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Abstract. We characterize tough-maximum graphs, that is graphs having
maximum number of edges among all graphs with given number of vertices
and toughness.

1 Introduction

Chvatal [3] introduced the toughness parameter of a graph and made
a few interesting conjectures involving toughness, Hamilton cycles and reg-
ular factors. Since then there have been several papers on this interesting
invariant.

For a graph G, let p(G), e(G), w(G) respectively denote the number of
vertices, edges and components. All our graphs are finite, undirected and
simple. If G1(V1, E1) and Ga(V2, E2) are two vertex disjoint graphs, then
(i) the union G; U G is the graph with vertex set V; UV, and edge set
E, UE,, and (ii) the join G, + G, is the graph with vertex set V; UV, and
edge set Ey UE; U {uv: u € Vi, v € V,}. For any graph G, rG denotes
the union of r disjoint copies of G. K, is the complete graph on p vertices.
A subset S of V(G) is a vertex-cut of G, if either G — § is disconnected or
G — S = K;. We follow [1] for general terminology. The toughness Q)
of a graph G is defined as follows:

5]

t(G) = min{w(G—-—S) : § C V(G) is a vertex-cut of G}.

We have slightly altered the original definition of Chvatal, so that HK,) =
p— 1 instead of co. However, for incomplete graphs, both definitions coin-
cide. A set S C V(G) is called a t-set if ¢(G) = ﬁci-lii

A graph G is called t-maximal if (G + z) > (G), for every new edge
z. The ¢t-maximal graphs were characterized in [5] as follows.
Theorem A: A graph G is t-maximal if and only if (i) G = K, or
(ii) G = Kp, U Ky, or (iii) G = K, + {Kp, UK, u---UK, }.

A graph G with p vertices is called a (p,t)-maximum graph if it has
maximum number of edges among all -maximal graphs on p vertices with
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toughness t. In this paper, we characterize (p, t)-maximum graphs. A new
vulnerability paremater, called the tenacity, was introduced in [4], on the
lines of toughness. In [2], we have characterized tenacity maximum graphs.

2 Tough-Maximum Graphs

The characterization of (p, t)-maximum graphs is not straightforward
even with the knowledge of Theorem A, since a graph G can achieve tough-
ness t, either by the existence of a t-set S; such that |S;| = m and
w(G — 81) = n, or by the existence of a t-set Sy such that |S| = Im
and w(G — S;3) = In. In view of this, we have proceeded as follows to
characterize t-maximum graphs:

1. We first characterize pairs (p, t) for which there exists a graph G with
p vertices and toughness £.

2. We next compare the number of edges in the graphs G; and G2 with
t-sets S; and Sy respectively such that |Si| = m, w(G; — S1) = n
and |S2| = Im and w(Gz — S2) = In.

Clearly, 0 < t(G) < p—1, and, moreover, t(G) = 0 iff G is disconnected,
and t(G) = p-1iff G = K,. So Kp_1 U K] is the unique (p,0)-maximum
graph, and K, is the unique (p,p — 1)-maximum graph. Therefore it is
enough if we characterize incomplete, connected t-maximum graphs. Con-
sequently, in the following, whenever G = K, + {K,, U--- U K } is t-
maximal, we assume that s > 1and n > 2.

We adopt the following terminology and notation.
e 7 ={G:G is t-maximal }.

e H(p,t) ={G € T : p(G) = p and t(G) = t}.
If H(p,t) # ¢, then (p,t) is called a ¢-valid pair.

o H*(p,t) = {G € H(p,t) : e(G) > e(H), for every H € H(p,t)}.

o H(p,m,n) = {G € T : p(G) = p and for some t-set S of G, |S| =m
and w(G — S) =n}.
If H(p,m,n) # ¢, (p,m,n) is called a t-valid triple.

e H*(p,m,n) = {G € H(p,m,n) : e(G) > e(H), for every H €
H(p,m,n)}.
Remark: If (p,t = ) is a t-valid pair, then (p, m,n) need not be a ¢-valid
triple, but (p,r,s) is a t-valid triple for some r, s with & = £. This and
similar statements are implicitly made in {6)].
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Theorem 1: IfG = K;+ (D, UD;U---UD,) is a t-mazimal graph, then
V(Kj) is the unique t-set, and so t(G) = £.

3 VK _s
N h S oG -VIKY) ~ n’
Proof: By the definition of ¢(G), we have #(G) < SG-V(K)) =

Next, let S be any t-set of G. Since S is a vertex-cut and every vertex-cut
of G contains V(K,), we have V(K,) C S. Moreover, if z € S — V(Kj),
and S’ =S - {z}, we have

S1_ . IsI=1 _ s

wG@-9") " wG-95) wiG-S5)
a contradiction to the fact that S is a t-set. Hence, § = V(K,) and
t(G) = £ D

Theorem 2: An integral triple (p,m,n) is t-valid if and only if p > m+n.
Hence, if (p, km, kn) is t-valid for some k > 2, then (p, (k — 1)m, (k- 1)n)
is also t-valid.

Proof: Suppose (p, m,n) is t-valid. Then there exists a graph G on p vertices
with a t-set S such that |S| = m and w(G — S) =n. If Dy, D,,...,D, are
the components of G — S, then p = |S|+ Y, |D;| > m +n. On the other
hand, for any triple (p,m,n) withp > m+n, G := K+ (Kp—m-n4+1U(n—
1)K,) is a graph on p vertices with toughness 2 (by Theorem 1). Hence,
the integral triple (p,m,n) is t-valid. o

Theorem 3: If p > m + n, then H*(p,m,n) contains only one graph,
nemely
G’(py m, n) =Km + (K —m—n+1 U (n - l)Kl)

Proof: Let p > m +n and G* € H*(p,m,n). Since G* is t-maximal, G* ~
Ks+(Kp UK, U---UKp, ). By Theorem 1, s = m, k = n. We next claim
that at most one p; # 1. If, on the contrary, for some ¢ and j, 1 < p; < p;,
let z € V(Kp,), and define a graph G’ as follows: V(G') = V(G*), and
E(G") = E(G*) — {(z,y) 1 y # =, y € V(Kp,)}U{(z,2) : z € V(Kp,)}.
By Theorem A, G’ is t-maximal and by Theorem 1, ¢(G') = 2 and
so G' € H(p,m,n). But, e(G') = e(G*) — (p; — 1) + (p;) > e(G*)

contradiction, since G* € H*(p,m,n). Hence the claim is true; that is
G* ~ G*(p,m,n). m]

Let
i G‘(p) km, kn) = Kim + (K —km—kn+1 U (kn — 1)K1).

Clearly
1 ex := e(G*(p,km, kn)) = ( k;n )+km(p—km)+( p—kmz— kn+1 )
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Let (p,t = 2) be a pair where I = -',':—,' and ged(m',n') = 1. It fol-
lows by Theorem 2 that if (p, ) is t-valid, then (p, ) is t-valid. Hence,
throughout the following, we assume that m, n are integers with ged(m,n) =
1, and if (p, &) is t-valid, then let L denote the largest integer such that
p > Lm+Ln. By Theorem 1, t(G*(p, km, kn)) = 2, for every k,1 < k < L.
Our next aim is to identify the maximum e; in the sequence (ej,ez...,er)
generated by the t-valid pair (p, T).

Theorem 4: If e(G*(p, m,n)) < e(G*(p,2m,2n)), then L < 2.

Proof: By the hypothesis,
(7)+mp-m+ (7" """ )< (%) +2m@p - 2m)+

p—2m—-2n+1
2 .

On simplification, we have p < 3m + 3¢ — 2 — % If L > 3, then

n
Im+3In<p<Im+ 37" - _ %, which is a contradiction. Therefore

L<2. o

Theorem 5: Suppose L > 3. Ifer_; > ey, then e_2 > er—1. So, if

(p,t = ) is t-valid and ep—1 > eL, theney >ex >+ >ef-1 > er.

Proof: Since, ey, := ( km )+km(p—km)+( phkm—knt1 ), ander—; >
. . . a+b a b

er, using the identity ( 2 ) = ( 2 ) + ( 2 ) + ab, we deduce that

(2) Lm? —m(p—Lm+m)+( min )+(p-Lm—Ln+l)(m+n) >

( > )+(Lm—m)m.
To prove e, _2 > ez —1, we have to show
( Lm ~ 2m )+(Lm—2m)(p—Lm+2m)+( p-Lm+2m~Ln+2n+1 ) >

( Lm2—m ) +(Lm—m)(p—Lm+m)+ ( p—Lm+m2—Ln+n+1 )’

which on simplification reduces to (2). o
By similar arithmetic, we have

Theorem 6: If for somek,3 < k< L-2, e, < ert1, then exyy < exy2.0

Theorems 4, 5 and 6 imply the following monotonic property of the
sequence (e, ez,...,er).

Corollary 1: Let (p,Z) be a ¢-valid pair. The sequence (e;,ez,...eL)
generated by it is

(1) of length 2 with e; < ey, or
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(2) monotonically decreasing: e; >e2 > ... >ep_1 2 er, or

(3) parabolic: e; > ez > ...ex—1 > ex < exy1 < ...er with e; = eg or

ep<erore >er.

O

As examples, we display four ¢-valid pairs (p,t = 7¢) and the corresponding
four discrete curves (e, es,...,er) described in (2) and (3) in Figure 1.
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It is now easy to characterize (p, t)-maximum graphs as follows.

Theorem 7: Let G be a connected incomplete graph with p vertices and
t(G) =t = & where gcd(m,n) = 1. Let L be the largest integer such that

p 2 Lm + Ln, and e;. be the combinatorial number defined in (1). Then G
is (p, t)-mazimum iff it is isomorphic to

G*(p,m,n) or G*(p,2m,2n), ife; = ez,

G‘(pi 2m)2n)) ifel < ey,
G = G*(p,m,n), ifey > ey and L =2,
- G.(pa m)n)’ "'fL 2 3ander— 2>erL,
G‘(p:m)n)) sz >3, e-1<eL ande > eL,
G*(p, Lm, Ln), ifL>3, er—1 <ep ande; <er.

Proof: The first two alternatives follow by Theorem 4, the third is obvious,
the fourth follows by Theorem 5, and the fifth and sixth follow by Theorems
4, 6 and Corollary 1. m]
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