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Abstract

We shall consider a problem of finding an ‘optimum’ tree which
is closely related to the network flow problem proposed by Ford and
Fulkerson, and call the solution to this problem a lericographically
optimum traffic tree (LOTT). Before examining this problem in de-
tail, we shall review the problem of finding an optimum requirement
spanning tree (ORST) studied by Hu which is also related to the net-
work flow problem. We can regard the LOTT problem as a min-max
problem and the ORST problem as a min-sum problem. It shall be
shown that, while LOTTs and ORSTSs coincide completely without
maximum degree constraints, they do not always coincide with the
constraints. Further, we shall show that LOT'Ts can be expressed by
simple recursion in a special case.

1 Introduction

We shall consider a problem of finding an ‘optimum’ tree which is closely
related to the network flow problem proposed by Ford and Fulkerson [5].
As the preliminaries of proposing our problem, we define some notation.
Let V be a set of n vertices and (%) the set of all pairs of distinct
vertices in V. Also, let 7y be the set of undirected spanning trees on V.
A tree T € Ty with an edge set E (|E| = n — 1) is denoted by T' = (V, E),
and such F is sometimes denoted by ET to emphasize that it is the edge
set of T'. Also, the edge ¢ € E connecting two vertices v and w is denoted
by e = (v,w). Assume that a nonnegative value ry,, is assigned to each
pair {v,w} € (%). For an edge (v,w) € E of a tree T = (V,E) € Ty,
we define a subtree of T' denoted by T'(v) = (V(v), E(v)) as the connected
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component of (V, E \ {(v,w)}) containing v, while T'(w) = (V(w), E(w))
is defined as the other connected component. Also, we define the ¢raffic of
the edge (v, w) by

Hww), D)= Y o
zeV(v),yeV(w)

(In terms of the network flow problem, t({v,w),T) is the capacity of the
cut dividing V into V(v) and V(w) in the complete graph K,, on V with
edge capacities r,y (z,y € V).) Further, let

tT =7 ,45,...tT_]

be the sequence of traffics in which the traffics of edges in T are arranged
in descending order, that is, ¢7 > ¢ > ... > I, holds. For mathematical
convenience, if » = 1 then we set ' = [ ] (an empty sequence).

The problem we want to solve is to find a tree T' € 7y which minimizes
tT lexicographically. We call such a tree a lezicographically optimum traffic
tree (LOTT). If T' is a LOTT, then it is obvious that T" minimizes

m t(e,T) (=T ifn>2
t(T)={oax"eET( ) (=11) HZ;I.

Hence, we can regard the LOTT problem as a generalized min-max prob-
lem.

Before examining the LOT'T problem in detail, we review another prob-
lem which is also related to the network flow problem and can be regarded
as a min-sum problem. Under the same assumptions stated above, Hu [4]
considered a problem of finding a tree T' which minimizes

_ IR Eq-t(e,T)=Z{v";,} v;d(v,'w;T)r,,w ifn>2
f(T)‘{o ) <) ifn=1,

where d(v, w;T) is the number of edges on the path between two vertices
v and w on T. He called the solution to this problem an optimum reguire-
ment spanning tree (ORST), and showed that an ORST is obtained by the
Gomory-Hu algorithm [3] when the degrees of vertices are not restricted.
On the other hand, Anazawa [2] considered a problem of minimizing f in
the case when (a) V = {0,1,...,n — 1} is assumed, and (b) a positive
integer [, is given to each vertex v € V and

deg(v) <ly holdsfor allw e V, . (1)

where deg(v) denotes the degree of v. Although this problem is not effi-
ciently solvable in general, he showed that if {l,} satisfies

n—1

o=l 2lp-121and ) L >22n-1)
v=0
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and {ry,} satisfies
Tow + Totw! = Tow! + Tyle (2)

for all 4-tuple {v,v',w,w'} (v < ¥/, w < w’) such that ryy, Tyw, Few and
Ty are all defined, then a particular tree denoted by 7 (which is explicitly
definable) is an ORST. Roughly speaking, T* is obtained by the following
‘greedy algorithm’: First, to vertex 0, connect the remaining vertices by
ascending order of vertex number as many as possible (so that deg(0) < lp
holds); secondly, to vertex 1, connect the remaining vertices by the same
order as many as possible (so that deg(l) < I; holds); and continue to
connect the remaining vertices in the same manner until all n vertices are
connected. An example of T* (forn =7andlp=h =--- =g =3) is
illustrated by Figure 1 (a). .
When considering the LOTT problem, we must note whether the de-

grees of vertices are restricted or not, similarly to the ORST problem.
However, the LOTT problem without the maximum degree constraints is
trivial, since every LOTTs are ORSTs and vice versa for arbitrarily given
{rvw}, which is indicated by Adolphson and Hu [1]. This means that a
LOTT is also obtained by the Gomory-Hu algorithm in the case. On the
other hand, under condition (1), there exists a case when a LOTT does
not coincide with any ORST for the same {r,,,}. For example, consider a
tree T illustrated by Figure 1 (b) consisting of n = 7 vertices and satisfy-
ing deg(v) < I, = 3 for all v € V. Assuming that ry,, = 1 holds for all
{v,w} € (%) which obviously satisfies (2), we find that :

f(T) =48 > 46 = f(T*)

but
7" = [12,10,6,6,6,6] > [10,10,10,6,6,6] = ¢T
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Figure 2: A tree with three maximum traffic edges of traffic 10.

holds, where ‘>’ means ‘lexicographically greater than’. The fact is that Tis
aLOTT among the trees satisfying condition (1) withlp ={; = .- =lg =3
if all 7, are equal to each other.

In this paper, we shall devote ourselves to a special case when

every vertex v € V satisfies deg(v) < L 3
for a given integer L (> 2) and

Fow = 1 holds for all {v, w} € (‘;) @)

Note that, in this case, the solution to the LOTT problem for n < 3 or
L = 2 is trivial. We shall give in Section 2 necessary conditions which
LOTTs must satisfy and show that any tree satisfying the necessary con-
dition attains the min-max bound minper, t(T). And we shall show in
Section 3 that LOTTs can be expressed recursively.

2 Necessary conditions of the optimality

First, we add some notation and definitions. For a vertexset V with |V| =n
and an integer L (> 2), let 7y, be the set of undirected spanning trees on
V satisfying condition (3). For a tree T' = (V, E) € Tv,1, we call the edges
attaining t(T") the mazimum traffic edges of T'. In general, a tree may have
two or more maximum traffic edges. For example, all (v,%;) (i =1,...,3)
in Figure 2 are the maximum traffic edges (of traffic 10) of T. Also, for
a subtree T(v) = (V(v), E(v)) of T defined for an edge (v,-) € E, let
- V(v) = V\V(v). When condition (4) is satisfied, we find that ((v,-),T) =
V()] - V()| = [V(v)l(n — |[V(v)]) bolds for any edge (v,") € E.
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Lemma 1 For two edges (v,-) and (w,-) of a tree T' = (V, E) € Ty, we
define subtrees T'(v) = (V (v}, E(v)) and T'(w) = (V(w), E(w)), and assume
that [V(v)] < [V(v)] and [V (w)] < [V(w)| hold. If [V(v)] < [V(w)l], then
t((v,), T) < t((w,-),T) holds.

Proof Note that the function g(z) = z(n — z) (» > 0) is monotone
increasing on [0, ]. Since neither |V(v)| nor |V(w)| exceeds %, we obtain
the lemma. O

Corollary 1 For a tree T = (V,E) € Tv,L, let T(v) = (V(v), E(v)) be
a subtree of T' defined for an edge (v,-) € E. If |V(v)| < [V(v)|, then
t(e, T) < t((v,-), T) holds for all e € E(v).

Proof Let e = (p,q) € E(v) and assume that d(p,v; T) > d(q,v; T holds.
Defining a subtree T'(p) = (V(p), E(p)) of T for the edge (p,q), we have
[V(p)] < [V(2)]. Also, it follows from |V (v)| < |[V(v)] that |V(p)| < |V(p)|
holds. Hence, we find from Lemma 1 that ¢{((p,q),T) < t((v, ), T) holds.
]

Theorem 1 For a tree T = (V,E) € Ty, let v € V satisfy deg(v) = m,
and let T(u;) = (V(%), E(w;)) (i = 1,...,m) be subtrees of T defined for
(v,u;) € E (i = 1,...,m). Assume that |V (u1)| < |V(u1)| holds. Then
(v,u1) is one of the mazimum traffic edges of T if and only if [V (u;)| >
|V (%;)| holds for alli =2,...,m.

Proof Since the case of n = 2 is trivial, suppose that n > 3 holds.
(Necessity) Assume that |V (u,;)| < |V (u;)| holds for a certain 4, say i = 2.
Consider a tree T' obtained by deleting V(u;) (i = 3,...,m). Then we find
from |V (u1)} + 1 < |V (uz2)| and Corollary 1 that

t(v,w), T')=t((2,u2), T') = [V () |(IV (w2)| +1) = |V (w)l IV (1) +1) < 0
holds. Hence, for the original tree T', we find from

Hou)T) = VI3 V)| +1)
=2
= VIV + 1)+ Vel 3 V)
=3
and
(v, %), T) = V(O IV(w) +1)
i72
= VIV D) + Vel 3V
=3
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that
t((v3 ul)a T) - t((?), uZ)) T) =
t((v, 1), T') = #((v,42), T') + (IV(w1)| = [V (2)]) ) [V(3)] < 0

=3

holds, which implies that (v,u;) does not attain ¢(T).

(Sufficiency) Since |V (u1)| < |V (u1)] is assumed, it follows from Corollary 1
that the maximum traffic edges of T must exist in E'\ E(u;). Also, for each
i=2,...,m, we find from [V(u)| < V()| < Ty IV )| +1 = |V(us)
and Corollary 1 that the maximum traffic edges of T must exist in B\ E(u;).
Hence, all the maximum traffic edges of T" must exist in

N(E\ E@)) = {@,w)li =1,...,m}.

=1

Since |V(u;)| < |[V(w)| £ § is satisfied for ¢ = 2,...,m, we find from
Lemma 1 that (v,u;) is one of the maximum traffic edges of T'. O

Remark It is easy to see from Theorem 1 that if a tree has two or more
maximum traffic edges, then all of them are adjacent to each other.

We find from Theorem 1 that any tree T' € Ty, (n > 2) has a ver-
tex v with deg(v) = m satisfying the following condition: When sub-
trees T'(u;) = (V(w),E(uwi)) (¢ = 1,...,m) of T are defined for edges
(v,w5) E=1,...,m), |V(w)] < |V(u,)| holds foralli =1,...,m. We call
such v the mazimum traffic vertez of T. Let VT be the set of all the max-
imum traffic vertices of T'. Then |VT| < 2 holds for all T € Ty,. If T has
two or more maximum traffic edges with. the common end vertex v, then
VT = {v} holds. On the other hand, |VT| = 2 (say VT = {v;,v3}) holds
if and only if T has an edge (vi,v2) and |V (v1)| = |V (v1)] is satisfied for
the subtree T'(v1) = (V(v1), E(v1)) defined for (v1,v3). For mathematical
convenience, if T' = ({v},@) then we define the maximum traffic vertex of
T by v.

For a fixed vertex v € V and a given integer M (2 < M < L), let

Tv,o(M,v) = {T € Ty,Llv € VT, deg(v) < M}.
Also, for a tree T' € Ty (M, v), let
o mT = deg(v),
o T(u) = (V(w), B(w)) (i =1,...,mT) be defined for (v,u;) (§ =
1,...,m7), and
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e kT be the number of the maximum traffic edges of T

Then it follows from Theorem 1 that

=nT (say) fori=1,...,kT
IV(us)I{ <nT fori=kT+1,...,mT

can be assumed without loss of generality. Further, we obtain the following
two theorems.

Theorem 2 A necessary condition for T € Ty, (M,v) to minimize tT
lexicographically in Ty (M, v) is that

(i) ifn—1< M, thenmT =n—1, that is, |V(u)| =1 (G =1,...,mT)
holds,

(i) ifn—1> M, thenmT = M and

nT orz'zl,... kT
IV(w)I={ aT —1 §0r5=kT+’1,---,mT 2

hold.

Proof Since the case of n < 3 is trivial, suppose that n > 4 holds. In the
caseof n—1< M,letT e Tv,.(M,v) be a tree satisfying mT =n—1and
T € Ty,1(M,v) a tree with mT < n — 1. Then 7' satisfies t(T) = n —1
obviously, while T satisfies ¢(T") > 2(n — 2) since nT > 2 holds. Hence, we
find that

() - (T 22m-2)-(n—1)=n-3>0

holds, which implies £T > ¢T. In the case of n — 1> M, let T = (V,E) €
Ty,.(M,v) be a tree not satisfying the above condition. Also, let w; €
V(uyr) be a vertex with deg(w;) = 1 and wp the vertex with (wo,w;) € E.
Next, we construct another tree TV = (V, E') as follows: If T satisfies
mT < M, then let

E' = B\ {(wo,w1)} U{(v,m1)};-

else, if T" satisfies mT = M and |V (u;)| < nT -2 for some j > kT +1, then
choose a vertex w2 € V(u;) with deg(wz) < L and let

E' = B\ {(wo, w1)} U {(wz,w1)}.
Then it is obvious that T' € Ty, (M,v) holds. Also, we find that
o if T satisfies k7 = 1, then t(T") < t(T') holds,
e otherwise, t(T") = ¢(T) and kT’ < kT hold,
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which implies that T > T holds. O

Theorem 8 The necessary condition in Theorem 2 is eguivalent to the
condition that

mT = n—1 fn-1<M
M fn—1>M
and - forim1 '
_ ) 4+ or:=1,...,7
IV(W)I_{ n fori=r+1,...,mT ®)

hold for nonnegative integers n' and r satisfyingn —1 = n'mT +r (0 <
r <mT).

Proof Inthecaseofn—1< M, mT =n —1holdsif and only if n' =1
and » = O are satisfied. Then equation (6) is equivalent to |V (u;)| =
1(G =1,...,mT). Consider the case of n — 1 > M, where mT = M
holds. If kT = mT, then equation (5) means |V ()| = nT = (n — 1)/kT
(¢ = 1,...,mT), which is equivalent to equation (6) for n' = (n — 1)/kT
and r = 0. If kT < m7T, then it follows from equation (5) that n — 1 =
nTkT 4 (nT — 1)(m7T — kT) = (nT — 1)mT + kT holds. Hence, we find that
equation (5) is equivalent to equation (6) for n’ =nT —landr=kT. O

Corollary 2 For a given set V with |V| =n and a given integer L (> 2),
a necessary condition for T € Ty,;, to be a LOTT is that

n—1 ifn—-1<L
mT=deg(”)={L i}f‘n-l;L

holds for a vertex v € VT and eguation (6) holds for nonnegative integers
n' and r satisfyingn —1=n'mT +r (0 <r <mT).

Proof This is a special case of Theorem 3 where M = L is set. O

Corollary 8 If T € Ty, satisfies the condition in Corollary 2, then T
minimizes t(T) (= tT).

Proof For a fixed vertex v € V and a fixed M (2 < M < L), we easily find
that T' € Ty, (M, v) minimizes (T') if T satisfies the condition in Theorem
3. Since ' in Theorem 3 is nonincreasing as M is increasing, we obtain the
corollary, O
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3 Recursive expression of LOTTs

To show the main result in this paper, we must provide some more prelim-
inaries. For a subtree T(v) = (V(u), E(v)) of T = (V, E) defined for an
edge (u,') € E, let

tT(u) = [tT (), - . ., ]y ()]

be a subsequence of t¥ in which the traffics of edges in E(u) are ar-
ranged in descending order. We must distinguish #T(u) from #T®) =
[T, th) |, I E(u) = 0, then we set 7 (u) = [].

For two disjoint sets Vj and V5 with |Vj| > |[Vo]| > 0,let V = VU V%,
V] and n' = [V;]. Then 0 < n' < % is obvious. Given a tree
(V1, By) € Ty, with v € V; and deg(v) < L, we define

Ty = {(V,E) € Tyil(Va, B2) € Ty, 1,

u € Vo,deg(v) < L, E = E, U B U{(v,u)}}.
For a tree T € Ty/%, let T(v) = (V(v), E(v)) and T'(x) = (V(u), E(x)) be

subtrees of T' defined for (v,u) € E (then T'(v) = T} is obvious). Then we
obtain the following three lemmas.

n
¥}

Lemma 2 If T minimizes tT lezicographically in T, then it also mini-
mizes the subsequence tT (u) lexicographically in Tf,’:’L.

Proof We can easily find that if 7 (x) is not lexicographically minimum,
then ¢T cannot be lexicographically minimum. O

Lemma 8 Suppose that L > 3 holds. If T minimizes tT lezicographically
in T}, then u € VT® holds, that is, u is one of the mazimum traffic
vertices of T(u).

Proof Since the lemma. holds obviously when n’ < 2 is satisfied, we con-
sider the case of ' > 3. Let T' € TJ:’L be a tree satisfying u € V1> where
Ty = (V2, B2) = T(u), and TV = (V, By UE; U{(v,v')}) where v’ € Vo\ VT2
and deg(u’) < L hold in T,. Then there exists an edge (v/,w) € B2 such
that |V(w)| > |V(w)| holds for the subtree T(w) = (V(w), E(w)) of T
defined for (u/,w). Suppose that t(T%) = t1? = n”(n’ — n") holds for a
certain n” (< %). Then we easily find that T satisfies ¢ (u) = n(n —n").
On the other hand, since n' < z-'zi < |[V(w)| < % holds, T’ satisfies
t((v, w),1') = |V(w)|(n - |V(w)]) > n'(n —n"). Hence, tT cannot be
lexicographically minimum. O

Remark It is easy to find that Lemma 3 is not always true in the case of
L=2. :
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Lemma 4 Supposing that L > 3 holds, we find that T minimizes tT lexi-
cographically in Ty, if and only if T(u) minimizes tT(*) lezicographically
in Ty, (L — 1,u).

Proof Since the case of n’ < 3 is trivial, suppose that n’ > 4 holds. Note
that, for any subtree T'(u) = (V(u), E(u)) satisfying u € VT, both t,-T("')
and tJ (u) correspond to the same edge in T'(u) foralli=1,...,n' —1. In
fact, for any edge e € E(u), if t(e, T'(u)) is expressed by n” (n' —n'') for some
" (0<n" < %’), then t(e,T') = n”(n —n") holds. Consider another tree
T e ’I'g:}, such that 7" (u) is a subtree of 7' defined for (v,u) and u € VT'®)
holds. By Lemma 2, we have only to show that if ¢T ) » ¢T(®) then
£’ (u) > ¢T(u) holds. Let d be the smallest index i satisfying t7 * > ¢7®),
that is, , ,
I R G O )
Then it is easy to see that
11 () = ] () o (o1 (0) = 1 (), 27 () > 15 (u)

hold, which implies that tT (u) > T () is obtained. D

For a fixed vertex v € V and a fixed integer M (2 < M < L), Theorems
2 and 3 say that if T minimizes ¢7 lexicographically in Ty,(M,v) then
tT =[tT,...,tI_,] satisfies

T = @+1n-n'-1) fori=1,...,r
i n'(n—n') fori=r+1,...,mT

for
mT = n—1 fn-1<M

T\ M fn-1>M
and nonnegative integers n' and r with n — 1 = n'mT +r (0 < r < m7).
Also, it is obvious that [tFr,,...,tI_,] is the subsequence of tT in which
every elements in 7 (4;) (i = 1,...,m7T) are rearranged in descending order.
Further, we obtain the following theorem:

Theorem 4 Supposing that L > 3 holds, we find that T minimizes t7
lexicographically in Ty, (M,v) if and only if T satisfies the condition in
Theoremn 8 and each T'(u;) minimizes tT(%) lezicographically in Ty (ue),L(L—
1,%) (i=1,...,mT).

Proof It comes directly from Lemma 4. O

Further, for a tree T = (V, E) € Ty, and a vertex v € V (m = deg(v)),
we define a property called (n, L, v)-balancedness recursively as follows:
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(i) If n =1, then T is (1, L, v)-balanced.

(ii) If n > 1, then let I'(4) (¢ = 1,...,m) be subtrees of /' defined for
(v,%) G=1,...,m). If

_Jn=-1 ifn-1<L-1
m=E1L-1

fn-1>L-1
and
N (n' +1,L,u;)-balanced  fori=1,...,r
T(w) is { (', L, u;)-balanced fori=r+1,...,m

for nonnegative integer n’ and r satisfyingn —1=n'm+r (0<r <
m), then T is (n, L, v)-balanced.

From this definition, any tree T € Ty,2 with v € V and deg(v) = 1 is
(n,2,v)-balanced. Also, if T is an (n, L,v)-balanced tree for L > 3, then
T € TyL(L —1,v) holds.

Theorem 5 Suppose that L > 3 holds, and consider a tree T € Ty, (L —
1,v). Then T minimizes tT lezicographically in Ty,,(L —1,v) if and only
if T i3 (n, L,v)-balanced.

Proof Since the theorem holds obviously for n = 1, we consider the
case of » > 1. For a tree T' € Ty,L(L — 1,v), let m = deg(v), and let
T(u;) (¢ = 1,...,m) be subtrees of T defined for (v,%;) (¢ = 1,...,m).
Assume that the theorem holds for each subtree T(%;) (¢ = 1,...,m). If
T is (n, L,v)-balanced, then it follows from the inductive assumption and
Theorem 4 that T minimizes t lexicographically in Tv,r(L — 1,v). If T'
is not (n, L, v)-balanced, then consider the following two cases: (i) m, n’
and r do not satisfy the condition of (n, L, v)-balancedness, (ii) 7'(u;) is not
(v’ +1, L,u;)-balanced (nor (n', L, u;)-balanced) for a certain i. In case (i),
we find from Theorem 3 that T does not minimize £” lexicographically. In
case (ii), it follows from the inductive assumption and Theorem 4 that T'
does not minimize 7 lexicographically. 0

From the above discussion, we obtain the following main result:

Theorem 6 For a given set V with |V| =n and a given integer L (> 2),
let T be a tree belonging to Ty, and v a vertez with v € VT. Also, let
mT = deg(v), and let T(w;) (i = 1,...,mT) be subtrees of T defined for
edges (v,u;) (i = 1,...,mT). Then T minimizes tT lezicographically in
Tv,L if and only if

mT = n—-1 ifn—-1<L
1L ifn—1>1L
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holds and

N\ (n' +1,L,u;)-balanced  fori=1,...,r
T(w) is { (n', L, u;)-balanced fori=r+1,...,mT

for nonnegative integersn’ and r satisfyingn—1 = n'mT+r (0 < r <m7T).

Proof Obviously, the theorem holds for n € 3 or L = 2. In other cases,

we can prove the theorem by applying Theorem 4 for M = L and Theorem
5 0
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