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ABSTRACT. Let D be a connected symmetric digraph, I a group
of automorphisms of D, and A a finite abelian group with
some specified property. We discuss the number of isomorphism
classes of g-cyclic A-covers of D with respect to a group I" of
automorphisms of D. Furthermore, we enumerate the number
of I-isomorphism classes of g-cyclic Zom-covers of D for the
cyclic group Zpm of order 2™, where I is the trivial subgroup
of Aut D.

1 Introduction

Graphs and digraphs treated here are finite and simple.

A graph H is called a covering of a graph G with projection 7 : H —s G if
there is a surjection 7 : V(H) — V(G) such that | Ny i N@) — N(v)
is a bijection for all vertices v € V(G) and v' € #~!(v). The projection
m: H — G is an n-fold covering of G if 7 is n-to-one. A covering = :
H — G is said to be regular if there is a subgroup B of the automorphism
group Aut H of H acting freely on H such that the quotient graph H/B is
isomorphic to G.

Let G be a graph and A a finite group. Let D(G) be the arc set of the
symmetric digraph corresponding to G. Then a mapping o : D(G) — A
is called an ordinary voltage assignment if a(v,1) = a(u,v)”! for each
(v,v) € D(G). The ( ordinary) derived graph G* derived from an ordinary
voltage assignment « is defined as follows:
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V(G*) = V(G) x A, and ((u, k), (v, k)) € D(G®) if and only
if (u,v) € D(G) and k = ha(u,v).

The graph G* is called an A-covering of G . The A-covering G* is an
| A |-fold regular covering of G. Every regular covering of G is an A-covering
of G for some group A (see [3]).

Let D be a symmetric digraph and A a finite group. A function « :
A(D) — A is called alternating if a(y,z) = a(z,y)~! for each (z,y) €
A(D). For g € A, a g-cyclic A-cover Dg(a) of D is the digraph as follows:

V(Dg(a)) = V(D) x A, and ((u,h), (v,k)) € A(Dy(c)) if
and only if (u,v) € A(D) and k~1ha(uy,v) = g.

The natural projection n : Dg(a) — D is a function from V(Dy())
onto V(D) which erases the second coordinates. A digraph D’ is called a
cyclic A-cover of D if D' is a g-cyclic A-cover of D for some g € A. In the
case that A is abelian, then Dy(a) is called simply a cyclic abelian cover.
Furthermore the 1-cyclic A-cover Dj(«) of a symmetric digraph D can be
considered as the A-covering G* of the underlying graph G of D.

Let a and B be two alternating functions from A(D) into 4, and let I" be
a subgroup of the automorphism group Aut D of D, denoted I" < Aut D.
Let g,h € A. Then two cyclic A-covers Dy(a) and Dy(B) are called I'-
isomorphic, denoted Dy(a)=pDs(B), if there exist an isomorphism & :
Dy(a) — Dyp(B) and a v € T such that #® = v, i.e., the diagram

Dy(a) 2 Dy(B)
g
D D

commutes. Let I = {1} be the trivial group of automorphisms.

A general theory of graph coverings is developed in [4]. Z-coverings
(double coverings) of graphs were dealed in [5] and [18]. Hofmeister [6] and,
independently, Kwak and Lee [10] enumerated the I-isomorphism classes of
n-fold coverings of a graph, for any n € N. Dresbach [2] obtained a formula
for the number of strong isomorphism classes of regular coverings of graphs
with voltages in finite fields. The I-isomorphism classes of regular cover-
ings of graphs with voltages in finite dimensional vector spaces over finite
fields were enumerated by Hofmeister [7]. Hong, Kwak and Lee [8] gave
the number of I-isomorphism classes of Z,-coverings, Z, ) Zp-coverings
and Dy-coverings, n:odd, of graphs, respectively. Sato [16] counted the
I-isomorphism classes of Z,-coverings of graphs for any prime p(> 2).
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Cheng and Wells [1] discussed isomorphism classes of cyclic triple covers
(1-cyclic Z3-covers) of a complete symmetric digraph. Furthermore, Mizuno
and Sato {13] gave a formula for the characteristic polynomial of a cyclic
A-cover of a symmetric digraph, for any finite group A. Mizuno and Sato
(12] discussed the number of I'-isomorphism classes of cyclic V-covers of
a connected symmetric digraph for any finite dimensional vector space V
over the finite field GF(p)(p > 2). For a connected symmetric digraph D,
Mizuno and Sato [15] obtained a sufficient condition for two I'-isomorphism
classes of cyclic abelian covers of D to be of the same cardinality, and
presented the number of I-isomorphism classes of g-cyclic Zpm-covers of D
for any prime p(> 2). For a connected cyclic A-covers, Mizuno, Lee and
Sato [14] enumerated the number of I-isomorphism classes of connected g-
cyclic A-covers of D, when A is the cyclic group Zym and the direct sum of
m copies of Z, for any prime p(> 2). Sato [17] gave a characterization for
two cyclic abelian covers to be [-isomorphic, and counted the number of I-
isomorphism classes of g-cyclic A-covers of a connected bipartite symmetric
digraph for A = Z7*, Zym.

In Section 2, we discuss the number of I'-isomorphism classes of g-cyclic
A-covers of a connected symmetric digraph D for any finite abelian group A.
In Section 3, we treat the enumeration and the structure of I-isomorphism
classes of orbit-cyclic A-covers of D. In Section 4, we count the number of
I-isomorphism classes of g-cyclic Zym-covers of D.

2 Isomorphisms of cyclic abelian covers

Let D be a symmetric digraph and A a finite group. The group T of
automorphisms of D acts on the set C(D) of alternating functions from
A(D) into A as follows:

a‘y(xr y) = O!(’Y(.’L'), 7(2[)) for all (:L‘, y) € A(D)v

where a € C(D) and «y € I'. Any voltage g € A determines a permutation
p(g) of the symmetric group S4 on A which is given by p(g)(k) = kg, k € A.

From now on, assume that D is connected and A is abelian. Let G be
the underlying graph, T a spanning tree of G and w a root of T".For any
a € C(D) and any walk W in G, the net a-voltage of W, denoted o(W),
is the sum of the voltages of the edges of W. Then the T-wvoltage ar of a
is defined as follows:

ar(u,v) = a(Py,) + a(u,v) — a(P,) for each (u,v) € D(G) = A(D),

where P, and P, denote the unique walk from w to u and v in T, respec-
tively. Note that ar(u,v) = 0 for each (u,v) € A(T). For a function
f 1 A(D) — A, the net f-value f(W) of any walk W is defined as the net
a-voltage of W: f(W) = f(a1)+ -+ f(an), W:ay, -+ ,an.
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For a function f : A(D) — A, let A¢(v) denote the subgroup of A
generated by all net f-values of the closed walk based at v € V(D). Let
ord(g) be the order of g € A. For a subset B of A, let < B > denote the
subgroup of A generated by B.

Sato [17] gave a characterization for two cyclic A-covers of D to be I'-
isomorphic. Let dr(u,v) be the distance between u and v in T'.

Theorem 1. [17, Theorem 2] Let D be a connected symmetric digraph,
A a finite abelian group, g,k € A and o, 8 € C(D). Furthermore, let G be
the underlying graph of D, T a spanning tree of G and ' < Aut G. Then
the following are equivalent:

1. Dy(c) = rDr(B).

2. There exist v € I and an isomorphism ¢ :< Aay—cg(w)U{29} >—i<
Ap,r—evn(v(w)) U {2h} > such that

Byr(u,v) — €"h = o(ar(u,v) — eg) for each (u,v) € A(D)

and
o(2g) = 2h,

where (a1 — g9)(,v) = ar(u,v) — g, (v,v) € A(D), w € V(D) and

, €(u,v) = €}(u,v).

V(u,v) = 1 if the distance dyr(yu,yv) is even,
7710 otherwise

Sketch of proof: Suppose that Dy(a) = rDy(B8). By [15, Corollary 1]

and [12, Theorem 3.1], there exist a family (my)uev(p) € SX(D) andvyel
such that

P(Byr(u,v) — h) = myp(ar(u,v) — g)my ! for each (u,v) € A(D).

Let (u,v) € D(T). Then we have 7, = p(h)w,p(—g) = p(—h)mup(g), and
so
p(2h) = mup(2g)m;".

Let P : (u,v), (v, z) be any path of length two in D. Then we have
p(ﬂ"ny(P) —2h) = mp(er(P) — 2g9)m7 .

If (u,v), (v,2) € D(T), then we have m, = m,. Since D is connected, for
any z € V(D), we have

I L. if dr(w, 2) is even,
* 7 | a(—R)mwp(g) otherwise,
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where w € V(D).
Let (v,z) € A(D)\ D(T). If dr(v, 2) is even, then we have
p(B1r(v, ) — h) = mwp(ar(v, 2) — g)n.
In the case that dz(v, 2) is odd, we have
A9, 2)) = mwplor(v, 2))mg".

Therefore it follows that p(8)7(v, 2) — €7h) = myp(ar(v, 2) — eg)ng? for
each (v, z) € A(D), where

€= 1 if dp(v,2) is even,
10 otherwise.

Hence there exists an isomorphism ¢ :< Aay—eo(w)U{2g} >—< A Byr—eTh
(y(w)) U {2k} > such that

BYr(u,v) — €'h = o(ar(u,v) — eg) for each (u,v) € A(D).
and o(2g) = 2h.

The converse is omitted. a

For (v, z) € A(T), we have dr(v,2z) =1, and so € = 0. Note that, if G is
bipartite and g & Aa, (w), then 2g € A, —o(w) may arise.

An finite group B is said to have the isomorphism eztension property
(IEP), if every isomorphism between any two isomorphic subgroups &; and
&> of B can be extented to an automorphism of B (see [8]). For example,
the cyclic group Z, for any n € N, the dihedral group D, for odd n > 3,
and the direct sum of m copies of Z, have the IEP.

Corollary 1. Let D, A, T and T be as in Theorem 1, g € A and o, €
C(D). Assume that A has the IEP. Then the following are equivalent:

1. Dg(a) = rDy(B).
2. There exists y € T and o € Aut A such that
Br(u,v) — € (u,v)g = o(ar(u,v) — €(u, v)g) for each (u,v) € A(D)

and
o(2g) = 2g.

Corollary 2. Let D, A, T and T be as in Theorem 1, g € A and a,f €
C(D). Assume that A has the IEP. Then the following are equivalent:

1. Dy(a) = 1Dy (B).
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2. There exists o € Aut A such that
Br(u,v) — €(u,v)g = o(ar(u,v) — e(u,v)g) for each (u,v) € A(D)

and
o(2g) = 2g.

Let D be a connected symmetric digraph, G its underlying graph and
A a finite abelian group. The set of ordinary voltage assignments of G
with voltages in A is denoted by C!(G; A). Note that C(D) = CY(G; A).
Furthermore, let C%(G; A) be the set of functions from V(G) into A. We
consider C°(G; A) and C*(G; A) as additive groups. The homomorphism
8 : C%G; A) — CY(G; A) is defined by (ds)(z,y) = s(z) — s(y) for s €
C%(G; A) and (z,y) € A(D). For each o € C1(G; A), let [o] be the element
of C1(G; A)/Imé which contains c.

The automorphism group Aut A acts on C%(G; A) and C(G; A) as fol-
lows:

(os)(z) = o(s(z)) for z € V(D),

(ca)(z,y) = g((z,y)) for (z,y) € A(D),
where s € C%(G; A), a € C1(G; A) and o € Aut A.

We state a characterization for two cyclic A-covers to be I-isomorphic,
for any finite abelian group A with the IEP.

Theorem 2. Let D be a connected symmetric digraph, G its underlying
graph, A a finite abelian group with the IEP, a, 8 € C(D), g,h € A and
I' < Aut D. Then the following are equivalent:

1. Dg(a) = rDw(B).
2. There exist o € AutA, v €T and s € C%(G; A) such that
B —eh=oa” — €70(g) + 85 and o(2g) = 2h.

Proof: By Theorem 1 and Corollary 1 of [15]. O

Now we consider the number of I-isomorphism classes of cyclic A-covers
of a connected symmetric digraph D. Let G be the underlying graph of D,
A a finite abelian group with the IEP and IT= Aut A. For any g € A4, set

[y ={oc €ll|a(g) =g}.

Then I, is a subgroup of II.

Let T' < Aut D and g € A. Set H'(G; A) = C'(G; A)/Imé. An actions
of Ty, x I" on HY(G; A) are defined as follows:

(@,7a] = [oa” —€"a(g) +eg] = {oa” — €"o(g) +eg+ 85 | s € C°(G; A)},
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where o € Iy, v € " and a € C'(G; A). Then this action is well-defined
by the following result.

Proposition 1. ca” — €70(g) + €g is alternating.
Proof: Since o € Iy, we have o(2g) = 2g, ie., o0(g) —g = g — o(g).
Let (u,v) € A(D). If dp(u,v) is odd, then we have €(u,v) = e(v,u) =
€"(u,v) = €”(v,u) =0, and so
oa¥(v,u) — €"(v,u)o(g) + e(v,u)g = o (v,u) = —0a(u,v)

= —{aa"(u, v) — e’r(u' v)a’(g) + e(u, 'U)g}'

In the case that dr(u,v) is even, we have e(u,v) = (v, u) = €'(x, v) =

€’(v,u) =1, and so
ga”(v,u) - €(v,u)o(g) + (v, u)g = 00 (u,v) ~ o(g) + g

=—o0a’(u,v) +o(g) —g

= —{oa(u,v) - €(u,v)a(g) + €(u, v)g}.
Therefore, ca” — €7a(g) + €g is alternating. a

Theorem 2 implies that the number of I’-isomorphism classes of g-cyclic
A-covers of D is equal to that of ITp, x-orbits on H! (G; A). Let Iso(D, A, g,
I') be the number of I-isomorphism classes of g-cyclic A-covers of D.

We estimate the number Iso(D, A, g,T') by the number of some orbits on
the 1-cohomology group.

Theorem 3. Let D be a connected symmetric digraph, G its underlying
graph, A a finite abelian group with the IEP, g,h € A and T < Aut D.
Assume that k(g) = h for some x € Aut A. Then

Iso(D, A, g,T') = Iso(D, A, h,T").
Proof: Set IT = Aut A. By Theorem 2, we have

ISO(D, A, g, I'\) e ; Z l HI(G; A)(UI'Y) I .
| H2g I : | r I (0,7)€Mgy xT’

Let x be an automorphism of A such that &(g) = h. Furthermore, let
(9,7) € Ilpg xT. Then [o] € HY(G; A) if and only if ca” —e70(g) +eg =
a + ds for some s € C°(G; A), i.e.,

mm‘l(na)" - e"ncm‘l(h) + €h = ka + 8(xs).

Since kox™! € Ias, [a] € HY(G; A)" ifand only if [xa] € H(G; A)kos"* ),
By the fact that a mapping [a} = [ka] is bijective, we have

| H{(G; A)M |=| H(G; A)*~""™ | for each (o,7) € My, x T.
g
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Since Ilg, = kllzgk~1, it follows that
Iso(D, A, g,T) = Iso(D, A,h,T).

]

Now, we consider the number of I'-isomorphism classes of g-cyclic A-
covers of D in the case of ord(2g) = 1.

Proposition 2. Let D, G, A and " be as in Theorem 2. If ord(2g) =1,
then the number of T-isomorphism classes of g-cyclic A-covers of D is
equal to that of I'-isomorphism classes of A-coverings of G.

Proof: Since ord(2g) = 1, we have Iloy = II = Aut A and g = —g. For
(u,v) € A(D), ((u,h),(v,k)) € A(Dy(a)) if and only if k = a(u,v)+h—g,
ie, h = a(v,u) + k —g. Then ((u,h),(v,k)) € A(Dy(a)) if and only
if ((v,k), (u,h)) € A(Dy(a)). Thus, Dyg(a) is an A-covering G*~9 of G.
Therefore the result follows. O

Let D be a connected symmetric digraph, p prime and F, = GF(p) the
finite field with p elements. Let F be the r-dimensional vector space over
Fp. Then the additive group F; has the IEP and the general linear group
GL,(F;) is the automorphism group of Fy. Furthermore, GL.(Fp) acts
transitively on Fj\{0}.

Corollary 3. Let D be a connected symmetric digraph, G its underlying

graph and I < Aut D. Let g, h be any two elements of F7\{0}. Then
Iso(D, F3,g,T') = Iso(D, F5,h,T).

Furthermore, 1so(D, F}, g,T') is equal to that of I'-isomorphism classes of

F3-coverings of G.

Proof: Note that 2g = 2h = 0. By Theorem 3 and Proposition 2. O

In the case of p > 2, the similar result to Corollary 3 is obtained by
[12,15].

For a connected symmetric digraph D, let B(D) = m —n + 1 be the
Betti-number of D, where m =| A(D) | /2 and n =| V(D) |. We give the
number of I-isomorphism classes of g-cyclic F'3-covers of D for any g € F73.

Corollary 4. Let D be a connected symmetric digraph and g € F§. Then
the number of I-isomorphism classes of g-cyclic F§-covers of D is

- 1)(28-1 _ 1) Ve (28—h+1 _ 1)

(2h - 1)(2h-1-1)...(2-1)

, = (28
Iso(D,F5,g,1) =1+
h=1

where B = B(D).
Proof: By Corollary 2 of [11]. o
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3 Isomorphisms of orbit-cyclic abelian covers

Let D be a connected symmetric digraph, A a finite abelian group with
the IEP, I' € Aut D and IT = Aut A. For a nonidentity element g of A,
the IT-orbit on A containing g is denoted by II(g). A cyclic A-cover Dj(a)
of D is called II(g)-cyclic if h € II(g). Let Di be the set of all k-cyclic
A-covers of D for any k € A, and let D = Uheﬂ(g) Dy. Then D is the set
of all II(g)-cyclic A-covers of D. Let D/ = r and Dy,/ = r be the set of
all I'-isomorphism classes over D and Dj,, respectively. The I'-isomorphism
class of Dy, containing Dy (a) is denoted by [Dp(a)].

Theorem 4. Let D be a connected symmetric digraph, A a finite abelian
group with the IEP, T" < Aut D and I1 = Aut A. Furthermore, let g €
A\ {0}. Then

| D/ = ¢ |= Iso(D, A, h,T) for each h € I(g).

Proof: For any h # g € II(g) and any 7 € C(D), let
B=0"Y1"+eo(g) —€"h—8s), y€T, s C°(G; A),

where o is an automorphism of A such that ¢(g) = k, and G is the under-
lying graph of D. By Theorem 2, we have D,(8) = pDy(7).

For each h # g € II(g), we define a map &, : Dy/ 2 — Dy / = 1 by
®a([Dy(B)]) = [Dn(7)],

where Dy(B8) 2 Dy (7). Since 22 p is an equivalence relation over D, &, is
injective. By Theorem 3, we have

| Dg/ = r |=| Dn/ E r |< co.
Thus &, is a bijection. Therefore it follows that
| D/ = |= Iso(D, A, h,T).

a

Let A= Fj. Then a cyclic Fj-covers Dy(a) is called nonzero-cyclic if g
is not equal to the nuit 0 of F3.The set D is the set of all nonzero-cyclic
F3-covers.

Corollary 5. Let D be a connected symmetric digraph. Then

_ 1)(28—1 - 1) . (2B—h+l - 1)
@ - 1-1)--.2-1) '

r (23
D/ |=1+)
h=1
This is a generalization of Corollary 9 in [17].
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Now, we state the structure of I'-isomorphism classes of II(g)-cyclic A-
covers of D.

Theorem 5. Let D be a connected symmetric digraph, A a finite abelian
group with the IEP, T' < Aut D and I1 = Aut A. Let o), be a fixed
automorphism of A such that on(g) = h for h € II(g). Then any I'-
isomorphism class of II(g)-cyclic A-covers of D is of the form

U {Dn(onB) | B =ca"—€"0(g)+eg+8s, 0 € Iy, v €T, s € CO(G; A)},
hen(g)

where a € C(D) and G is the underlying graph of D.

Proof: Let 7 € C(D), h # g € Il(g) and [[Dy(7)]] the -isomorphism class
of D containing Dx(7). By the first half of the proof of Theorem 4, there
exists a g-cyclic A-cover Dy(a) such that [[Dy(7)]] = [[Dg(a)]).

In the proof of Theorem 4, the map ®,, is a bijection from D,/ = p into
Dn/ = r for any h # g € II(g). Thus there exists an h-cyclic A-cover
Dp(B) such that Dy(a) = rD,(B) for any h # g € II(g). We define a map
¥p : [Dg(a)] — [Dr(B)] by

‘I’h(Dg(al)) = Dh(aha’)a o = ga’ - €.yal(g) + €9+ 68:

where o € Iy, v €T, s € C%G; A) and a4(g) = h. By Theorem 2, ¥}, is
well-defined. It is clear that ¥}, is injective.

Now, let Dy(n) be any element of [Dy(B)]. Then we have D(n) =
rDy(c). By Theorem 2, there exist ¢’ € I, v € T and t € C°(G; A) such
that 7 = o’a” — €"0’(g) + ¢h + 6t and 0'(2g) = 2h. Let p = o} 'o’a” —
€70}, '0’(g) + €g + 8(o;, 't). Then we have

o7 %0’ € Tlyy and ¥4(Dy(i)) = Di(n).
Therefore ¥}, is surjective, i.e., bijective. Hence it follows that
[Dr(8)]
={Dh(UhC!’) l o =oa” - e‘Yo»(g) +eg+ 68: o€ H2g1 7€l se CO(G: A)}s
and so the result follows. O

Corollary 6. [15,Theorem 5] Let D be a connected symmetric digraph, G
its underlying graph, A a finite abelian group with the IEP and T < Aut D.
Suppose that g € A has odd order. Let o), be a fixed automorphism of A
such that o4(g) = h for h € Il(g). Then any T'-isomorphism class of TI(g)-
cyclic A-covers of D is of the form

U {Dn(@nB) | B=0a"+6s, s €1y, y€T, se C(G; A)},
hen(g)
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where o € C(D).

Corollary 7. Let D be a connected symmetric digraph, Il = GL,.(F,) and
I'< Aut D. Set e = (10---0)* € Fj. Furthermore, A, be a fixed element of
GL.(F3) such that Aje = g for each g # 0 € F§. Then any T-isomorphism
class of nonzero-cyclic F§-covers of D is of the form

\U{Ds(448) | 8= Ba? —€"Be+ee+5s, ,Be, y €T, s e CYC;F5)},
9#0
where a € C(D).

4 Isomorphisms of cyclic Z;m-covers

Let Z, be the cyclic group of order n. Then Z, has the IEP.

We shall consider the number of I-isomorphism classes of g-cyclic Zom-
covers of a connected symmetric digraph D, for any g € Zom. Set Iy =
{o € Aut Zym | 0(29) = 29}.

Theorem 6. Let D be a connected symmetric digraph, g € Zom and
ord(2g) = 2™"#. Set B = B(D). Then the number of I-isomorphism
classes of g-cyclic Zym-covers of D is

ISO(D,ZTMQ: I)
2mB-u 4 oim-mB-1(9u(B-1) _1)/(2B~1_1) ifp#mand B> 1,

_Joamrl(u g 2) ifu#mand B=1,
2m(B-1+1 1 4 (2™(B-1) _1)/(2B-1 —1) ifp=mand B> 1,
m+1 ffpu=mand B=1,

Proof: Let G be the underlying graph of D and T a spanning tree of G.
Set E(G)\E(T) = {uv1,- - ,upvg}, where B = B(D) is the Betti number
of D. Assume that dy(u;, ;) is odd if 1 < i < I, and even otherwise. Then,
let

Fr(Zam; B) ={(a1-9,-+- ,a1~g,a141,"- ,aB) | (a1,-*- ,++- ,aB) € (Zm)B}.

By Corollary 2, the number of I-isomorphism classes of g-cyclic Zom-
covers of D is equal to that of Il,-orbits on Fr(Zam; B). By Burnside’s
Lemma, we have

1
ISO(D,sz,g,I)=m > | Fr(Zam; BY|.
o€lly,

For p €11, let F(p) = {h € Zgm | p(h) = h}. Then we have
| Fr(Zam; B) |=| (Z2m)° | B =| F(0) | .
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But we have
Mgy = {)X € Zom | (A,2™) =1 and A2g = 2g}.
Then

A ellyy & 2)g =29 (mod 2™) & 2g9(A —1) =0 (mod 2™)
& A-1le<ord(2g)>.

Thus we have | Iy, |= 2™/ord(2g). That is, | IIyy |= 2* if 29 € K.(m),
where K,(m) = {k € Zom | k €< 2* >, k €< 2#+! >}, Let ord(2g) =
2m=#, If ord(2g) = 1, then 2g = 2™, Otherwise I, = {2™ #y +1 | v =
0,1,--+,2% —1}.

By Lemma 3 of [8], | F(p) |= 2* if p — 1 € K(m). Thus we have

[{A ez | | FA) [=2m7#H} =227 (0<t < pu-1),
[{Aely || F(N) =27} | =1.

Therefore the result follows. Specially, the third and fourth parts of the
formula are given by Theorem 8 of [8]. O

Finally, we give an example for the computation of the number Iso(D, A
»h,T') when I' is non-trivial. Let D = K D3 be the complete symmetric
digraph with three vertices 1,2,3, and A = Z; = {0,1,2, —1} (the additive
group). Furthermore, let I' = S3 be the symmetric group of degree 3 and
g = 1. Then we have G = Kj(the complete graph with three vertices),
II = Aut Z4 = {1,—-1} and II; = II. Thus, the number Iso(K D3, Z,, 1, S3)
of Sz-isomorphism classes of 1-cyclic Z4-covers of K Ds is equal to that of
II x Ss-orbits on H(K3; Z,).

Let T be the spanning tree of K3 such that E(T) = {23,13}. By [15,
Corollary 1], we have
Dy (a) = ;Dl(aT)

for each a € C(KD3). Let Cr(KD3) = {ar | « € C(KD3)}. Then
Iso(K Ds, Z4, 1, S3) is equal to that of IT x Sz-orbits on Cr(K Ds).
All T-voltages are given as follows:

ai(1,2) = i,04(2,3) = 24(1,3) = 0, i =0,1,2, 3.
But, we have
az=0a], y=(12) and ay = ooy —eo(1) +¢€-1, o0 = —1.

Furthermore, if a; = 0o —€"0(1)+¢-1+6s, then we have —1 = —a(1)+1 =
1, a contradiction. Thus, the IIx S3-orbits on Cr(K D3) are given as follows:
{0, a2}, {@1, a3}. Therefore it follows that

ISO(KDa, Z4, 1,53) = 2,
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and the representatives of Ss-isomorphism classes of 1-cyclic Z4-covers of
K D3 are Dy(ap), Dy(ay).

Acknowledgement. The author would like to thank the referee for helpful
comments and useful suggestions.

References

[1] Y. Cheng and A.L. Wells, Jr., Switching classes of directed graphs, J.
Combin. Theory Ser. B 40 (1986), 169-186.

[2] K. Dresbach, Uber diestrenge Isomorphie von Grapheniiberlagerungen,
Diplomarbeit, Univ. of Cologne (1989).

[3] J.L. Gross and T.W. Tucker, Generating all graph coverings by per-
mutation voltage assignments, Discrete Math. 18 (1977), 273-283.

[4] J.L. Gross and T.W. Tucker, Topological Graph Theory, Wiley-
Interscience, New York, (1987).

[5) M. Hofmeister, Counting double covers of graphs, J. Graph Theory 12
(1988), 437-444.

[6] M. Hofmeister, Isomorphisms and automorphisms of graph coverings,
Discrete Math. 98 (1991), 175-185.

[7] M. Hofmeister, Graph covering projections arising from finite vector
spaces over finite fields, Discrete Math. 143 (1995), 87-97.

[8] S. Hong, J.H. Kwak and J. Lee, Regular graph coverings whose cover-
ing transformation groups have the isomorphism extension property,
Discrete Math. 148 (1996), 85-105.

[9] A. Kerber, Algebraic Combinatorics via Finite Group Actions, BI-
Wiss. Verl., Mannheim, Wien, Zii rich, (1991).

[10] J.H. Kwak and J. Lee, Isomorphism classes of graph bundles, Canad.
J. Math. XLII (1990), 747-761.

[11] J.H.Kwak, J. Chun and J. Lee, Enumeration of regular graph coverings
having finite abelian covering transformation groups, SIAM. J. Disc.
Math. 11 (1998), 273-285.

[12] H. Mizuno and I. Sato, Isomorphisms of some covers of symmetric
digraphs (in Japanese), Trans. Japan SIAM. 5-1 (1995), 27-36.

[13] H. Mizuno and I. Sato, Characteristic polynomials of some covers of
symmetric digraphs, Ars Combinatoria 45 (1997), 3-12.

185



(14] H. Mizuno, J. Lee and I. Sato, Isomorphisms of connected cyclic
abelian covers of symmetric digraphs, submitted.

(15] H. Mizuno and I. Sato, Isomorphisms of cyclic abelian covers of sym-
metric digraphs, Ars Combinatoria 54 (2000), 51-64.

[16] 1. Sato, Isomorphisms of some graph coverings, Discrete Math. 128
(1994), 317-326.

[17] L. Sato, Isomorphisms of cyclic abelian covers of symmetric digraphs
II, submitted.

[18] D.A. Waller, Double covers of graphs, Bull. Austral. Math. Soc. 14
(1976), 233-248.

186



