Y dcnote the clone-sets containing u and v, respectively.
Since u,v ¢ S, and since each vertex of S belongs to X or Y, we may assume
that z € X. If X contains a vertex different from » and z, then such a
vertex would have no S-pn, a contradiction. Hence, |X| = 2. Furthermore,
in G+uv, N[u] = N[z]U{v}. Thus, v is the unique S-pn of u. This implies
that S contains no vertex of Y, and so z is only vertex of 3, ie,|S|=1.0
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Theorem 10 For any ir¢(0)-graph G and edge wv € E(G), ir:(G) =
ir(G + wv) if and only if each of u and v is either a superior vertex of
G or in a clone-set of G with cardinality at least 3.

Proof. Let ir,(G) = iry(G + uv) = 0 for uv € E(G). Then u and v are
in different clone-sets and these clone-sets are not clone-adjacent. Also, by
Theorem 4 every vertex in G + uv belongs to a clone-set of cardinality at
least 2 or is a superior vertex. Moreover, since ir;(G) = 0 implies that
every vertex of G belongs to a clone-set of cardinality at least 2 or is a
superior vertex, each of u and v is a superior vertex in G +uv. If v and v
are superior in G, then they arc still superior in G + uv. Suppose that
is not superior in G and the clone-set of G containing u has cardinality 2.
Let § = {«'}, where v’ is the clone of u. Then in G + uv, v’ is its own
S-pn and u has v as its S-pn. But since u is not superior in G, its clone o
is not superior, and hence every vertex in N(u'] — {u} has an S-pn. Thus,
S is a total irredundant set of G +uv implying that i7¢(G +uv) > 1, which
is a contradiction. Therefore, in G each of u and v is either superior or in
a clone-set of cardinality at least 3.

Conversely, let each of u and v be a superior vertex or be in a clone-set
of cardinality at least 3 in G. Then in G + uv, u and v become superior
vertices; while the other vertices belong to a clone-set of cardinality at
least 2 or are superior vertices. Hence, ire(G + uv) =0 = ir(G). O

We can now characterize the connected 0t-stable graphs.

Theorem 11 A connected iry(0)-graph G is 0% -stable if and only if one
of the following holds

(i) G is a complete graph,
(ii) G contains no clone-set of cardinality 2,

(iii) G has ezactly one clone-set of cardinality 2 and this set dominates G.

Proof. First we consider the sufficiency. If G is a complete graph, then
vacuously G is 0*-stable. Since ir;(G) = 0, Theorem 4 states that every
vertex belongs to a clone-set of cardinality at least 2 or is a superior vertex.
Suppose G has no clone-set of cardinality 2 and let e € E(G). Then in
G +e each endvertex of e becomes a superior vertex, while all other vertices
belong to a clone-set of cardinality at least 2 or are superior vertices. Hence,
ir;(G + €) = 0. Suppose G has exactly one clone-set {z,y} of cardinality 2
and that {z,y} dominates G. Since ir;(G) = 0, every vertex different from
z and y is a superior vertex or belongs to a clone-set of cardinality at least 3.
Now let e € E(G), and again cach endvertex of e is a superior vertex in
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G + e, while all other vertices belong to a clone-set of cardinality at least 2
or are superior vertices in G + e. Hence, ir:(G + €) = 0. This proves the
sufficiency.

Next we consider the necessity. Suppose G # K, is 0*-stable. Then
for any edge e € E(G), iri(G) = ire(G + €) = 0. From Theorem 10, we
know that for any edge e = uv such that ir,(G) = ir,(G + wv), each of u
and v is either a superior vertex or in a clone-set of cardinality at least 3 in
G. In particular, if G has a clone-set {z,y} of cardinality 2, then Theorem
10 implies that {z,y} dominates G. Thus, {z,y} is the only clone-set of
cardinality 2 in G. O

Theorem 12 A connected iry(0)-graph G # K, is 0F -unstable if and only
if for each pair of non-adjacent clone-sets, at least one of the clone-sets has
cardinality 2 and contains no superior vertez.

Proof. Let G be a connected 0+-unstable graph and let uv € E(G).
Then, iry(G + uv) > 1 and both u and v are superior in G + wv. In fact,
by Theorem 9, ir¢(G + uwv) = 1. Let § = {z} be an ir,-set of G. Let A
and B be the clone-sets containing u and v, respectively. It follows from
the proof of Theorem 9, that 2 € A or = € B. Furthermore, the clone-set
that contains z has cardinality 2 and has no superior vertex.

Conversely, suppose that G is not complete and for each pair of non-
adjacent clone-sets, at least one has cardinality 2 and contains no superior
vertex. Let uv € E(G) and let A and B be the clone-sets containing u
and v, respectively. We may assume that |A| = 2 and that A contains no
superior vertex. Let A = {u,u'}. Then, {¢'} is a total irredundant set of
G + uv, and so ir,(G + wv) > 1. By Theorem 9, iry(G + uv) = 1. Since uv
is an arbitrary edge of G, this shows that G is 0*-unstable. O

For an example of a 0*-unstable graph, see the graph in Figure 7.

5 Concluding Remarks

In this section we consider the classes of induced subgraphs of ir; (0)-graphs,
and of 0~-stable, 0*-stable and 0*-unstable graphs. In particular, we show
that any graph G is an induced subgraph of some graph in each of these
classes. All of these results are based on the following operations on graphs.

The composition of graphs G and H is the graph G[H]| with vertex
set V(G) x V(H), in which vertices (u,v) and («/,v’) are adjacent if and
only if either uw’ € E(G) or v = v and v’ € E(H). In other words,
the composition G[H] is the graph obtained by replacing each vertex in G
with a copy of H and joining every vertex in the copy associated with a
vertex u to every vertex in the copy associated with a vertex v, if vertices
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Figure 7: A graph with clone-sets of cardinality 2.

u and v are adjacent in G. For an illustration, the graph in Figure 7 is the
composition Cg[K3).

The corona G o K is the graph obtained from a copy of G, where for
each vertex v € V(G), a new vertex v’ and the pendant edge vv' are added.
The generalized 2-corona is obtained from a copy of G, where for each
vertex v € V(G), two new vertices ' and v”, and the edges vv’ and v'v"”
are added (that is, for each vertex in V(G), a pendant path of length 2 is
added by identifying an endvertex of the new path P3 with v).

Obviously, the graph G is an induced subgraph of each of the corona
G o K, the 2-corona of G, and the composition graph G[H]. Also, we
note that every vertex in V(G) is superior in G o K1, and no vertex of G
is superior in the 2-corona of G. Morcover, if a vertex v is superior in G,
then v is also a superior vertex in G[H].

Theorem 13 Every graph G is an induced subgraph of an iry(0)-graph.

Proof. Any arbitrary graph G is an induced subgraph of the composition
G|K>). But every vertex in G[{K3] is clone to another vertex. In particular,
let the two vertices of Ko be labelled a and b, and let v € V(G). Then
vertices (u,a) and (u,b) are clones in the graph G[K»|. Therefore, G[K>]
is an iry(0)-graph. O

Corollary 14 There does not exist a forbidden subgraph characterization
of the class of ir.(0)-graphs.

We note that the graph G[K3] is not necessarily the smallest ir¢(0)-
graph which contains G as an induced subgraph. A smaller embedding of



G as an induced subgraph of an ir:(0)-graph can be obtained by cloning
only the vertices of G which are neither superior or clone to another vertex

in G.

Theorem 15 Every connected graph G is an induced subgraph of a 0%-
unstable graph.

Proof. Let G be an arbitrary connected graph of order n. We construct a
0%-unstable graph H as follows. Begin with the graph GU(K, oK), where
V(G) = {v1,v2,...,vn} and V(K,) = {uy,us,...,u,}, and add edges v;u;
for 1 <4 < n. Call this graph G'. Obviously, G is an induced subgraph
of G’. Note that if two vertices are clones in G, they are not clones in G'.
Furthermore, no new clones sets are formed in G, that is, no vertex of G’
has a clone. Moreover, the only superior vertices in G’ are the vertices of
V(K,).

Now let H = G’'[K2]. Then every clone-set of H has cardinality 2
and the only superior vertices of H are clone-adjacent. Thus, ir,(H) = 0.
According to Theorem 12, a graph is 0*-unstable if and only if for each pair
of non-adjacent clone-sets, at least onc of the clone-sets has cardinality 2
and contains no superior vertex. Hence, H is a 0*-unstable graph with G
as an induced subgraph. O

Corollary 16 There does not ezist a forbidden subgraph characterization
of the class of 0% -unstable graphs.

Theorem 17 Every connected graph G is an induced subgraph of a 0%-
stable graph.

Proof. According to Theorem 11, a connected ir,(0)-graph is 0*-stable if
and only if one of the following holds:

(i) G is a complete graph,
(ii) G contains no clone-set of cardinality 2,

(ili) G contains exactly one clone-set of cardinality 2 and this set domi-
nates G.

Condition (ii) is satisfied by every connected graph of the form G[K3). In
particular, graphs of the form G|[K3] are ir,(0)-graphs, since every vertex
in such a graph is clone to two other vertices. O

Corollary 18 There does not exist a forbidden subgraph characterization
of the class of 0% -stable graphs.
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Theorem 19 FEvery graph G is an induced subgraph of a 0~ -unstable graph.

Proof. Let G be a connected graph. We construct a 0™ -unstable graph H
as follows. Begin with the 2-corona of G and call this graph G’. Note that
the only superior vertices in G’ are the vertices superior to an endvertex,
and no two of these are clone-adjacent. Let H = G'[K3]. Then every vertex
of H is in a clone-sct of cardinality 2, so H is an iry{0)-graph. Furthermore,
no two superior vertices of H are clone-adjacent. According to Theorem
8, a graph is 0~ -unstable if and only if no two superior vertices are clone-
adjacent. Hence, H is a 0~ -unstable graph with G as an induced subgraph.
a

Corollary 20 There does not ezist a forbidden subgraph characterization
of the class of 0~ -unstable graphs.

We conclude by mentioning two potential arcas for future research.
1. Characterize ir(k)-graphs for k > 1.

2. Investigate the k™ -stable, k~-unstable, k*-stable, and k*-unstable
graphs for k > 1.
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