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Abstract

It is well known that some graph-theoretic extremal questions play a
significant role in the investigation of communication network vulnerability.
Answering questions concerning the realizability of graph invariants also solves
several of these extremal problems. We define a (p, q, k, A) graph as a graph
having p points, q lines, point connectivity k and maximum degree A. An
arbitrary quadruple of integers (a, b, c, d) is called (p, q, k, A) realizable if there
is a (p, q, K, A) graph with p =a, q =b, k = c and A = d. Necessary and sufficient
conditions for a quadruple to be (p, g, k, A) realizable are derived. In earlier
papers, Boesch and Suffel gave necessary and sufficient conditions for (p, q, ),
(p, q, A), (p; g, 8), (p, A, 8, A) and (p, A, 8, ) realizability, where A denotes the
line connectivity of a graph and & denotes the minimum degree for all points in a
graph.
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Introduction

Here we consider an undirected graph G = (V, X) with a finite point set V and
a set X whose elements, called lines, are two point subsets of V. The number of
points is denoted by p, and the number of lines | X | is denoted by q(G) or q.
This paper uses the notation and terminology of Harary [14]; however a few
basic concepts are now reproduced.

The line connectivity of a graph G (denoted by A(G) or 1) is the minimum
number of lines whose removal results in a disconnected graph. A graph is
called trivial if it has just one point. The point connectivity (denoted by x(G) or
K) is the minimum number of points whose removal results in a disconnected or
trivial graph. The number of lines connected to a point v of G is the degree of
that point, denoted by d,(G) or d,. The minimum degree is denoted by & or 8(G)
and the maximum degree is denoted by A or A(G). If = A, the graph is called
regular. A p point graph with § = p-1 is called complete and is denoted by K. A
set of k points whose removal disconnects G, or makes G trivial, is called a
minimurn point disconnecting set. The graph obtained from C, ( the cycle on p
points) by adding lines between all pairs of points that are distance at least two
but not greater than A apart is denoted by CPA.

It is well known that some graph-theoretic extremal questions play a
significant role in the investigation of communication network vulnerability
[1-13]. Harary [15] found the maximum point connectivity among all graphs
with a given number of points and a given number of lines. Answering questions
concerning the realizability of graph invariants also solves several of these
extremal problems. We define a (p, q, k, A) graph as a graph having p points,

q lines, point connectivity k and maximum degree A. An arbitrary quadruple of
integers (a, b, ¢, d) is called (p, q, k, A) realizable if there is a (p, q, k, A) graph
with p=a, q=b, k =c and A = d. Necessary and sufficient conditions for a
quadruple to be (p, q, K, A) realizable (or, more briefly, realizable) are derived.
Boesch and Suffel derived necessary and sufficient conditions for (p, g, k),

(p, 9, A), (p, G, B), (D, A, 8, L) and (p, A, §, k) realizability in earlier papers

Preliminaries
First we recall a result given by Harary [15].
Lemma 1: If2 < < p-1, then there is a graph on p points with q =] %2p 5]

and A = & = k. (This graph is a power of cycle and is usually called the Harary
graph on p points).
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The next lemma contains a complete list of the relevant lower bounds for q-

Lemma 2: The following holds;
(1) A<q,

(2) ifx=1,thenp-1<gq,

(3) ifk=2,thenp+A-2<q,and
@ M2((p-1x+4)l<q.

Proof: We pause to note that (1) and (4) are pertinent when k = 0 and k > 3,
respectively. As (1) is obvious and (2) is well known we will now prove (3). Let
G be a graph with k =2 and b be a point with dy(G) = A. Since G - {b} is
connected; it follows that (G — {b}) >p—2 and q(G) > p + A - 2, thus proving
(3)- Noting that (4) follows from < §, concludes this proof.

The remaining three lemmas find relevant upper bounds for q.

Lemma3: (1) Ifxk=1 andp=2A+2,thenq<'2pA.
(2) For all graphs q <k + %2 (p— 1)(p - 2).

Proof: First we will prove (1). Suppose G is a graph withk = 1, p=2A+2and
q="2p A. As G is not complete there is a point ¢ whose removal disconnects G
into at least two components. Thus the point set of G — {c} may be partitioned
into two sets T and U such that no lines of G — {c} join T and U. Since G is
regular of degree A, we have | T U {c} | 2A+1and |IT] 2 A It is also true
that |U| > A. Because p=2 A +2either [T| =Aor |U] =a. Suppose
without loss of generality that | T| = A. Therefore ¢ is adjacent to every point in
T and d(G) > A +1. As this is impossible, no such G exists. Obviously

q < Y2 p A and the result follows. The inequality in (2) was established for all
graphs in [8].

Lemma 4: pr<2A+2-|<,thenq.<.|_‘/2((p-l)A+v<)_|.

Proof: Let G be a graph withp <2 A+ 2 - k and S be a minimum point
disconnecting set of G. The point set of G — S may be partitioned into two sets T
and U such that no lines of G — S join T and U. Noting that either | T| <A -«
or [U| <A -« we assume without loss of generality that Tl <A-x1f

[ T| =N then

qs%2N(N-1)+%({p-N)A+1%~N«k.

Our goal is to maximize the right side of the inequality on 1 <N < A - k. The
fact that this quantity is a quadratic in N with a leading term of ¥ N? tells us the
maximum must take place at one of the bounds of the interval. The value of the
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right side of the inequality at either bound is ¥z (p — 1) A + Y2 x and the result
follows.

Lemma 5: For all graphs either q <. %2 (p - NA+%k]or
q< Lv2pA-Yemax[(p-A-1)2A+2-p)-x(x-1),0]].

Proof: Since the result is obvious if (p-A-1)}(2A+2-p)-x(k-1) <0,
henceforth we assume (p - A - 1)(2 A+2-p) - k (x - 1) >0. We pause to note
thatp - A- 120 and k(x - 1) 2 0 implies p < 2 A +1. It also follows thatp >3
and 0 <A <p- 1. Our goal is to showthatifq>l_’/z(p— 1) A+ %« |then

qslepA-1(p-A-1)2A+2-p)+Vax(x-1)].

Let G be a graph with (p-A-1)(2A+2-p)-k(x-1)>0and
q >Le(p-1)A+%k 1 Let'S, T and U be defined as they were in the proof of
lemma 4. We wish to show that

2q=Yiecdi<pA-(p-A-1)(2A+2-p)+k(k-1).

Let V denote the union of T and U. As Yieg d; = Zies di+ icv di we seek upper
bounds for ¥;cs d; and Y ;v d;. Note that %;cs d; < k A. To find an upper bound
for X;ev d; first find bounds for |T] and 1U1. Su pose without loss of
generality that IT| < |U|. We also assume that | T| <A - x. An argument
similar to the one used to prove lemma 4 infers q <l v(p-1)a+x)],
contradicting our assumption that q > ((p-1)A+xK) J. Therefore
ITl2Aa+1-x, Ul 2A+1-xand ITl <p-A-1. Letting | T| =N gives
us

ievisN(N-1)+(p-N-k)}(p-N-k-1)+kA.

We want to maximize the right side of this inequality on

A+ 1-k<N<p-A- 1. This quantity is a quadratic in N with a leading term of
2N?, and thus is maximum at one of the bounds of the interval. Substituting for
N shows this quadratic has the same value at each bound of the interval, giving
us

SievhiSkA+(A+1-k)(A-K)+(p-A-1)p-A-2).

Consequently

Yiegdi=Tiesdi+ LievdiS2kA+(A+1-x)(A-K)+(p-A-1)p-A-2).

140



Showing that

2kAHA+1-k)A-K)Hp-A-1)(p-A-2)<pA-(p-A-1)2A+2-p)tk(k-1)

will complete this proof. In fact, simplifying both sides shows they are equal and

we are done.

At this point we contemplate whether or not lemma 4 can be used to simplify
the statement of lemma 5, and vice versa. To see this is not possible consider the

following four cases, each of which satisfies

(Pp-A-1)(2A+2-p)-«(x-1)>0. The first two casesare p=11,A=8,k =4

and p =6, A =3, k=1, each of which satisfies p <2 A + 2 - k. The remaining

two cases are p =8, A=4, k=2 and p = 16, A = 8, k = 4, each of which satisfies
p =2 A+ 2 - k. Substituting each of these four cases into the upper bounds for q

given in lemmas 4 and 5 shows the two lemmas cannot be simplified.

Theorem. A quadruple of non-negative integers (p, q, k, A) is realizable if and

The (p, q, , A) realizability theorem

only if exactly one of the following conditions holds:

@

(D

(IIT)

av)

M

0=x<A<p-1,A<q<|l %pAlandifp<2A+1,then
qslv@-1Al;

1=x<A p-1<q,andifA=1, thenp=2:

(A) A+2<p<2A+1landqsl %(p-1)Aa+1)];
(B) p=A+landq<l+%2(p-1)p-2);

(C) p=2A+2andgq<2pA;

(D) p22A+3,qsl%pAlandifA=2, thenq<p;

2<k=A<p-1l,p-Aisevenandq="2pA;

2<k<A[ % ((p-1)x+A)]sqandifx= 2,thenp+A-2<q:

(A) A+1<p<2A+2-kandq<l(p-1a+x)];

(B) p=A+landq<k+%(p-1)(p-2);

(C) p22A+2-kandeitherqsl2((p- DA +x)] or
q<lepA-Yemax[(p-A-1)2A+2-p)-k(x-1),0]];

" p=landq=xk=A=0.
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Proof: The necessity of A <p — 1 in (I) follows from the fact that A=p—121
implies k > 0. The other conditions in (I) are a consequence of lemmas 2, 4 and
5, and some obvious facts about graphs. We now consider (II). If a connected
graph is regular of degree one, then it has exactly two points. Thus x = A = 1
implies p = 2. Substituting k = 1 and p=2 A + 1 into lemma 5 gives us

qslL ((p-1)A+1)]. The only connected regular graph of degree two is a
cycle. Therefore k = 1 and A = 2 implies g < p. The other conditions in (II)
follow from lemmas 2, 3, 4 and 5 together with well known facts concerning
graphs. The conditions in (III) are a result of properties of a regular graph. The
conditions in (IV) are a consequence of lemmas 2, 3, 4 and 5, and basic graph
theory. The conditions in (V) are trivial.

We now provide constructions to prove sufficiency.

Case 1. Suppose that[ V2 ((p - 1)K+A)_|qul_ Y((p-1)A+x) ],
3<k<A<p-landifA=p-1,thenq<k+ % (p- 1)(p-2). Let H, denote
the Harary graph on p — 1 points with [ % (p-1)(x - 1) | lines and

k(H;) = k - 1. Form a new graph by taking the union of a single point (which is
denoted by b) and H,. Note that H, is not complete. If  is odd we proceed as
follows. Observing that H, is a power of cycle which does not include
diameters, wenow add [ Y2 (p-A-1) | independent diameters to H;. At this
point in our construction there are either A or A - 1 points in H, that have degree
K - 1. Make b adjacent to all of the points of degree x - 1 in H,. If d,=A - 1,
then make b adjacent to another point in H,. Presently our graph contains

[ % ((p—1) k + A)] lines. If A =p — 2 let ¢ denote the point in H, which is not
adjacent to b, otherwise let c denote any point in H,. To complete our
construction we add q NR7A ((@—1) k + A) | lines, none of which are incident
to ¢, in such a way that no point has degree exceeding A.

A minimum point disconnecting set of a power of cycle with no diameters is
composed of two separate consecutive strings of points. As a result, it can easily
be shown that our graph has the desired point connectivity. The graph also
fulfills the other requirements of this case.

We now consider the case when « is even. The construction is essentially the
same as when k was odd, except for the following differences. Here H, includes
diameters, however if p — 1 is odd we may again add independent diameters to
H,. If p—1 is even we may add lines of the form (i, 1+ p/2 — 1) to H,, where i
is an arbitrary point in H,. Since A > 5 a sufficient number of lines can be added
to H,. It is easily verified that our graph has the desired properties. Therefore
any quadruple satisfying this case is realizable.

Case 2. Suppose that |_‘/z((p— 1A+x)J+1 quL‘/szJ,25K<A and
p 22 A+ 2. Let H, denote the Harary graph on p - A - 1 points with

[ p-A-1)A-1) 7 lines and k(H;) = A - 1. Take the union of H, and K, , ,
to form a single graph. Observe that H, is not complete. If k is even we proceed

142



as follows. If p-A-1isevenand A- lisoddadd | %2 (p-A-1-x) | lines of
the form (i, i + p/2 - 1) to Hy, where i is an arbitrary point in H,. Otherwise add
Le@-A-1-x) ] independent diameters to H,. We pause to note that H, has
either k or k + 1 points of degree A - 1. Add k independent lines joining points
in K4+ to points of degree A - 1 in H,. Next, partition the points of degree A + 1
in K+ into pairs. For each of these pairs, delete the line which joins the points
in that pair. Presently our graph contains | %2 p A ] lines. We finish our
construction by deleting | %2p A |- q independent lines in K, + | , none of
which are adjacent to lines previously deleted in K, . ;. Since an independent set
of lines was deleted from K4+ and k < A, our graph has the desired point
connectivity. It can easily be proven that our graph has the other desired
properties.

On the other hand, if k is odd we alter the previous construction as follows.
Instead of adding « lines joining points in K, . ; to points in H,, add  + 1 such
lines in the following manner. Two lines are made incident to the same point in
Ka +1 (denote this point by ) while the remaining k - 1 lines are independent.
Since one more line joins points in K, + | to points in H,, we change the number
of diameters we add to H, accordingly. Next, delete lines in K, , ; in such a way
that all points in K4 + | have degree A. Finally, complete this construction by
deleting | %2p A |- q lines in the manner of the previous construction. Note that
the set of lines removed from K, ., is not independent. Let F denote one of the
deleted lines which was incident to e. As F can be replaced by a path containing
points in H; and the remaining deleted lines form an independent set, our graph
has point connectivity «. The graph also fulfills the other requirements of this
case.

Case 3. Suppose that|_ 1% (-DA+x)]+1< q<
Lv2pA-tvemax[(p-A-1)2A+2-p)-k(x-1),0]],
2<k<Aand2A+2-xk<p<2A+1Sincel 2 (p-1A+x)|+1<q
lemma 4 results in the above lower bound of p and lemma 5 yields the above
upper bound of q. First, we consider the possibility that (p - A- 1)(2 A+ 2 —p) 2
K(k - 1). If this is the case, let C denote the graph consisting of k isolated points
and form the union of C and K, + | . . Next, join every point of C to every point
in Ky +1.« . We now form the union of this graph and K;-a-1.Denote the points
inKa+1.. by A and the points in K, . 5, by B. At this juncture all of the points
of A have degree A, all of the points of B have degree p - A - 2 and all of the
points of C have degree A+ 1 - x.

We wish to prove that p 2 k + A. Assuming this inequality is false gives us
p-A-1<k-l. Asaresultof (p-A-1)(2A+2-p)=«(k- 1) it follows that
2A+2-p >k, contradicting 2 A + 2 - k < p. Therefore p 2k + A and B
contains at least k - 1 points. If |B| >« - 1 join x points of B in a one-to-one
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Case 5. Suppose that 1 =k <A, p-1<q<|l %pA ], andifA= 1, thenp=2.
We also assume that the following conditions hold: (1) if A+2<p<2A+1,
thenq<l % ((p-1)Aa+1)],Q)ifp=A+1,thenq<1+%(p-1)p-2),
and 3)ifA=2orp=2A+2,thenq<'2pA.

First let us consider when q < L1 {(p-DA+1) J.LetTbe any tree onp
points with A(T) = A and let h be a point of degree one in T. Adding q—p + 1
lines, none of which are incident to h, in such a way that all points in T have
degree at most A yields a graph satisfying our present assumptions.

Next we entertain the possibility that L1 (p-1)A+1) J+1< q,

p =2 A+ 2, and that one of the following holds ; A and p - A - 1 are both odd or
q<|*%pA ]. Note that A > 2. Form the union of K, and a path containing
p-A-12A-+1 points. Denote the points of K, 4| by A and the points of the
path by B. Join a point of B with degree one to one of the points of A. Delete a
line of K, + | which is incident to the point of degree A + 1. Observe that our
graph now has ¥2 A(A + 1) + p - A - 2 lines. To finish this construction, add

q- Y2 A(A+1)—p+ A+2 lines joining points of B, without generating any
points of degree greater than A. Notice thatif q=| %2 p A ], then A and p-A-1
are both odd and every point of B has degree A.

On the other hand, it may be that q="2p A, p=2 A+ 3, A > 3 and either A or
p-A-1iseven. Let H; denote the Harary graph on p - A - 1 points with
V2 (p - A - 1) A lines and k(H;) = A. Take the union of Hy and K, , ; to forma
single graph. Let j be a point of H;. Note that Hj is both regular of degree A and
not complete. As Hj is a power of cycle, it contains two nonadjacent points both
of which are adjacent to j. Denote two such points by k and 1. Add line {k, 1}
and delete lines {j, k} and {j, 1}. Now join j to two points of K, . , and delete the
line joining the two points of degree A + 1. This graph has the desired qualities
and we are finished with case 5.

Case 6. Suppose that 0=k <A<p-1,A<q<| v2pAJ andifp<2A+1,
thenq<| % (p~ 1) A J. Furthermore, assume A =p — 1 if and only if p = 1. If
p = 1, then use the graph K. Henceforth, we consider only p > 2. If

qsl v (p-1)A J, then we proceed as follows. Take p isolated points and
denote one of them by m. Join m to A < p — 1 points and let n denote one of the
remaining isolated points. Adding q - A lines, none of which are incident to n, so
that no point has degree greater than A completes our construction.

However, if 2| %2 (p— 1) A ]+ 1 form the union of Ka+) and the graph
composed of p - A - 1 2 A + 1 isolated points. We end this construction by
adding q - Y2 A(A + 1) lines, making sure that every point has degree at most A.
Case 7. Suppose that 2 <k =A <p-1,q="2p Aand p-A is even. In this case
the Harary graph on p points with %2 p A lines and point connectivity A is
sufficient.
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We are finished with our constructions and will now show sufficiency. If we
assume 2 <k <Aand q<| Y2 ((p- 1) A+«) | then cases 1 and 4 show the
sufficiency of the conditions of the theorem. Cases 2 and 3 show the sufficiency
of the conditions of the theorem for2 <k <Aandq2| %2 ((p- 1) A+k) J+ 1.
Cases 5,6 and 7 show the conditions of the theorem are sufficient if we also have
K = A or k <2 and our proof is finished.

Conclusion

The (p, q, , A) realizability theorem in this paper solves several extremal
problems. If any three of the parameters p, g, k and A are given we can find the
range of values for the unknown parameter. Here we will look at the problem of
finding the maximum value of k among all (p, q, A) graphs, which is denoted by
max (K | P, g, A). The solution is given below (the proof is straightforward).

0 ,ifq<p-lorp=1
max(K|p,q,A)= min(l_(2q-A)/(p—l)J,A-1),ifq2p—12landpAisodd

L2q-A)p-1)] , otherwise.
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