Realizability of p-Point, q-Line Graphs with Prescribed Maximum Degree, and Point Connectivity

By D. DiMarco

New York City Technical College

Abstract

It is well known that some graph-theoretic extremal questions play a significant role in the investigation of communication network vulnerability. Answering questions concerning the realizability of graph invariants also solves several of these extremal problems. We define a (p, q, κ, Δ) graph as a graph having p points, q lines, point connectivity κ and maximum degree Δ . An arbitrary quadruple of integers (a, b, c, d) is called (p, q, κ, Δ) realizable if there is a (p, q, κ, Δ) graph with $p = a, q = b, \kappa = c$ and $\Delta = d$. Necessary and sufficient conditions for a quadruple to be (p, q, κ, Δ) realizable are derived. In earlier papers, Boesch and Suffel gave necessary and sufficient conditions for (p, q, κ) , (p, q, λ) , (p, q, δ) , $(p, \Delta, \delta, \lambda)$ and $(p, \Delta, \delta, \kappa)$ realizability, where λ denotes the line connectivity of a graph and δ denotes the minimum degree for all points in a graph.

Introduction

Here we consider an undirected graph G = (V, X) with a finite point set V and a set X whose elements, called lines, are two point subsets of V. The number of points is denoted by p, and the number of lines |X| is denoted by q(G) or q. This paper uses the notation and terminology of Harary [14]; however a few basic concepts are now reproduced.

The line connectivity of a graph G (denoted by $\lambda(G)$ or λ) is the minimum number of lines whose removal results in a disconnected graph. A graph is called trivial if it has just one point. The point connectivity (denoted by $\kappa(G)$ or κ) is the minimum number of points whose removal results in a disconnected or trivial graph. The number of lines connected to a point v of G is the degree of that point, denoted by $d_v(G)$ or d_v . The minimum degree is denoted by δ or $\delta(G)$ and the maximum degree is denoted by Δ or $\Delta(G)$. If $\delta = \Delta$, the graph is called regular. A p point graph with $\delta = p-1$ is called complete and is denoted by K_p . A set of κ points whose removal disconnects G, or makes G trivial, is called a minimum point disconnecting set. The graph obtained from C_p (the cycle on p points) by adding lines between all pairs of points that are distance at least two but not greater than A apart is denoted by C_p^A .

It is well known that some graph-theoretic extremal questions play a significant role in the investigation of communication network vulnerability [1-13]. Harary [15] found the maximum point connectivity among all graphs with a given number of points and a given number of lines. Answering questions concerning the realizability of graph invariants also solves several of these extremal problems. We define a (p, q, κ, Δ) graph as a graph having p points, q lines, point connectivity κ and maximum degree Δ . An arbitrary quadruple of integers (a, b, c, d) is called (p, q, κ, Δ) realizable if there is a (p, q, κ, Δ) graph with p = a, q = b, $\kappa = c$ and $\Delta = d$. Necessary and sufficient conditions for a quadruple to be (p, q, κ, Δ) realizable (or, more briefly, realizable) are derived. Boesch and Suffel derived necessary and sufficient conditions for (p, q, κ) , (p, q, λ) , (p, q, δ) , $(p, \Delta, \delta, \lambda)$ and $(p, \Delta, \delta, \kappa)$ realizability in earlier papers [6-8].

Preliminaries

First we recall a result given by Harary [15].

Lemma 1: If $2 \le \delta \le p-1$, then there is a graph on p points with $q = \lceil \frac{1}{2} p \delta \rceil$ and $\lambda = \delta = \kappa$. (This graph is a power of cycle and is usually called the Harary graph on p points).

The next lemma contains a complete list of the relevant lower bounds for q.

Lemma 2: The following holds;

- (1) $\Delta \leq q$,
- (2) if $\kappa = 1$, then $p 1 \le q$,
- (3) if $\kappa = 2$, then $p + \Delta 2 \le q$, and
- $(4) \lceil \frac{1}{2} ((p-1) \kappa + \Delta) \rceil \leq q.$

Proof: We pause to note that (1) and (4) are pertinent when $\kappa=0$ and $\kappa\geq 3$, respectively. As (1) is obvious and (2) is well known we will now prove (3). Let G be a graph with $\kappa=2$ and b be a point with $d_b(G)=\Delta$. Since $G-\{b\}$ is connected; it follows that $q(G-\{b\})\geq p-2$ and $q(G)\geq p+\Delta-2$, thus proving (3). Noting that (4) follows from $\kappa\leq \delta$, concludes this proof.

The remaining three lemmas find relevant upper bounds for q.

Lemma 3: (1) If
$$\kappa = 1$$
 and $p = 2 \Delta + 2$, then $q < \frac{1}{2} p \Delta$.
(2) For all graphs $q \le \kappa + \frac{1}{2} (p - 1)(p - 2)$.

Proof: First we will prove (1). Suppose G is a graph with $\kappa=1$, p=2 $\Delta+2$ and $q=\frac{1}{2}$ p Δ . As G is not complete there is a point c whose removal disconnects G into at least two components. Thus the point set of $G-\{c\}$ may be partitioned into two sets T and U such that no lines of $G-\{c\}$ join T and U. Since G is regular of degree Δ , we have $|T \cup \{c\}| \geq \Delta+1$ and $|T| \geq \Delta$. It is also true that $|U| \geq \Delta$. Because p=2 $\Delta+2$ either $|T|=\Delta$ or $|U|=\Delta$. Suppose without loss of generality that $|T|=\Delta$. Therefore c is adjacent to every point in T and $d_c(G) \geq \Delta+1$. As this is impossible, no such G exists. Obviously $q \leq \frac{1}{2}$ p Δ and the result follows. The inequality in (2) was established for all graphs in [8].

Lemma 4: If
$$p < 2 \Delta + 2 - \kappa$$
, then $q \le \lfloor \frac{1}{2} ((p-1) \Delta + \kappa) \rfloor$.

Proof: Let G be a graph with $p < 2 \Delta + 2 - \kappa$ and S be a minimum point disconnecting set of G. The point set of G - S may be partitioned into two sets T and U such that no lines of G - S join T and U. Noting that either $|T| \le \Delta - \kappa$ or $|U| \le \Delta - \kappa$ we assume without loss of generality that $|T| \le \Delta - \kappa$. If |T| = N then

$$q \le \frac{1}{2} N (N-1) + \frac{1}{2} (p-N) \Delta + \frac{1}{2} N \kappa$$
.

Our goal is to maximize the right side of the inequality on $1 \le N \le \Delta - \kappa$. The fact that this quantity is a quadratic in N with a leading term of 1/2 N² tells us the maximum must take place at one of the bounds of the interval. The value of the

right side of the inequality at either bound is $\frac{1}{2}(p-1)\Delta + \frac{1}{2}\kappa$ and the result follows.

Lemma 5: For all graphs either $q \le \lfloor \frac{1}{2} (p-1) \Delta + \frac{1}{2} \kappa \rfloor$ or

$$q \leq \lfloor \frac{1}{2} p \Delta - \frac{1}{2} \max[(p - \Delta - 1)(2 \Delta + 2 - p) - \kappa(\kappa - 1), 0] \rfloor.$$

Proof: Since the result is obvious if $(p - \Delta - 1)(2 \Delta + 2 - p) - \kappa (\kappa - 1) \le 0$, henceforth we assume $(p - \Delta - 1)(2 \Delta + 2 - p) - \kappa (\kappa - 1) > 0$. We pause to note that $p - \Delta - 1 \ge 0$ and $\kappa(\kappa - 1) \ge 0$ implies $p \le 2 \Delta + 1$. It also follows that $p \ge 3$ and $0 < \Delta < p - 1$. Our goal is to show that if $q > \lfloor \frac{1}{2} (p - 1) \Delta + \frac{1}{2} \kappa \rfloor$ then

$$q \le \lfloor \frac{1}{2} p \Delta - \frac{1}{2} (p - \Delta - 1)(2 \Delta + 2 - p) + \frac{1}{2} \kappa (\kappa - 1) \rfloor$$
.

Let G be a graph with $(p - \Delta - 1)(2 \Delta + 2 - p) - \kappa (\kappa - 1) > 0$ and $q > \lfloor \frac{1}{2}(p-1)\Delta + \frac{1}{2}\kappa \rfloor$. Let S, T and U be defined as they were in the proof of lemma 4. We wish to show that

$$2q = \sum_{i \in G} d_i \le p \Delta - (p - \Delta - 1) (2 \Delta + 2 - p) + \kappa(\kappa - 1).$$

Let V denote the union of T and U. As $\sum_{i \in G} d_i = \sum_{i \in S} d_i + \sum_{i \in V} d_i$ we seek upper bounds for $\sum_{i \in S} d_i$ and $\sum_{i \in V} d_i$. Note that $\sum_{i \in S} d_i \le \kappa \Delta$. To find an upper bound for $\sum_{i \in V} d_i$ first find bounds for $\|T\|$ and $\|U\|$. Suppose without loss of generality that $\|T\| \le \|U\|$. We also assume that $\|T\| \le \Delta - \kappa$. An argument similar to the one used to prove lemma 4 infers $q \le \lfloor \frac{1}{2} ((p-1) \Delta + \kappa) \rfloor$, contradicting our assumption that $q > \lfloor \frac{1}{2} ((p-1) \Delta + \kappa) \rfloor$. Therefore $\|T\| \ge \Delta + 1 - \kappa$, $\|U\| \ge \Delta + 1 - \kappa$ and $\|T\| \le p - \Delta - 1$. Letting $\|T\| = N$ gives us

$$\sum_{i \in V} d_i \leq N(N-1) + (p-N-\kappa)(p-N-\kappa-1) + \kappa \Delta.$$

We want to maximize the right side of this inequality on $\Delta + 1 - \kappa \le N \le p - \Delta - 1$. This quantity is a quadratic in N with a leading term of $2N^2$, and thus is maximum at one of the bounds of the interval. Substituting for N shows this quadratic has the same value at each bound of the interval, giving us

$$\sum_{i \in V} d_i \leq \kappa \Delta + (\Delta + 1 - \kappa)(\Delta - \kappa) + (p - \Delta - 1)(p - \Delta - 2).$$

Consequently

$$\textstyle \sum_{i \in G} d_i = \sum_{i \in S} d_i + \sum_{i \in V} d_i \leq 2 \ \kappa \ \Delta + (\Delta + 1 - \kappa)(\Delta - \kappa) + (p - \Delta - 1)(p - \Delta - 2).$$

Showing that

$$2\kappa\Delta + (\Delta + 1 - \kappa)(\Delta - \kappa) + (p - \Delta - 1)(p - \Delta - 2) \le p\Delta - (p - \Delta - 1)(2\Delta + 2 - p) + \kappa(\kappa - 1)$$

will complete this proof. In fact, simplifying both sides shows they are equal and we are done.

At this point we contemplate whether or not lemma 4 can be used to simplify the statement of lemma 5, and vice versa. To see this is not possible consider the following four cases, each of which satisfies

 $(p-\Delta-1)(2\ \Delta+2-p)$ - $\kappa(\kappa-1)>0$. The first two cases are $p=11, \Delta=8, \kappa=4$ and $p=6, \Delta=3, \kappa=1$, each of which satisfies $p<2\ \Delta+2-\kappa$. The remaining two cases are $p=8, \Delta=4, \kappa=2$ and $p=16, \Delta=8, \kappa=4$, each of which satisfies $p\geq 2\ \Delta+2-\kappa$. Substituting each of these four cases into the upper bounds for q given in lemmas 4 and 5 shows the two lemmas cannot be simplified.

The (p, q, κ, Δ) realizability theorem

Theorem. A quadruple of non-negative integers (p, q, κ, Δ) is realizable if and only if exactly one of the following conditions holds:

(I)
$$0 = \kappa \le \Delta < p-1, \Delta \le q \le \lfloor \frac{1}{2} p \Delta \rfloor$$
 and if $p \le 2 \Delta + 1$, then $q \le \lfloor \frac{1}{2} (p-1) \Delta \rfloor$;

- (II) $1 = \kappa \le \Delta$, $p 1 \le q$, and if $\Delta = 1$, then p = 2:
 - (A) $\Delta + 2 \le p \le 2 \Delta + 1$ and $q \le \lfloor \frac{1}{2} ((p-1) \Delta + 1) \rfloor$;
 - (B) $p = \Delta + 1$ and $q \le 1 + \frac{1}{2}(p-1)(p-2)$;
 - (C) $p = 2 \Delta + 2 \text{ and } q < \frac{1}{2} p \Delta;$
 - (D) $p \ge 2 \Delta + 3$, $q \le \lfloor \frac{1}{2} p \Delta \rfloor$ and if $\Delta = 2$, then q < p;

(III)
$$2 \le \kappa = \Delta \le p - 1$$
, $p \cdot \Delta$ is even and $q = \frac{1}{2} p \Delta$;

- (IV) $2 \le \kappa < \Delta$, $\lceil \frac{1}{2} ((p-1)\kappa + \Delta) \rceil \le q$ and if $\kappa = 2$, then $p + \Delta 2 \le q$:
 - (A) $\Delta + 1 and <math>q \le \lfloor \frac{1}{2} ((p-1) \Delta + \kappa) \rfloor$;
 - (B) $p = \Delta + 1$ and $q \le \kappa + \frac{1}{2}(p-1)(p-2)$;
 - (C) $p \ge 2 \Delta + 2 \kappa$ and either $q \le \lfloor \frac{1}{2} ((p-1)\Delta + \kappa) \rfloor$ or $q \le \lfloor \frac{1}{2} p \Delta \frac{1}{2} \max [(p-\Delta-1)(2\Delta+2-p) \kappa(\kappa-1), 0] \rfloor;$

(V)
$$p = 1$$
 and $q = \kappa = \Delta = 0$.

Proof: The necessity of $\Delta < p-1$ in (I) follows from the fact that $\Delta = p-1 \ge 1$ implies $\kappa > 0$. The other conditions in (I) are a consequence of lemmas 2, 4 and 5, and some obvious facts about graphs. We now consider (II). If a connected graph is regular of degree one, then it has exactly two points. Thus $\kappa = \Delta = 1$ implies p = 2. Substituting $\kappa = 1$ and p = 2 $\Delta + 1$ into lemma 5 gives us $q \le \lfloor \frac{1}{2} ((p-1) \Delta + 1) \rfloor$. The only connected regular graph of degree two is a cycle. Therefore $\kappa = 1$ and $\Delta = 2$ implies q < p. The other conditions in (II) follow from lemmas 2, 3, 4 and 5 together with well known facts concerning graphs. The conditions in (III) are a result of properties of a regular graph. The conditions in (IV) are a consequence of lemmas 2, 3, 4 and 5, and basic graph theory. The conditions in (V) are trivial.

We now provide constructions to prove sufficiency.

Case 1. Suppose that $\lceil \frac{1}{2} ((p-1) \kappa + \Delta) \rceil \le q \le \lfloor \frac{1}{2} ((p-1) \Delta + \kappa) \rfloor$, $3 \le \kappa < \Delta \le p-1$ and if $\Delta = p-1$, then $q \le \kappa + \frac{1}{2} (p-1)(p-2)$. Let H_1 denote the Harary graph on p-1 points with $\lceil \frac{1}{2} (p-1)(\kappa - 1) \rceil$ lines and $\kappa(H_1) = \kappa - 1$. Form a new graph by taking the union of a single point (which is denoted by b) and H_1 . Note that H_1 is not complete. If κ is odd we proceed as follows. Observing that H_1 is a power of cycle which does not include diameters, we now add $\lceil \frac{1}{2} (p-\Delta-1) \rceil$ independent diameters to H_1 . At this point in our construction there are either Δ or Δ - 1 points in H_1 that have degree κ - 1. Make b adjacent to all of the points of degree κ - 1 in H_1 . If $d_b = \Delta$ - 1, then make b adjacent to another point in H_1 . Presently our graph contains $\lceil \frac{1}{2} ((p-1) \kappa + \Delta) \rceil$ lines. If $\Delta = p-2$ let c denote the point in H_1 which is not adjacent to b, otherwise let c denote any point in H_1 . To complete our construction we add $q - \lceil \frac{1}{2} ((p-1) \kappa + \Delta) \rceil$ lines, none of which are incident to c, in such a way that no point has degree exceeding Δ .

A minimum point disconnecting set of a power of cycle with no diameters is composed of two separate consecutive strings of points. As a result, it can easily be shown that our graph has the desired point connectivity. The graph also fulfills the other requirements of this case.

We now consider the case when κ is even. The construction is essentially the same as when κ was odd, except for the following differences. Here H_1 includes diameters, however if p-1 is odd we may again add independent diameters to H_1 . If p-1 is even we may add lines of the form (i, i+p/2-1) to H_1 , where i is an arbitrary point in H_1 . Since $\Delta \geq 5$ a sufficient number of lines can be added to H_1 . It is easily verified that our graph has the desired properties. Therefore any quadruple satisfying this case is realizable.

Case 2. Suppose that $\lfloor \frac{1}{2} ((p-1) \Delta + \kappa) \rfloor + 1 \leq q \leq \lfloor \frac{1}{2} p \Delta \rfloor$, $2 \leq \kappa < \Delta$ and $p \geq 2 \Delta + 2$. Let H_2 denote the Harary graph on $p - \Delta - 1$ points with $\lceil \frac{1}{2} (p - \Delta - 1)(\Delta - 1) \rceil$ lines and $\kappa(H_2) = \Delta - 1$. Take the union of H_2 and $K_{\Delta + 1}$ to form a single graph. Observe that H_2 is not complete. If κ is even we proceed

as follows. If $p-\Delta-1$ is even and $\Delta-1$ is odd add $\lfloor \frac{1}{2}(p-\Delta-1-\kappa) \rfloor$ lines of the form (i,i+p/2-1) to H_2 , where i is an arbitrary point in H_2 . Otherwise add $\lfloor \frac{1}{2}(p-\Delta-1-\kappa) \rfloor$ independent diameters to H_2 . We pause to note that H_2 has either κ or $\kappa+1$ points of degree $\Delta-1$. Add κ independent lines joining points in $K_{\Delta+1}$ to points of degree $\Delta-1$ in H_2 . Next, partition the points of degree $\Delta+1$ in $K_{\Delta+1}$ into pairs. For each of these pairs, delete the line which joins the points in that pair. Presently our graph contains $\lfloor \frac{1}{2}p\Delta \rfloor$ lines. We finish our construction by deleting $\lfloor \frac{1}{2}p\Delta \rfloor-q$ independent lines in $K_{\Delta+1}$, none of which are adjacent to lines previously deleted in $K_{\Delta+1}$. Since an independent set of lines was deleted from $K_{\Delta+1}$ and $\kappa < \Delta$, our graph has the desired point connectivity. It can easily be proven that our graph has the other desired properties.

On the other hand, if κ is odd we alter the previous construction as follows. Instead of adding κ lines joining points in $K_{\Delta+1}$ to points in H_2 , add $\kappa+1$ such lines in the following manner. Two lines are made incident to the same point in $K_{\Delta+1}$ (denote this point by e) while the remaining $\kappa-1$ lines are independent. Since one more line joins points in $K_{\Delta+1}$ to points in H_2 , we change the number of diameters we add to H_2 accordingly. Next, delete lines in $K_{\Delta+1}$ in such a way that all points in $K_{\Delta+1}$ have degree Δ . Finally, complete this construction by deleting $\lfloor \frac{1}{2} p \Delta \rfloor - q$ lines in the manner of the previous construction. Note that the set of lines removed from $K_{\Delta+1}$ is not independent. Let F denote one of the deleted lines which was incident to e. As F can be replaced by a path containing points in H_2 and the remaining deleted lines form an independent set, our graph has point connectivity κ . The graph also fulfills the other requirements of this case.

Case 3. Suppose that $\lfloor \frac{1}{2}((p-1)\Delta + \kappa) \rfloor + 1 \leq q \leq \lfloor \frac{1}{2}p\Delta - \frac{1}{2}\max[(p-\Delta-1)(2\Delta+2-p)-\kappa(\kappa-1),0] \rfloor$, $2 \leq \kappa < \Delta$ and $2\Delta+2-\kappa \leq p \leq 2\Delta+1$. Since $\lfloor \frac{1}{2}((p-1)\Delta+\kappa) \rfloor + 1 \leq q$ lemma 4 results in the above lower bound of p and lemma 5 yields the above upper bound of q. First, we consider the possibility that $(p-\Delta-1)(2\Delta+2-p) \geq \kappa(\kappa-1)$. If this is the case, let C denote the graph consisting of κ isolated points and form the union of C and $K_{\Delta+1-\kappa}$. Next, join every point of C to every point in $K_{\Delta+1-\kappa}$. We now form the union of this graph and $K_{p-\Delta-1}$. Denote the points in $K_{\Delta+1-\kappa}$ by A and the points in $K_{p-\Delta-1}$ by B. At this juncture all of the points of A have degree Δ , all of the points of B have degree $p-\Delta-2$ and all of the points of C have degree $\Delta+1-\kappa$.

We wish to prove that $p \ge \kappa + \Delta$. Assuming this inequality is false gives us $p - \Delta - 1 < \kappa - 1$. As a result of $(p - \Delta - 1)$ $(2 \Delta + 2 - p) \ge \kappa(\kappa - 1)$ it follows that $2 \Delta + 2 - p > \kappa$, contradicting $2 \Delta + 2 - \kappa \le p$. Therefore $p \ge \kappa + \Delta$ and B contains at least $\kappa - 1$ points. If $|B| > \kappa - 1$ join κ points of B in a one-to-one

fashion to the points of C. On the other hand, if $|B| = \kappa - 1$ then join the points of B in a one-to-one fashion to $\kappa - 1$ points of C. Note that $|B| = \kappa - 1 > \kappa - 1 > \kappa - 1$ and $|C| = \kappa$ Before lines ioining points of B to points

 $|B| = p - \Delta - 1 \ge \kappa - 1$ and $|C| = \kappa$. Before lines joining points of B to points of C were added, we had

$$\Delta(p-\Delta-1)-\sum_{i\in B}d_i=(p-\Delta-1)(\Delta-\Delta-1)$$

and $\Delta \kappa - \sum_{i \in C} d_i = \kappa(\kappa - 1)$. Consequently, we can now add lines joining points of B to points of C so that every point of C will have degree Δ and no point of B will have degree exceeding Δ . This is done in such a way that the degrees of the points of B differ by at most one. At this point, our graph contains

 $\left[\begin{array}{cc} \sqrt{k} \ p \ \triangle - \sqrt{k} \ (p - \triangle - 1)(2 \ \triangle + 2 - p) + \sqrt{k} \ \kappa(\kappa - 1) \end{array} \right]$

independent lines in $K_{\Delta+1-\kappa}$ finishes the construction. As a result of the lower bound of q, every point has degree of at least $\kappa+1$. It can easily be shown that the final graph has the desired properties.

We now consider the case when $(p - \Delta - 1)(2 \ \Delta + 2 - p) < \kappa(\kappa - 1)$ and

 $p>\kappa+\Delta$. First, repeat the previous construction excluding the step where lines were deleted. However, in this case, every point of B has degree Δ and C

Were desired. However, in this case, every point of D has degree at least one point which has degree less than Δ . Add the appropriate Harary graph to the points of C and/or join pairs of points of C, so that our graph has $\lceil \sqrt{x} p \Delta \rceil$ lines. Deleting $\lceil \sqrt{x} p \Delta \rceil$ - q independent lines in $K_{\Delta+1-\kappa}$

completes this construction.

If $(p - \Delta - 1)(2 \Delta + 2 - p) < \kappa(\kappa - 1)$ and $p \le \kappa + \Delta$ then form the union of $K_{\Delta - \kappa + 1}$ and the graph composed of $p - \Delta - 1 + \kappa$ isolated points. Denote κ of the isolated points by C, the remaining $p - \Delta - 1$ isolated points by B and the points of $K_{\Delta - \kappa + 1}$ by A. Join each point of C to each point of A and B. We pause to note that every point of A has degree κ and every

that every point of A has degree \triangle , every point of B has degree A and every point of C has degree p - $\kappa \le \Delta$. Mext, add the appropriate Harary graph to the points of B and/or join pairs of points of B and, if necessary, do the same to the points of C. It may also be necessary to delete a line which joins a point of B to a point of C. Presently our graph contains $\lceil \log p \Delta \rceil$ lines. Delete lines as in the previous construction and we are finished with case 3.

previous construction and we are finished with case 3. Case 4. Suppose that $p + \Delta - 2 \le q \le \lfloor \sqrt{((p-1))\Delta + \kappa)} \rfloor$, $2 = \kappa < \Delta \le p - 1$ and if $\Delta = p - 1$, then $q \le \kappa + \sqrt{(p-1)(p-2)}$. Consider the cycle on p points and let f and g denote two adjacent points of the cycle. Add $q - p \ge \Delta - 2$ lines so that the following holds. Exactly $\Delta - 2$ of these lines are incident to g, none of these lines are incident to f and no point has degree exceeding Δ . This graph fulfills

the requirements of this case.

Case 5. Suppose that $1 = \kappa \le \Delta$, $p-1 \le q \le \lfloor \frac{1}{2} p \Delta \rfloor$, and if $\Delta = 1$, then p=2. We also assume that the following conditions hold: (1) if $\Delta + 2 \le p \le 2 \Delta + 1$, then $q \le \lfloor \frac{1}{2} ((p-1)\Delta + 1) \rfloor$, (2) if $p = \Delta + 1$, then $q \le 1 + \frac{1}{2} (p-1)(p-2)$, and (3) if $\Delta = 2$ or $p = 2 \Delta + 2$, then $q < \frac{1}{2} p \Delta$.

First let us consider when $q \le \lfloor \frac{1}{2}((p-1)\Delta + 1) \rfloor$. Let T be any tree on p points with $\Delta(T) = \Delta$ and let h be a point of degree one in T. Adding q - p + 1 lines, none of which are incident to h, in such a way that all points in T have degree at most Δ yields a graph satisfying our present assumptions.

Next we entertain the possibility that $\lfloor \frac{1}{2} ((p-1)\Delta + 1) \rfloor + 1 \leq q$, $p \geq 2\Delta + 2$, and that one of the following holds; Δ and $p - \Delta - 1$ are both odd or $q < \lfloor \frac{1}{2} p \Delta \rfloor$. Note that $\Delta \geq 2$. Form the union of $K_{\Delta+1}$ and a path containing $p - \Delta - 1 \geq \Delta + 1$ points. Denote the points of $K_{\Delta+1}$ by A and the points of the path by B. Join a point of B with degree one to one of the points of A. Delete a line of $K_{\Delta+1}$ which is incident to the point of degree $\Delta + 1$. Observe that our graph now has $\frac{1}{2}\Delta(\Delta+1) + p - \Delta - 2$ lines. To finish this construction, add $q - \frac{1}{2}\Delta(\Delta+1) - p + \Delta + 2$ lines joining points of B, without generating any points of degree greater than Δ . Notice that if $q = \lfloor \frac{1}{2} p \Delta \rfloor$, then Δ and $p - \Delta - 1$ are both odd and every point of B has degree Δ .

Case 6. Suppose that $0 = \kappa \le \Delta \le p-1$, $\Delta \le q \le \lfloor \frac{1}{2}p\Delta \rfloor$ and if $p \le 2\Delta + 1$, then $q \le \lfloor \frac{1}{2}(p-1)\Delta \rfloor$. Furthermore, assume $\Delta = p-1$ if and only if p = 1. If p = 1, then use the graph K_1 . Henceforth, we consider only $p \ge 2$. If $q \le \lfloor \frac{1}{2}(p-1)\Delta \rfloor$, then we proceed as follows. Take p isolated points and denote one of them by p. Join p to p to p the points and let p denote one of the remaining isolated points. Adding p and p the points and let p denote one of the remaining isolated points. Adding p and p the points and let p denote the points are incident to p, so that no point has degree greater than p completes our construction.

However, if $q \ge \lfloor \frac{1}{2} (p-1) \Delta \rfloor + 1$ form the union of $K_{\Delta+1}$ and the graph composed of $p - \Delta - 1 \ge \Delta + 1$ isolated points. We end this construction by adding $q - \frac{1}{2} \Delta(\Delta + 1)$ lines, making sure that every point has degree at most Δ . Case 7. Suppose that $2 \le \kappa = \Delta \le p - 1$, $q = \frac{1}{2} p \Delta$ and $p \cdot \Delta$ is even. In this case the Harary graph on p points with $\frac{1}{2} p \Delta$ lines and point connectivity Δ is sufficient.

We are finished with our constructions and will now show sufficiency. If we assume $2 \le \kappa < \Delta$ and $q \le \lfloor \frac{1}{2} ((p-1) \Delta + \kappa) \rfloor$ then cases 1 and 4 show the sufficiency of the conditions of the theorem. Cases 2 and 3 show the sufficiency of the conditions of the theorem for $2 \le \kappa < \Delta$ and $q \ge \lfloor \frac{1}{2} ((p-1) \Delta + \kappa) \rfloor + 1$. Cases 5,6 and 7 show the conditions of the theorem are sufficient if we also have $\kappa = \Delta$ or $\kappa < 2$ and our proof is finished.

Conclusion

The (p, q, κ, Δ) realizability theorem in this paper solves several extremal problems. If any three of the parameters p, q, κ and Δ are given we can find the range of values for the unknown parameter. Here we will look at the problem of finding the maximum value of κ among all (p, q, Δ) graphs, which is denoted by max $(\kappa \mid p, q, \Delta)$. The solution is given below (the proof is straightforward).

$$\max \left(\kappa \mid p,\, q,\, \Delta\right) = \begin{cases} 0 & \text{, if } q < p-1 \text{ or } p=1 \\ \\ \min(\left\lfloor (2q-\Delta)/(p-1)\right\rfloor,\, \Delta-1), \text{ if } q \geq p-1 \geq 1 \text{ and } p\Delta \text{ is odd} \end{cases}$$

$$\left\lfloor (2q-\Delta)/(p-1)\right\rfloor & \text{, otherwise.} \end{cases}$$

References

- [1] A. A. Ali and W. Staton, On extremal graphs with no long paths, *Electron. J. Combinat.* Vol. 3, R20 (1996), 4 pp.
- [2] E. T. Baskoro and M. Miller, On the construction of networks with minimum diameter, Proceedings of the 16th Australian Computer Science Conference, (January 1993) 739-744.
- [3] E. T. Baskoro and M. Miller, A procedure for constructing a minimum diameter digraph, *Bulletin of ICA* 17 (1996) 8-14.
- [4] E. T. Baskoro, M. Miller, J. Plesnik and S. Znam, Regular digraphs of diameter 2 and maximum order, *Australasian J. of Combinatorics* 9 (1994) 291-306.
- [5] B. Berseford-Smith, O. Diessel and H. ElGindy, Optimal algorithms for constrained reconfigurable meshes, *Australian Computer Science Communications* 17 (1995) 32-41.
- [6] F. T. Boesch and C. L. Suffel, Realizability of p-point graphs with prescribed minimum degree, maximum degree, and line-connectivity, *J. Graph Theory* 4 (1980) 363-370.

- [7] F. T. Boesch and C. L. Suffel, Realizability of p-point graphs with prescribed minimum degree, maximum degree, and point-connectivity, *Discrete Appl. Math.* 3 (1981) 9-18.
- [8] F. T. Boesch and C. L. Suffel, Realizability of p-point, q-line graphs with prescribed point connectivity, line connectivity, or minimum degree, *Networks* 12 (1982) 341-350.
- [9] G. Chartrand, A graph-theoretic approach to the communications problem, SIAM J. Appl. Math. 14 (1966) 778-781.
- [10] G. Exoo, F. Harary and C-D. Xu, Vulnerability in graphs of diameter four, *Math. Comput. Modelling*, 17 (1993) 65-68.
- [11] F. Harary and J. P. Hayes, Survey of fault tolerance for graphs, *Graph Theory, combinatorics, and Applications* (Eds. Y. Alavi and A. Schwenk), Vol. 1 (1995) 477-483.
- [12] F. Harary and J. P. Hayes, Node fault tolerance in graphs, *Networks* 27 (1996) 19-23.
- [13] F. Harary and M. Khurrum, One node fault tolerance for caterpillars and starlike trees, *Internat. J. Computer Math.* 56 (1995) 135-143.
- [14] F. Harary, Graph Theory, Addison-Wesley, Reading, MA (1969).
- [15] F. Harary, The maximum connectivity of a graph, *Proc. Natl. Acad. Sci. USA* 48 (1962) 1142-1146.