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Abstract

In this work, first, we present sufficient conditions for a bipartite di-
graph to attain optimum values of a stronger measure of connectivity, the
so-called superconnectivity. To be more precise, we study the problem
of disconnecting a maximally connected bipartite (di)graph by removing
nontrivial subsets of vertices or edges. Within this framework, both an
upper-bound on the diameter and Chartrand type conditions to guarantee
optimum superconnectivities are obtained. Secondly, we show that if the
order or size of a bipartite (di)graph is small enough then its vertex con-
nectivity or edge-connectivity attain their maximum values. For example,
a bipartite digraph is maximally edge-connected if 8+ (z)+6~ (y) > [l*—]
for all pair of vertices z, y such that d(z,y) > 4. This result improves some
conditions given by Dankelmann and Volkmann in {12} for the undirected
case.

1 Introduction

The study of some parameters related to the connectivity of (di)graphs has re-
cently proved to be of some interest in the design of reliable and fault-tolerance
interconnection of communication networks. The fiability of a network is of
prime importance to network designers. Many (di)graph theoretical param-
eters have been used to describe the fiability of communication. The most
frequently used are the vertex-connectivity and edge-connectivity. These pa-
rameters present a difficulty: they do not take into account what remains after
the (di)graph is disconnected. One can ask what is the size of the largest re-
maining group within which mutual commumnication can still occur. To deal with
this problem a number of other parameters have recently been introduced that
attempt to cope with this difficulty. including superconnectivity [5. 8. 16. 22}
extracomectivity [6, 14], ete.

These facts have encouraged many authors 10 find sufficient conditions for a
graph or digraph to have high values of the above mentioned parameters. Most
of these conditions are stated in terms of other usual parameters in network de-
sign, such as the number of vertices. minimum and maximum degrees. diameter
and girth.
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In this paper we are primarily concerned with the study of superconnected
bipartite digraphs. With this aim. new parameters #; and X that measure the
quantity of superconnectivity of the digraph. are defined. First of all. we get suf-
ficient. conditions on the diameter in terms of the parameter (. which imply that
the bipartite digraph is optimally superconnected. For graphs these conditions
are formulated in terms of the girth. Upper-bounds on the diameter to assure
optimum connectivities can be found in [13, 15. 18. 26]. These results play an
important role to state new upper bounds on the order for a bipartite digraph to
have optimal superconnectivity. After that. we study the standard connectivity
and we show that if the order is small enough. then the connectivity is maxi-
mum. From these results we derive conditions on the minimum degree in terms
of the order, which extend those given by Volkmann (28] and Dankelmann and
Volkmann [12] for graphs. They will be referred as Chartrand-type conditions,
because these conditions are of the same type as the well-known result given by
Chartrand in {11].

The remainder of this section is devoted to recall some concepts and to
explain the new ones. Thus, G stands for a (finite) simple digraph, that is,
without loops or multiple edges, with set of vertices V = V (G) and set of
(directed) edges E = E(G). If G is bipartite we will write V = Up VU U,, where
Up and U, denote the partite sets of vertices. The cardinalities n = |V (G)| and
m = |E(G)| are respectively the order and size of G. For any pair of vertices
2.y € V, a path from z to y is called an * — y path. A digraph G is said
to be (strongly) connected when for any pair of vertices z.y € V there always
exists an  — y path. The distance from z to y is denoted by d(z,¥), and
D = max, 4ev{d(z.y)} stands for the diameter of G. The distance from x
to U C V. denoted by d(z.U), is the minimum over all the distances d(z.u),
w € U. The distance from U to z. d(U,z), is defined analogously. Given
a set of edges A C E we define d(z.A) = ming,y)es d(z,u) and d(4,z) =
ming,.»es d(v. x). Let T~ (z) and I'*(z) denote the sets of vertices adjacent to
and from x respectively. Their cardinalities are the in-degree of z, 6~ (x). and
out-degree of x. 6% () respectively. The minimum degree 6 [mazimum degrec A]
ol G is the minimum [maximum] over all the in-degrees and out-degrees of the
vertices of G. We will always assume that our digraphs are connected. hence
d > | and different from a complete digraph.

Alternatively. we will use the following notation involving the sets of edges:
«~ () and w* () denote respectively the sets of edges adjacent to and from x.

Given a subset of vertices C, let TH(C) = e T (2) and T7(C) =
U,ec- V7 (x). The positive and negative boundaries of C are 37C = ' (C)\ C
and 9~ C = ' (C) \ C. respectively. The corresponding concepts for edges are
the positive and negative edge-boundaries. wtC={(z.y)e E:reCandye
UANCYand w C={(r.y) € E : 0 € V\C and y € C}. Moreover. note that
LHC=w (V\CO).

Clearly, if CUOTC # V [CUd™C # V] then 97C [97C] is a cutset of
G. Similarly. if C is a proper (nonempty) subset of V7. then wiC [w™C]is
an edge cutset. Hence. by using these concepts. the (verter) connectivity and
cdge-connectivity of G can be respectively defined as
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Itis well-known that. for any digraph G. & < X < 4. see [19]. Hence. G is said
10 be mazimally conmected when £ = A = 4. and mazimally edge-connected if
A=0.

[n order to study the connectivity of digraphs. a new parameter related to
the number of shortest paths was used in [13] (see also [18]):

Definition 1.1 For a given digraph G with diameter D, let { = {(G). 1 £ ( <
D. be the greatest integer such that, for any z,y € V.

(a) if d(z.y) < L. the shortest z — y path is unique and there are nox — y
paths of length d(z.y) + 1;

(b) if d(x.y) = L. there is only one shortest x — y path.

In recent years, several results relating the connectivity of a {di)graph with
the aforementioned parameters, n, m, A, §, £ and D have been given. See the
survey of Bermond, Homobono and Peyrat [7], and (23] for more details.

Concerning bipartite digraphs less work have been done until now. Since in
a bipartite digraph, between any two vertices there are no paths whose lengths
differ by one, the definition of the parameter £ can be simplified by saying that
it is the greatest integer such that, for any pair of vertices z,y € V at distance
d{z,y) < (, the shortest z — y path is unique.

The results for bipartite digraphs to be maximally connected involving this
parameter and the diameter were given in [15]:

k=48 ifD<2

A=4d fD<L20+1. M
Similar concepts and results apply for graphs. In this case, all the introduced
concepts are unsigned. Thus, for example, given a subset of vertices C, T(C) =
U.ec T(x). The boundary of C is 9C = T(C)\ C. The edge-boundary, of C is
«C = {(r.y) € E : v € Cand y € V\ C}. Obviously, the same definitions
of parameter { apply for graphs. it turns out that the parameter ( is tightly
related to the girth g of G. Indeed, one can readily check that { = |(g - 1)/2].
So that. in the bipartite case g = 20 + 2.

2 Superconnectivity

Superconnectivity is a stronger measure of connectivity. introduced by Boesch
and Tindell in [8], whose study has deserved some attention in the last vears.
Given a proper subsct of vertices C. let us say that 9*C [37C) is nontrivial
if 9*C [0~ C] does not contain a set. ' () or T~ (x), for each » € C. Notice
that if .01 Cl < 8 then @ C is nontrivial. Analogousiv. w*C [w™C] is said to



be nontrivial if wtC [w™C| does not contain a set wt(x) or w™(r). for cach
r & C. A maximally connected digraph is called super-x if all the minimum
disconnecting sets are trivial. Similarly. a maximally edge-connected digraph
is called super-A if all the minimum edge-disconnecting scts are trivial. Somce
results about superconnectivity can be found in Hamidoune, Lladé and Serra
122]. Lesniak [21] and Fabrega and Fiol {13. 17].

Henee. by using these concepts. we define new parameters

#p = min{|d*C| : 9*C nontrivial. CUI*C # 1" }:

A =min{lw*C| : w*C nontrivial}.

Notice that if &y < 6 then £, = k. When &, > § (that is to say, all
the disconnecting set of order 6 must be trivial) the digraph must be super-x
and we define the (vertex) superconnectivity of the digraph as the value of x,.
Analogously, if A} < 4 then A; = A. When A, > § the digraph must be super-\
and we define the edge-superconnectivity of the digraph as the value of ;.

Following Hamidoune {20, 21], a subset C of vertices of a maximally con-
nected digraph G is a positive 1-fragment of G if 9*C is nontrivial, [0+ C| = &,
and C # 0, where C = V \ (CU3*C). A negative 1-fragment is defined anal-
ogously. Note that C is a positive 1-fragment if and only if C is a negative
1-fragment. The set of vertices C is called a positive oy -fragment of G if w*C is
nontrivial and Jw*C| = X,. Similarly, a negative a; -fragment is defined. When
K1, A1 < 8 we refer to C simply as a fragment, resp. a-fragment.

If the bipartite digraph G contains a digon then I'*(z) NT*(y) = 0. So,
I+ (z)uTt(y)\ {z,y} could be an example of nontrivial disconnecting set of at
least 26 — 2 vertices. Then, we claim that a good lower bound for x4, A} is 26 —2.
Thus, G is said to be optimal superconnected if £y > 26 —2 and similarly, optimal
edge-superconnected if A} > 26 —2. In what follows we state sufficient conditions
on the diameter to assure that the digraph is optimal superconnected. We begin
by considering the super-vertex-connectivity.

The following concepts were introduced in [3]. The positive deepness of
a subset of vertices C is p(C) = maxzec d(z.87C). Similarly, the negative
deepness of C is p'(C) = maxec d(@~C,x). The positive valley of C is the set
of vertices 2 € C such that d(z,8*C) = u(C). The negative valley is defined in
a similar way.

Notice that 3%*C = 8~C. Then given any two vertices z € C, y € C
we introduce the following notation. Let St(z) = {f € 9¥C : d(a,f) =
d(x.07C)} and S~ (y) = {f € 97C : d(f.y) = d(07C.y)} denote the set of
vertices belonging to the positive boundary of C at minimum distance from
and to y, respectively.

The following lemma will be useful in our next results.

Lemma 2.1 Let G be a connected digraph with parameter { and minimum de-
grec 8. and C denotes a subset of vertices. Let vertices z.y belonging to the
positive valley of C and negative valley of C. respectively. Then.



(@) for cach pair of vertices x;, x; € T (z) it is satisfied that S* (2;)NS* (2;) =
b if ((CY< -1

(b) for cach pair of vertices y;.y; € T~ (y) it is satisfied that S~ (y,)NS™(y,) =

B if/(C)y< (-1,

Proof. Let us assume that f € S*(a;)NS*(a;). Then, there are two distinet
shortest paths from vertex » to f. namely, a:x, — [ and zx; — [. the length of
which are 1(C) or ;i(C) + 1. contradicting the definition of parameter (. since
((CY = dir. f) < p(C) + 1 < (. The reasoning is similar for C. =

We observe that if z is a vertex belonging to the positive valley of C with k
out-neighbors belonging also to the positive valley of C. then |S*(x)] > d — k.
We will use this fact in the following lemma.

Lemma 2.2 Let G be a mazimally connected bipartite digraph with parametcr
{ and minimum degree 6 > 3. Let C denote a subset of vertices such that
|0FC| < 26 — 3. and let vertices =,y belong to the positive valley of C and
negative valley of C, respectively. Then.

(a) 1(C) > ( if there ezists a vertex 2z € T*(x) in the positive valley of C;
(b) 1'(C) > € if there ezists a vertez z € T~ (y) in the negative valley of C.

Proof. The proof is by contradiction. Let z € T'"(2) a vertex belonging to
the positive valley of C' and assume that g = u(C) < £ — 1. Notice that
T+ (z) NT*(z) = O because the digraph is bipartite. By Lemma 2.1 each pair
of vertices z;,z; € T't(z) satisfy S*(x;) N S*(z;) = 0 and, for the same rea-
son, each pair of vertices z;,z; € I'*(2) satisfy S*(z;) N S*(z;) = 0. Then
Enem(z)\{:} 1St ()| + 2z,er+(2) |S*(z;)| = 26 — 1. By taking into account
that (Uxierﬂz)\(z}s"'(xi) U er+(z) S+(Zj)) C 9*(C) and |8FC| < 26 - 3, it
follows that there exist at least two vertices in I'*(x) \ {z} and two vertices in
T+(z), say, zr,zr 7 = 1,2, such that S*(z,) N S*(z,) # 0. Therefore, there are
two different paths from vertex a: to each vertex f, € S*(x,) N S*(z,), namely,
the path zz, — f, of length p or u+ 1 and the path xzz, — f,, of length .+ 1
or st + 2. These two paths must be congruent modulo 2. since the digraph is
bipartite. Moreover, as u < { — 1 it follows that the path zz, — f, must have
length ;¢ + 1 and the path zz, — f, has length p. Therefore, |S*(z)] > 2 and
vertex z has two outneighbors in the valley of C. So. also |S*(z)| > 2, reasoning
again as before. Hence, we have proved that if p < { — 1 and z, z are vertices
of the valley of C such that z € T*(z) then [S*(x)] > 2 and |S*(2)] > 2. Let
{z1.22..... 2} C I"*(z) denote the out-neighbors of z belonging to the valley
of C. Then |S*(z)] > 6 — k, where k > 2 as we have just shown. Furthermore.
{S*(z)] = 2 for | < i <k, because each vertex z, satisfv the same conditions
as vertex z. Then, & < & — 3. since otherwise. by Lemma 2.1 we get that
20=32101Cl 2 X, cpeqoyIST () 2 8+ k> 26 — 2. which is a contradiction
(see Fig. 1.) Hence |S*(z)] = 3 and reasoning in the same way over each z; we



obtain also [S*(z;)| >3 for | < i< k. Thus. 20 =3 > |0+C| > 6 + 2k. that is
2k <8 —3. As k > 2 the lemma would be proved if § < 6. Besides. k < § — 5,
otherwise 26 — 3 > |0+C| > 35 — & which is impossible for 6 > 7. In a finite
number of steps we prove that k= 2 and hence [S*(z)l > d—2for 1 < i < k.
Then 28 —3 > |01C| > 3(6 - 2) which is a contradiction.

The argument is similar for C. =

Now. we are ready to give a lower bound for the deepness of an I-fragment.

Lemma 2.3 Let G he a mazimally connected bipartite digraph with paramcter

{ and minimum degree § > 3. Let C denote a positwee 1-fragment. Then.
CY> Cand (' (C) 2 0 af 15y < 20 =3,

Proof. Assume that g = p(C"y </ —~ 1. By Lemma 2.2 each vertex of the

positive valley of C has no ont-neighbours belonging to the positive vallev of

(2)

(25)

(2x)

atc

Figure 1: Hllustration of proof of Lemma 2.2.

C. So i > 1 since 9*C is a nontrivial set, then by Lemma 2.1 each vertex
of the positive valley of C satisfies that |[S*(z)| = X, er+ (g 1S (@)l 2 6.
Therefore, there exists some z; € I't(z) such that |S*(z1)| = 1, otherwise,
|8+ C| > |S*(x)| = 26, a contradiction. Let y2,¥3...,ys be 6 — 1 out-neighbors
of z; such that  — 1 < d(y;,0¥C) < p. As |6+C| < 26 — 3, it follows that
there exist at least two vertices in T (z)\ {z1} and two vertices in ['t (z1), say,
Xy Yy T = 2,3. such that $*(z,) N S*(y,) # 0. This implies that there are two
different paths from vertex z to each vertex f, € S*(z,)NS*(y,). namely, the
shortest path zz, — f. of length y, and the path zx1y. — fr, whose length
must be at least jt+2, because jt < (—1. So, the path 2y, — f, haslength pu+1



and hence the vertices y2,y3 belong to the positive valley of C. Then vertices
yr satisfy the same hypothesis as vertex z. so that [S*(y,)| > 6. Therefore
there must exist at least three vertices f{ € 8¥C. 1 <t < 3, at distance x from
both vertices 2. y3. Thus, the paths 21y2 — f] and x93 — f] are different
and have length e + 1, which contradicts the definition of parameter ¢, unless
d{xy. f]) = ;0 — 1, but this is impossible because |S*(x;)| = 1.

The result is analogous for C. ®

In the following theorems we obtain sufficient. conditions on the diameter to
assure optimal superconnectivities for a bipartite digraph.

Theorem 2.1 Let G be a bipartite digraph with § > 3, parameter (. and super-
connectivity xy. Then G is super-r and k) > 20 -2 if D <20~ 1.

Proof. By (1) the bipartite digraph G is maximally connected because D <
20 — 1. Let C a positive |-fragment such that 9¥C is nontrivial and § <
["C| < 28 — 3. Let a. y be two vertices belonging to the positive valley of
C and the negative valley of € respectively. Then by Lemma 2.3 we have
that D > d(e.y) > d(.07C) + d(0'C.y) = pu(C) + u(C) > 2¢, which is a

contradiction. Therefore, the digraph is super-k and &y > 26 — 2, [

Now, let us consider the edge-superconnectivity. With respect to a,-frag-
ments. the deepness of a positive a-fragment C is v(C) = max ec d{z.«tC).
The deepness of a negative a,-fragment C is defined analogously, v/(C) =
maXzec d(w™C. x).

In the next lemma we find the minimum deepness of o -fragments.

Lemma 2.4 Let G be a bipartite digraph mazimally edge-connected. with pa-
rameter { eand minimum deiree & > 3. Let C denote a positive a,-fragment of
G. Then. v(C) > C and V'(C) > € if X\ <26 - 3.

Proof. Let us denote by FF = {z € C : (z,y) € wtC} and F' = {y €
C : (z.y) € w*C}. Then v = v»(C) = max,ecd(z,F), and v/ = V'(C) =
max_ =d(F',z). The values 2 < v(C) = v < { — 1 are proved impossible
reasoning as in the proof of Lemma 2.3. since |F| < jw* C| < 26—3. It suffices to
deal with the case v = 0, and v = 1. First, we study the case v = 0 in which case
F = C. As w*C is nontrivial and G has no loops we have that for each vertex
z € F there exists a vertex y € I'*(z)NF, y # z. Denote by E*(z) = {(z, f') €
w*C} and by E¥(H) = U,y E*(z), where H is a subset of F. We have that
|E*(2)] > 1 for any z € F and hence, |E*(z)| + |E* (Tt (z)NF\ {y})| > 6 -1.
Besides, as the digraph G is bipartite 't (z) N T+ (y) = 0, which implies that,
Wt Cl 2 [E* ()] + |[E* (P (z) N F\ {y})| + |E+ ()| + |EH T+ (m) N F\ {z})| =
26 — 2. which is a contradiction.

Now suppose that 1 = v < ¢ — 1, that is £ > 2. By Lemma 2.2 we have
that TH(z) C F for each vertex z of the positive valley of C. So, each z; €
I'*(x) has at least two out-neighbors in C \ F. Otherwise we would have that
lw*C| > 26 — 2. which is a contradiction. In effect, suppose that there exists



a vertex z; € I't(z2) with at most one out-neighbor in the valley of C. Then,
|E* ()| + |E¥ (T*(2;) N F)| > 8 — 1. Besides, 't (z;) N T+ (z) = @ because de
digraph is bipartite. Hence, |w™C| > |E* (z;)|+|EFT (T (z:)NF)|+|ET(TH(z)\
{2:})| > 26 — 2. Therefore, each vertex z; € T't(z) has two out-neighbors y;,y2
belonging to C\ F. From Lemma 2.2 we have that T*(y;) C F. As |[F| <26-3
it follows that ¥,y have at least a common out-neighbor = € F, and thus,
we find two different paths of length 2, namely, z;¥,z and z;y,z, which is a
contradiction because ( > 2. R

From the above lemma we now have:

Theorem 2.2 Let G be a bipartite digraph with parameter { and minimum
degrec 6 > 3. Then G is super-h and \y > 26 -2 D<2(. N

The above results can be stated for graphs. Since a bipartite graph G has
even girth, it must be £ = (g —2)/2. Hence, from Theorems 2.1 and 2.2, we can
derive the following corollary.

Corollary 2.1 Let G be a bipartite graph with girth g and minimumn degree
d >3, Then.

(a) G is super-t and ky > 20 =2 if D < g -3

(h) s super-X and Ay > 20 =2.f D < g =2 |

From this result each bipartite graph with ¢ > 6 and D < 3 (respectively
D < 4) is super-~ and has optimal superconnectivity (respectively super-A and
has optimal edge-superconnectivity.) Furthermore. it can be shown that some
of the largest known bipartite (A, D) graphs given in [10] by Delorme and Bond
are super-x and super-A and have superconnectivities £, Ay > 26 — 2.

3 Connectivity and superconnectivity of bipar-
tite digraphs and graphs

In this section we give some upper bounds on the order or size of a bipartite
digraph that guarantee maximum connectivities or superconnectivities. With
this aim we consider s-geodetic bipartite digraphs. Recall that a bipartite di-
graph G with diameter D is said to be s-geodetic if for any two (not necessarily
different) vertices z, y, there is at most one » — y path of length at most
s. Of course, if d(z.y) < s there exists exactly one such a path. Note that
1 < s < min{D, g —1}, since G has no loops, where g stands for the girth of the
digraph. Moreover, s < ¢, and then, the results of the above section still hold
by considering s instead of {. More results on s-geodetic digraphs can be found
in (3, 25].
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First of all we give some new notation. In general, for any integer £ > 0,
let Tf(z) = {v € V : d(z,v) < k} and FNi(@) = {v eV : dv.2) < k}
be respectively the set of vertices at distance at most k from and to z; and
8¢ (z), 6 () their cardinalities. We will also use the following similar notation
involving the sets of edges whose initial and final vertices are at a given distance
from and to z: Qf (z) = {(v,v) € E : d(z,u) < k}, QL (z) = {(n.v) € E :
d(v,2) < k}, € (2) = 9} (2)] and e (2) = |9 ().

Tn the next lemma we give a lower bound for the minimum number of vertices
which are at distance at most s + 1 from/to a given vertex 2. This bound is
denoted by ])B(é.s +1).

Lemma 3.1 Let G be a s-geodetic bipartitc digraph. s < D — 1. with minimum

degree d > 1. Then, for each x € V.
552§

Qﬁ if s is odd;

= ) St (o 5
6.>'+I(;L)* 6s+|(1') 2 /] (0,3 + ]) =
B 65t2
2———  if s is cven.
82 -1 f

Proof. Let G = (17 A4), V = Uy U Uj. a bipartite digraph. Assume that
ITH (@) NUo| > IFL‘,(J;) N U,|. Note that the minimum number of vertices at:
distance i from vertex 2 is at least &', 0 < i < s. since the bipartite digraph is
s-geodetic. We need to distinguish the following cases:

e If s =2 and x € U then.

(s'.’,(r'l*l) - B & +2 |

ARE . — Yoy ! - 32— =
AU =P )N 2 3 8 = e = o

If o+ € Uy then. for cach o/ < 't () we have

cs4
MR .
—33—1—. since &’ € U.

T ()N 2 @) NUy >
o If s =2r+ 1. and x € Uy as before, we have that

66‘2(r+l) -1 _ 5s+t2 _§
-1 f-1

ITH, (@) N = [T z) N1 > zo,;zm _
1=

If 2 € U, the reasoning is analogous by considering a vertex 2’ € T+(z).

The claimed result follows from |T'}, | (z) N Uo| > T, (z) N U,
The same above lower bound also holds for 67, ,(x). ™
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As we said in the Introduction when x;.A; < 8, we refer to 1-fragment or
ai-fragment simply as a fragment or a-fragment. In (3] the following lower
bounds for the deepness of a fragment or a-fragment of a s-geodetic digraph are
given.

If & < 8. then u(C) > s and p/(C) > s

— 2
if A < 4, then ¥(C) > s and V'(C) > s. @)

Moreover, in [4] it was proved that for s-geodetic bipartite digraphs with § = 2
the deepness bounded from below by s+ 1 instead of s. This result will be used
in Lemma 3.3. From now on, we will assume that § > 2, since otherwise the
digraph is trivially maximally connected.

Making use of the particular properties of bipartite digraphs, the results of
(2) can be slightly modified.

Lemma 3.2 Let G be a s-geodetic bipartite digraph with minimum degree 6 and
connectivities k and M. Let C be a positive fragment or a-fragment of G.

{a) If x < 6. then p(C) > s and w'(C) > s. Moreover. for any z.y belonging
to the valley of C and C respectively. there exist w.v € 9YC such that d(x.u) >
s+ 1L d@. 0" C\{u}) = s.d(v.y) 2 s+ 1. d@YC\ {r}.y) 2 s.

(h) If X\ < §8. then v(C) > s and v'(C) > s. Moreover. for any x.y belonging
to the valley of C and C respectively. there exist u € F. v € F' such that
dlr.u) > s+ Lo d(x. F\{u}) > s. d(e.y) = s+ 1 d(F'\ {v}.y) 2 s

Proof. (a) The first part is the same result as (2). If 1(C) > 5 + 1 the result
is straightforward. (Note that this is the case when § = 2.} So. assume that
#(C) = s and that there exists a vertex x belonging to the positive valley of C
such that d(a. u) = s for any u € d*C. Then, there exists a vertex = € I'* (x)
belonging to the valley of C. Otherwise. as [0*C| = # < § we would have two
different paths from 2 to some vertex u € 37C of length s, which contradicts
the definition of being s-geodetic. Thus. the path xz — u has length s + 1.
which leads to a contradiction. because d{r. u) = s and the digraph is bipartite.
The reasoning is similar for C.
(b) The proof is analogous to case ().  ®

A similar result applies lor negative fragments.
When the s-geodetic bipartite digraph has not optimum connectivities the
above lemmas allow ns 1o state the mininun order or size lor it

Lemma 3.3 Let G be a s-geodetic bipartite digraph with order n and size m.
minimum and mazimum degrees & and A respectively. and conncctivities £ and
M. Let C be a positive fragment or a-fragment of G.

(a) If & < & then there cxist two vertices x,y such that d(x.y) > 2s+ 1 and

n>6 (@) +6;,,(y) -~ ifs22,6=2;
n>8% (2)+6,,,(y) —x(A+1). ifs>262>23:
n > 2[6*(z)+ 6" (y)] — ~. if s = 1.
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(b) If X < & then there exist two vertices x,y such that d(z,y) > 25 + 2 and

m>ek (@) +e5,(m) - MA+1), ifs>2:
m 2264 (@) +67(y)? and n > 2[6* (2) + 6 (y)), ifs=1.

Proof. (a) We can assume that ;/(C) > p(C) (if not consider the converse
digraph.) By Lemma 3.2(a), 1/(C) > u(C) > s.

o If u(C) = s+ 1, (in fact this is the case when 6§ = 2) then for any
pair of vertices z,y belonging to the valley of C and C respectively, we have
that d(z.y) > 2s+2and T}, (z) C CUI*C. T, ,(y) C 9*CUC. Hence,

TH () NT7, (y) C 8+C. Therefore,

n=|C|+|0*C| +[C| 2 IT7,,(z) UT 1 (W)l 2 65, () + 655, (y) — &.

o If 4t(C) = s then by Lemma 3.2(a) there are vertices of both partite sets
in the positive valley of C. This fact allows us to consider two vertices z, y of
different partite sets belonging to the valley of C and C, respectively. Hence,
d(z.y) 2 2s+ 1 and T}, (z) Cc CUS*C U (T+H@BtC)NT). As 1/(C) > s. we
also have that T'7, | (y) C (T~ (8*C)N C)Ud*CUC. Hence, T}, (z )N () €
(r-(@*cyncyuarcu (r+(@+*C)nC). Once more again, by Lemma 3.2(a)
we can consider a partition of 8*C in two nonempty subsets. T = {u € 0*C :
d(e.u) = s} and T" = {n € 97C : d(z,u) 2 s+ 1}. Let us consider a vertex
€T (e)NTL (), which implies d(z. z) > s and d(z,y) > 5. Otherwise. we
would have 2s + | < d(x,y) < d(z,z) +d(z,y) < 2s, a contradiction. Therefore,
= ¢ (P*(T)NnC), since if not s + 1 > d(z,z) = d(z.t') + | = 5 + 2, for some
1" € T'. a contradiction. Furthermore., =z ¢ (T~ (T)N C), since otherwise, as
d(.r.z) > s vertex z is not on the shortest paths from vertex z to each vertex of T.
Hence. as the digraph is bipartite the only possibility is that d(z,z) = s+ 1 and
then s+1 > d(=.y) = s+2. because x and y belong to different partite sets, again
a contradiction. Then T'Y, (2)NT7,, () C (TT(T)NnCYud+Cu (T (T) n<C).
By Lemma 3.2(a) we have that | <t = |T’| < k=1, andso [T}, ()N, (y)] <
LT (TN CAFCU(TH(T)NT) | < k+(k—t')A+H'A = k(A +1). Therefore.

n=CH+10"Cl+ICl 2 T3 () UT T )] 2 88, () + 65, (1) - s(A +1).

When s = 1 the above bound may be improved.
o If y(C) > 2 then for any x.y in the valley of C and C respectively, we get
that

n> |l_,i (VU 2 a) () =8 (y) -6 22007 (r)+ 0 (y)i — .
o Il n(C) = 1. we consider a vertex x € C such that §*(x) < 8*(z) for
all 2 € C. Let t = |9*CNTH(x)|. 1 <t < k- 1. then §*(z) — ¢t vertices

must belong to C. Moreover, each one of these vertices cannot be adjacent
to the vertices of *C NT*(z), since the digraph is bipartite. So, C contains

13



at least 6% (x) — x + 1 — | vertices different from the above ones. Hence, |C| >
1464 (z)—t+0%(z)—r+t—1 = 26* (x)—k. Analogously, if we consider a vertex
y € C such that y belongs to a different partite set from x and 6~ (y) < 6~ (z)
for all z € C we get that |C| > 26~ (y) ~ . Then,

n 2 |3 (z) UT; (y)] 2 2[6* () + 67 ()] - &.

(b) The proof is analogous by using Lemma 3.2(b) =

As a consequence of the above lemma we formulate, in the next theorem,
sufficient conditions for a s-geodetic bipartite digraph, s > 2, to have optimum
connectivities.

Theorem 3.1 Let G be a s-geodetic bipartite digraph. s > 2, with order n. size
m, minimum and mazimum degrees § and A respectively., and connectivities s
and .

(a) If 61,1 (z) +6,,,(¥) 2 n+ (6 —1)(A+1) +1 for all pairs of vertices 2,y
such that d(z,y) > 2s+ 1, then k = §;

(b) if €X,1(z) + €5,y (¥) 2m+(6—1)(A+1)+1 for all pairs of vertices z,y
such that d(z,y) > 2s + 2, then XA = 4.

Proof. To prove case (a), assume « < 8. Then, if  and y are vertices given
by the above lemma, we would have 87, ,(z) + 6;,,(y) < n+&(A+1) <

n+ (8 —1)(A+1), contradicting the hypothesis. Case (b) is proved analogously.
u

Note that this result extends conditions (1) since if the diameter D < 2s
[D < 25 + 1], then there are no vertices at distance at least 25 + 1 {2s + 2].

Since a bipartite digraph is always s-geodetic with s > 1 we deduce the
following theorem.

Theorem 3.2 Let G be a bipartitc digraph with order n. size m. minimum
degree 8. and connectivities k and A.

(a) If 2|6 () +6~ (y)] = n+38 for all pairs of vertices x,y such that d(z,y) >
3. then k. = 0;

(b) if 2{6*(x)* + 6= (y)?] = m + | for all pairs of vertices x.y such that
d(x.y) > 4. then A = §; :

(c)if ¥ (x)+6 (y) = [%] Jor all pairs of vertices x,y such that d(x.y) >
. thenA=6. ®

Notice that from condition (a) we can deduce n < 36 = & = 4, which was
given in [27] for the undirected case. Whereas condition (c¢) show that the one
given by Volkmann in [28]. n <16 — | == A = 4. can be relaxed o guarantee
maximum edge-connectivity. Furthermore, (¢) is an improvement of a condition
given in [12): d(2) + d(y) > [%—'] for all non adjacent vertices x and y, then
A = 0. which was only given for the undirected case.

14
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Figure 2: A bipartite digraph withn =36 + 1 and k =6 — |

We have constructed two families of bipartite digraphs which prove that
conditions (a) and (c) of Theorem 3.2 are best possible for all values of the
minimum degree 6. In Figure 2 and Figure 3 we show such constructions. In
them, each line represents a digon, that is, (z,y), (y, ) are two directed edges
of G, and a line between boxes denotes all the digons between the vertices of
different boxes. Note that the family of Figure 2 has minimum degree § > 3,
order n = 36+1, the vertices x,y marked in it verifies 26+ (z)+6~ )] = n+6-1
and & = — 1. On the other hand, the family of Figure 3 has minimum degree
4 > 3, order n = 44, the vertices z.y marked in it verifies §+(x) + 6 (y) =
2l —Tand A=6-1

§—2 62
L L 7 Y N l
L INNSSLREERS. QUi il -0,
i i
i
:l LIS
e e 0
I:l 1
SR y
L [ IR |
1o 12
t. 0t 1. 1
':I [ DA ]
LI | 1. f
[N | l:l
Hormmmes 3
b-2  §-2

Figure 3: A bipartite digraph withn = 46 and A = 6 — |

Keeping in mind that in a s-geodetic bipartite digraph the number 71)3(5. s+

1) is «a lower bound for both 8}, (x) and 67, ,(y). and. morcover. €lalr) >

88t () and €7, (x) > 86,1 (), the following theorem holds.
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Theorem 3.3 Let G be a s-geodetic bipartite digraph. s > 2. wuth order n. size
m. nuinimaan and mazimum degrees § and A respectively. and conneclivities 1
and .

{a) k=0 if 1132[)B(d.s+l)—(6——l)(A+l)—l:
() A=4§ if m$25pB(5.s+l)—(d—l)(A+I)—l. [ ]

From these results we can establish the following conditions of Chartrand-
type for a bipartite digraph to be maximally connected.

Corollary 3.1 Let G be a d-regular s-geodetic bipartite digraph. d > 3. s > 2.
with order n. size m. and connectivities x and .

(o) k=d if d = {

(b)r=d if d>{

The above results can be stated for graphs. Notice that a bipartite graph
is always s-geodetic with 2s + 2 = g where g denotes the girth. Moreover,
the minimum number of vertices of a bipartite graph with minimum degree
d > 3 which are at distance at mos/t s+ 1 from or to a given vertex, is bounded

—1)9/2 —
£<FI)—21 (see Bollobds [9].) Also we have that
es+1(z) = (6/2)p(4. g). The following results are analogous to Theorems 3.1 and
Corollary 3.1 and they give sufficient conditions for a s-geodetic bipartite graph
with s > 2 to have maximum connectivities. When s = 1, the results are the
same as in the directed case, except for the bound over the size m. which is
divided by 2. since each digon is now an edge.

from below by p(8,g9) = 2

Theorem 3.4 Let G be o s-geodetic hipartite graph. s > 2 with order n. size m.
minimum and marimum degrees 6 > 3 and A respectively, and connectivities x
and A.

(@) If 6,41 (2) + 6,31 (y) =+ (6 — DA + | for all pair of vertices .y such
that d(x.y) > 2s + 1. then k = é:

(h) if €sir(@) + e (y) = m + (6 — DA+ 1 for all pair of vertices x,y such
that d(z.y) > 25+ 2. then A =4. ®



Corollary 3.2 Let G be a d-reqular (d > 3) bipartite graph. with girth g > 6.
order n. size m. and connectivitics x and X.

(o) h=d of d= [\/%—_—{]4" 5=
. [‘\‘/ﬁ]'f'l. s> 38

(1:)/\:{] l/ (/2{ (‘\l/m]_i_] .

Finally, we can derive analogous results to the above ones for the supercon-
nectivities of a s-geodetic bipartite digraph. We omit most of the proof because
they are totally analogous to the previous ones. Moreover we must keep in mind
the results of Section 2 on the deepness.

Lemma 3.4 Let G be a s-geodetic bipartite digraph mazimally connected with
order n and size m, minimum and mazimum degrees § > 3 and A, respectively
and superconnectivities k1 and Ay. Let C be a positive | -fragment or a, -fragment
of G.

(a) If k1 < 20 — 2 then there ezist two vertices x,y such that d(z.y) > 2s and

n 28 (2) +65,(y) - mRA+1), ifs>2
n2>200 (z)+ 6 (y)] — k1. fs=1.

(b) If Xy < 26 — 2 then there exist two vertices r.y such that d(z,y) > 25 + 1
and
m>et (@) +e,(y) - M2A+T), fs>2

n>2[6t(z)+6 ()= 1], ifs=1.

Proof. (a) By Lemma 2.3 we can assume that ;/(C) 2 u(C) 2 s. Con-
sider two vertices x,y belonging to the valley of C and C respectively. We
have that d(z,y) > 2s and T, ,(z) c Cud*CuU (I'(6*C)NC), Ty, (¥) C
(r-(@*C)nC)ud*CuC. Hence, Tt ()NT7,,(y) C (T (@*C)nC)ud*rCcu
(r*+(@*C)nC). Therefore,

7 =|C|+07C|+[C| 2 [T, (x) U ()] 2 6F, () + 675, (y) — s (24 +1).

When s = | the above bound can be improved. In effect.

o if 1{C) = 2 then for any z,y in the valley of C and C respectively, we get
that n > T3 () UT; ()] = 65 (2) + 65 () — &1 > 2[6* (z) + 6~ (3)] — ks

o if i(C) = 1, then for each x € C it is ' (z) N C # O because d*C is a
nontrivial set. Let 2 € C be such that §*(z) < §*(w) for all w € C. Then
IC] > &% (r) + 1 = [0F ()] and [0 (x)] +|0F(2)| € #1, where z € TH(z)N C
since the digraph is bipartite. Furthermore, when |C| is minimum, that is, when
IC] = &% (x) + 1 — |0F(2)], it must be [0%(2)] > 6+(2) = | > 8%(a) — 1 and
therefore |97 (2)] < ry — 8% (z) + 1. Hence, |C| > 26%(z) — x,. Analogously,
|C! = 26— (y) — k1 and hence, n > 2[6% (z) + 6~ (y)] — &1.

(b) The proof is analogous by using Lemma 2.4(b) ®
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As a consequence of the above lemma we get sufficient conditions for a s-
geodetic bipartite digraph with s > 2. to have optimum superconnectivities.

Theorem 3.5 Let G be a s-geodetic bipartite digraph. s > 2. with order n. size
m. minimum and mazimum degrees & > 3 and A respectively. and superconnec-
tuntics k) and Ay.

(a) If 8}, (&) + 67, (y) =0+ (26 = 3)(2A + 1) + | for any puir of vertices
r.y such that d(r.y) > 2s. then x) > 26 — 2;

(h) if e (@Y +e 0 (y) = m + (26 = 3)(2A + 1) + | for any pair of vertices
ooy such that d(a y) > 2s + L then Ay > 28 — 1. ]

Asin the case of the standard connectivity. this result extends Theorems 2.1
and 2.2 since if the diameter D < 25 — 1 [D < 2s], then there are no vertices at
distance at least 2s [2s + 1].

Next. by considering the lower bound for 8}, | (2:) and 67, (x). we obtain the
following result whose proof is analogous to the one of Theorem 3.3.

Theorem 3.6 Let G be a s-geodetic bipartite digraph with order n, size m, min-
imum. and mazimum degrees § > 3 and A respectively. and superconnectivilies
Ky and Aq.

n<26+3 and s = 1

()i 225‘2’7{ n<oBs+1) - (25-3@AF) -1 ands>2

) n<46 -2 and s = 1
()M 22624 m <2y (6,5 +1) - (26 -3+ 1) =1 ands 22
u

From Lemma 3.4 we might derive analogous results to Theorems 3.5 and 3.6
for a s-geodetic bipartite digraph to be super-& or super-A. It suffices to take
Ky = 6 or A\ = 4. For instance, when s = 1 the bipartite digraph is super-& if
n < 36 — 1 and super-A if n < 486 — 2. Solving this inequality for 6 we obtain
that if § > ["*2] the digraph is super-A. This condition coincides. except for
n = 2(4). with the one given by Fiol in (16}, § > |232] + 1. Furthermore, in
[5. 16] it was proved that if D = 3 and n > 2(A + ), then the bipartite digraph
is super-A. By joining the two results it is clear that, with the exception of
n = d — 1 or n = 4d, all d-regular bipartite digraphs with D = 3 are super-A.

Now we can derive the following Chartrand-type conditions for a d-regular
bipartite digraph maximally connected to be superconnected.

Corollary 3.3 Let G be a d-reqular s-geodetic bipartite digraph. d > 3. with
order n. size m. and superconnectivities K and Ay.

18



(a) vy 22d =2 if d>

)y 22d-2 if d>

For graphs we can state analogous results to Theorems 3.5 and 3.6.

Theorem 3.7 Let G he a s-geodetic bipartite graph. s > 2. with order n. size
m.mdnamum and maznnum degrees 8 > 3 and A respectively. and superconnec-
tivities ky and Xy,

(a) If 6541 (2) + 8541 (y) = 1 + (26 — 3)(A +1) + | for any pair of vertices
x,y such that d(z,y) > 2s. then x; > 26 — 2;

(b) if es1{x) + €551(y) 2 m + (26 — 3)(A + 1) + | for any pair of vertices
x.y such that d(x,y) > 25+ 1, then X\, >26—1. m

Theorem 3.8 Let G be a bipartite graph. g > 6 with order n, size m. minimum
and mazimum degrees § > 3 and A respectively, and superconnectivities x, and
Ar.

(a) k1 226 -2 ifn < 2p(d,9) — (26 —3)(A+1) - I;

(b) M1 220 -2 if m<ép(d,9)—(26—-3)(A+1)-1. m
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