Isomorphisms of Cyclic Abelian Covers of Symmetric Digraphs, III

Iwao Sato*
Oyama National College of Technology
Oyama, Tochigi 323-0806
Japan

ABSTRACT. Let D be a connected symmetric digraph, Γ a group of automorphisms of D, and A a finite abelian group with some specified property. We discuss the number of isomorphism classes of g-cyclic A-covers of D with respect to a group Γ of automorphisms of D. Furthermore, we enumerate the number of I-isomorphism classes of g-cyclic Z_{2m} -covers of D for the cyclic group Z_{2m} of order 2^m , where I is the trivial subgroup of Aut D.

I Introduction

Graphs and digraphs treated here are finite and simple.

A graph H is called a *covering* of a graph G with projection $\pi: H \longrightarrow G$ if there is a surjection $\pi: V(H) \longrightarrow V(G)$ such that $\pi|_{N(v')}: N(v') \longrightarrow N(v)$ is a bijection for all vertices $v \in V(G)$ and $v' \in \pi^{-1}(v)$. The projection $\pi: H \longrightarrow G$ is an n-fold covering of G if π is n-to-one. A covering $\pi: H \longrightarrow G$ is said to be regular if there is a subgroup B of the automorphism group Aut H of H acting freely on H such that the quotient graph H/B is isomorphic to G.

Let G be a graph and A a finite group. Let D(G) be the arc set of the symmetric digraph corresponding to G. Then a mapping $\alpha:D(G)\longrightarrow A$ is called an *ordinary voltage assignment* if $\alpha(v,u)=\alpha(u,v)^{-1}$ for each $(u,v)\in D(G)$. The (*ordinary*) derived graph G^{α} derived from an ordinary voltage assignment α is defined as follows:

^{*}Supported by Grant-Aid for Science Research (C)

$$V(G^{\alpha}) = V(G) \times A$$
, and $((u, h), (v, k)) \in D(G^{\alpha})$ if and only if $(u, v) \in D(G)$ and $k = h\alpha(u, v)$.

The graph G^{α} is called an A-covering of G. The A-covering G^{α} is an |A|-fold regular covering of G. Every regular covering of G is an A-covering of G for some group A (see [3]).

Let D be a symmetric digraph and A a finite group. A function α : $A(D) \longrightarrow A$ is called *alternating* if $\alpha(y,x) = \alpha(x,y)^{-1}$ for each $(x,y) \in A(D)$. For $g \in A$, a g-cyclic A-cover $D_g(\alpha)$ of D is the digraph as follows:

$$V(D_g(\alpha)) = V(D) \times A$$
, and $((u,h),(v,k)) \in A(D_g(\alpha))$ if and only if $(u,v) \in A(D)$ and $k^{-1}h\alpha(u,v) = g$.

The natural projection $\pi:D_g(\alpha)\longrightarrow D$ is a function from $V(D_g(\alpha))$ onto V(D) which erases the second coordinates. A digraph D' is called a cyclic A-cover of D if D' is a g-cyclic A-cover of D for some $g\in A$. In the case that A is abelian, then $D_g(\alpha)$ is called simply a cyclic abelian cover. Furthermore the 1-cyclic A-cover $D_1(\alpha)$ of a symmetric digraph D can be considered as the A-covering G^{α} of the underlying graph G of D.

Let α and β be two alternating functions from A(D) into A, and let Γ be a subgroup of the automorphism group $Aut\ D$ of D, denoted $\Gamma \leq Aut\ D$. Let $g,h\in A$. Then two cyclic A-covers $D_g(\alpha)$ and $D_h(\beta)$ are called Γ -isomorphic, denoted $D_g(\alpha)\cong_{\Gamma}D_h(\beta)$, if there exist an isomorphism $\Phi:D_g(\alpha)\longrightarrow D_h(\beta)$ and a $\gamma\in\Gamma$ such that $\pi\Phi=\gamma\pi$, i.e., the diagram

commutes. Let $I = \{1\}$ be the trivial group of automorphisms.

A general theory of graph coverings is developed in [4]. Z_2 -coverings (double coverings) of graphs were dealed in [5] and [18]. Hofmeister [6] and, independently, Kwak and Lee [10] enumerated the I-isomorphism classes of n-fold coverings of a graph, for any $n \in N$. Dresbach [2] obtained a formula for the number of strong isomorphism classes of regular coverings of graphs with voltages in finite fields. The I-isomorphism classes of regular coverings of graphs with voltages in finite dimensional vector spaces over finite fields were enumerated by Hofmeister [7]. Hong, Kwak and Lee [8] gave the number of I-isomorphism classes of Z_n -coverings, $Z_p \bigoplus Z_p$ -coverings and D_n -coverings, n:odd, of graphs, respectively. Sato [16] counted the Γ -isomorphism classes of Z_p -coverings of graphs for any prime p(>2).

Cheng and Wells [1] discussed isomorphism classes of cyclic triple covers (1-cyclic Z_3 -covers) of a complete symmetric digraph. Furthermore, Mizuno and Sato [13] gave a formula for the characteristic polynomial of a cyclic A-cover of a symmetric digraph, for any finite group A. Mizuno and Sato [12] discussed the number of Γ -isomorphism classes of cyclic V-covers of a connected symmetric digraph for any finite dimensional vector space Vover the finite field GF(p)(p > 2). For a connected symmetric digraph D, Mizuno and Sato [15] obtained a sufficient condition for two Γ -isomorphism classes of cyclic abelian covers of D to be of the same cardinality, and presented the number of I-isomorphism classes of g-cyclic Z_{p^m} -covers of D for any prime p(>2). For a connected cyclic A-covers, Mizuno, Lee and Sato [14] enumerated the number of I-isomorphism classes of connected gcyclic A-covers of D, when A is the cyclic group Z_{p^m} and the direct sum of m copies of Z_p for any prime p(>2). Sato [17] gave a characterization for two cyclic abelian covers to be Γ -isomorphic, and counted the number of Iisomorphism classes of g-cyclic A-covers of a connected bipartite symmetric digraph for $A = \mathbb{Z}_p^m, \mathbb{Z}_{p^m}$.

In Section 2, we discuss the number of Γ -isomorphism classes of g-cyclic A-covers of a connected symmetric digraph D for any finite abelian group A. In Section 3, we treat the enumeration and the structure of Γ -isomorphism classes of orbit-cyclic A-covers of D. In Section 4, we count the number of I-isomorphism classes of g-cyclic Z_{2m} -covers of D.

2 Isomorphisms of cyclic abelian covers

Let D be a symmetric digraph and A a finite group. The group Γ of automorphisms of D acts on the set C(D) of alternating functions from A(D) into A as follows:

$$\alpha^{\gamma}(x,y) = \alpha(\gamma(x),\gamma(y))$$
 for all $(x,y) \in A(D)$,

where $\alpha \in C(D)$ and $\gamma \in \Gamma$. Any voltage $g \in A$ determines a permutation $\rho(g)$ of the symmetric group S_A on A which is given by $\rho(g)(h) = hg$, $h \in A$.

From now on, assume that D is connected and A is abelian. Let G be the underlying graph, T a spanning tree of G and w a root of T. For any $\alpha \in C(D)$ and any walk W in G, the net α -voltage of W, denoted $\alpha(W)$, is the sum of the voltages of the edges of W. Then the T-voltage α_T of α is defined as follows:

$$\alpha_T(u,v) = \alpha(P_u) + \alpha(u,v) - \alpha(P_v)$$
 for each $(u,v) \in D(G) = A(D)$,

where P_u and P_v denote the unique walk from w to u and v in T, respectively. Note that $\alpha_T(u,v)=0$ for each $(u,v)\in A(T)$. For a function $f:A(D)\longrightarrow A$, the net f-value f(W) of any walk W is defined as the net α -voltage of W: $f(W)=f(a_1)+\cdots+f(a_n), W:a_1,\cdots,a_n$.

For a function $f: A(D) \longrightarrow A$, let $A_f(v)$ denote the subgroup of A generated by all net f-values of the closed walk based at $v \in V(D)$. Let ord(g) be the order of $g \in A$. For a subset B of A, let $A \in B > A$ denote the subgroup of A generated by B.

Sato [17] gave a characterization for two cyclic A-covers of D to be Γ -isomorphic. Let $d_T(u, v)$ be the distance between u and v in T.

Theorem 1. [17, Theorem 2] Let D be a connected symmetric digraph, A a finite abelian group, $g, h \in A$ and $\alpha, \beta \in C(D)$. Furthermore, let G be the underlying graph of D, T a spanning tree of G and $\Gamma \leq Aut G$. Then the following are equivalent:

- 1. $D_q(\alpha) \cong {}_{\Gamma}D_h(\beta)$.
- 2. There exist $\gamma \in \Gamma$ and an isomorphism $\sigma :< A_{\alpha_T \epsilon g}(w) \cup \{2g\} > \longrightarrow < A_{\beta_{\gamma_T \epsilon^{\gamma_h}}}(\gamma(w)) \cup \{2h\} > \text{such that}$

$$\beta_{\gamma T}^{\gamma}(u,v) - \epsilon^{\gamma} h = \sigma(\alpha_T(u,v) - \epsilon g)$$
 for each $(u,v) \in A(D)$

and

$$\sigma(2g)=2h$$

where $(\alpha_T - g)(u, v) = \alpha_T(u, v) - g$, $(u, v) \in A(D)$, $w \in V(D)$ and

$$\epsilon^{\gamma}(u,v) = egin{cases} 1 & ext{if the distance } d_{\gamma T}(\gamma u, \gamma v) ext{ is even,} \\ 0 & ext{otherwise} \end{cases}, \ \epsilon(u,v) = \epsilon^1(u,v).$$

Sketch of proof: Suppose that $D_g(\alpha) \cong {}_{\Gamma}D_h(\beta)$. By [15, Corollary 1] and [12, Theorem 3.1], there exist a family $(\pi_u)_{u \in V(D)} \in S_A^{V(D)}$ and $\gamma \in \Gamma$ such that

$$\rho(\beta_{\gamma T}^{\gamma}(u,v)-h)=\pi_{v}\rho(\alpha_{T}(u,v)-g)\pi_{u}^{-1} \text{ for each } (u,v)\in A(D).$$

Let $(u,v)\in D(T)$. Then we have $\pi_v=\rho(h)\pi_u\rho(-g)=\rho(-h)\pi_u\rho(g)$, and so

$$\rho(2h) = \pi_u \rho(2g) \pi_u^{-1}.$$

Let P:(u,v),(v,z) be any path of length two in D. Then we have

$$\rho(\beta_{\gamma T}^{\gamma}(P) - 2h) = \pi_z \rho(\alpha_T(P) - 2g)\pi_u^{-1}.$$

If $(u, v), (v, z) \in D(T)$, then we have $\pi_u = \pi_z$. Since D is connected, for any $z \in V(D)$, we have

$$\pi_z = egin{cases} \pi_w & ext{if } d_T(w,z) ext{ is even,} \\
ho(-h)\pi_w
ho(g) & ext{otherwise,} \end{cases}$$

where $w \in V(D)$.

Let $(v,z) \in A(D) \setminus D(T)$. If $d_T(v,z)$ is even, then we have

$$\rho(\beta_{\gamma T}^{\gamma}(v,z)-h)=\pi_{w}\rho(\alpha_{T}(v,z)-g)\pi_{w}^{-1}.$$

In the case that $d_T(v, z)$ is odd, we have

$$\rho(\beta_{\gamma T}^{\gamma}(v,z)) = \pi_{w} \rho(\alpha_{T}(v,z)) \pi_{w}^{-1}.$$

Therefore it follows that $\rho(\beta_{\gamma T}^{\gamma}(v,z) - \epsilon^{\gamma}h) = \pi_{w}\rho(\alpha_{T}(v,z) - \epsilon g)\pi_{w}^{-1}$ for each $(v,z) \in A(D)$, where

$$\epsilon = egin{cases} 1 & ext{if } d_T(v,z) ext{ is even,} \\ 0 & ext{otherwise.} \end{cases}$$

Hence there exists an isomorphism $\sigma: \langle A_{\alpha_T - \epsilon g}(w) \cup \{2g\} \rangle \longrightarrow \langle A_{\beta_{\gamma_T - \epsilon^{\gamma_h}}}(\gamma(w)) \cup \{2h\} \rangle$ such that

$$eta_{\gamma T}^{\gamma}(u,v) - \epsilon^{\gamma} h = \sigma(\alpha_T(u,v) - \epsilon g) \text{ for each } (u,v) \in A(D).$$

and $\sigma(2g)=2h$.

The converse is omitted.

For $(v, z) \in A(T)$, we have $d_T(v, z) = 1$, and so $\epsilon = 0$. Note that, if G is bipartite and $g \notin A_{\alpha_T}(w)$, then $2g \notin A_{\alpha_T - \epsilon g}(w)$ may arise.

An finite group \mathcal{B} is said to have the *isomorphism extension property* (*IEP*), if every isomorphism between any two isomorphic subgroups \mathcal{E}_1 and \mathcal{E}_2 of \mathcal{B} can be extented to an automorphism of \mathcal{B} (see [8]). For example, the cyclic group Z_n for any $n \in \mathbb{N}$, the dihedral group D_n for odd $n \geq 3$, and the direct sum of m copies of Z_p have the IEP.

Corollary 1. Let D, A, T and Γ be as in Theorem 1, $g \in A$ and $\alpha, \beta \in C(D)$. Assume that A has the IEP. Then the following are equivalent:

- 1. $D_g(\alpha) \cong {}_{\Gamma}D_g(\beta)$.
- 2. There exists $\gamma \in \Gamma$ and $\sigma \in Aut \ A$ such that

$$eta_{\gamma T}^{\gamma}(u,v)-\epsilon^{\gamma}(u,v)g=\sigma(lpha_T(u,v)-\epsilon(u,v)g)$$
 for each $(u,v)\in A(D)$ and

$$\sigma(2g)=2g.$$

Corollary 2. Let D, A, T and Γ be as in Theorem 1, $g \in A$ and $\alpha, \beta \in C(D)$. Assume that A has the IEP. Then the following are equivalent:

1.
$$D_{\alpha}(\alpha) \cong {}_{I}D_{\alpha}(\beta)$$
.

2. There exists $\sigma \in Aut \ A$ such that

$$eta_T(u,v)-\epsilon(u,v)g=\sigma(lpha_T(u,v)-\epsilon(u,v)g) ext{ for each } (u,v)\in A(D)$$
 and

$$\sigma(2g)=2g.$$

Let D be a connected symmetric digraph, G its underlying graph and A a finite abelian group. The set of ordinary voltage assignments of G with voltages in A is denoted by $C^1(G;A)$. Note that $C(D)=C^1(G;A)$. Furthermore, let $C^0(G;A)$ be the set of functions from V(G) into A. We consider $C^0(G;A)$ and $C^1(G;A)$ as additive groups. The homomorphism $\delta: C^0(G;A) \longrightarrow C^1(G;A)$ is defined by $(\delta s)(x,y)=s(x)-s(y)$ for $s \in C^0(G;A)$ and $(x,y) \in A(D)$. For each $\alpha \in C^1(G;A)$, let $[\alpha]$ be the element of $C^1(G;A)/Im\delta$ which contains α .

The automorphism group $Aut\ A$ acts on $C^0(G;A)$ and $C^1(G;A)$ as follows:

$$(\sigma s)(x) = \sigma(s(x)) \text{ for } x \in V(D),$$

 $(\sigma \alpha)(x,y) = \sigma(\alpha(x,y)) \text{ for } (x,y) \in A(D),$

where $s \in C^0(G; A)$, $\alpha \in C^1(G; A)$ and $\sigma \in Aut A$.

We state a characterization for two cyclic A-covers to be Γ -isomorphic, for any finite abelian group A with the IEP.

Theorem 2. Let D be a connected symmetric digraph, G its underlying graph, A a finite abelian group with the IEP, α , $\beta \in C(D)$, $g, h \in A$ and $\Gamma \leq Aut D$. Then the following are equivalent:

- 1. $D_g(\alpha) \cong {}_{\Gamma}D_h(\beta)$.
- 2. There exist $\sigma \in AutA$, $\gamma \in \Gamma$ and $s \in C^0(G; A)$ such that

$$\beta - \epsilon h = \sigma \alpha^{\gamma} - \epsilon^{\gamma} \sigma(g) + \delta s$$
 and $\sigma(2g) = 2h$.

Proof: By Theorem 1 and Corollary 1 of [15].

Now we consider the number of Γ -isomorphism classes of cyclic A-covers of a connected symmetric digraph D. Let G be the underlying graph of D, A a finite abelian group with the IEP and $\Pi = Aut A$. For any $g \in A$, set

$$\Pi_g = \{ \sigma \in \Pi \mid \sigma(g) = g \}.$$

Then Π_g is a subgroup of Π .

Let $\Gamma \leq Aut\ D$ and $g \in A$. Set $H^1(G;A) = C^1(G;A)/Im\delta$. An actions of $\Pi_{2g} \times \Gamma$ on $H^1(G;A)$ are defined as follows:

$$(\sigma,\gamma)[\alpha] = [\sigma\alpha^{\gamma} - \epsilon^{\gamma}\sigma(g) + \epsilon g] = \{\sigma\alpha^{\gamma} - \epsilon^{\gamma}\sigma(g) + \epsilon g + \delta s \mid s \in C^{0}(G;A)\},\$$

where $\sigma \in \Pi_{2g}$, $\gamma \in \Gamma$ and $\alpha \in C^1(G; A)$. Then this action is well-defined by the following result.

Proposition 1. $\sigma \alpha^{\gamma} - \epsilon^{\gamma} \sigma(g) + \epsilon g$ is alternating.

Proof: Since $\sigma \in \Pi_{2g}$, we have $\sigma(2g) = 2g$, i.e., $\sigma(g) - g = g - \sigma(g)$. Let $(u, v) \in A(D)$. If $d_T(u, v)$ is odd, then we have $\epsilon(u, v) = \epsilon(v, u) = \epsilon^{\gamma}(u, v) = \epsilon^{\gamma}(v, u) = 0$, and so

$$egin{aligned} \sigma lpha^{m{\gamma}}(v,u) - \epsilon^{m{\gamma}}(v,u) \sigma(g) + \epsilon(v,u) g &= \sigma lpha^{m{\gamma}}(v,u) = -\sigma lpha^{m{\gamma}}(u,v) \ &= -\{\sigma lpha^{m{\gamma}}(u,v) - \epsilon^{m{\gamma}}(u,v) \sigma(g) + \epsilon(u,v) g\}. \end{aligned}$$

In the case that $d_T(u,v)$ is even, we have $\epsilon(u,v)=\epsilon(v,u)=\epsilon^{\gamma}(u,v)=\epsilon^{\gamma}(v,u)=1$, and so

$$\begin{split} \sigma\alpha^{\gamma}(v,u) - \epsilon^{\gamma}(v,u)\sigma(g) + \epsilon(v,u)g &= -\sigma\alpha^{\gamma}(u,v) - \sigma(g) + g \\ &= -\sigma\alpha^{\gamma}(u,v) + \sigma(g) - g \\ &= -\{\sigma\alpha^{\gamma}(u,v) - \epsilon^{\gamma}(u,v)\sigma(g) + \epsilon(u,v)g\}. \end{split}$$

Therefore, $\sigma \alpha^{\gamma} - \epsilon^{\gamma} \sigma(g) + \epsilon g$ is alternating.

Theorem 2 implies that the number of Γ -isomorphism classes of g-cyclic A-covers of D is equal to that of $\Pi_{2g} \times \Gamma$ -orbits on $H^1(G; A)$. Let $Iso(D, A, g, \Gamma)$ be the number of Γ -isomorphism classes of g-cyclic A-covers of D.

We estimate the number $Iso(D, A, g, \Gamma)$ by the number of some orbits on the 1-cohomology group.

Theorem 3. Let D be a connected symmetric digraph, G its underlying graph, A a finite abelian group with the IEP, $g, h \in A$ and $\Gamma \leq Aut \ D$. Assume that $\kappa(g) = h$ for some $\kappa \in Aut \ A$. Then

$$Iso(D, A, g, \Gamma) = Iso(D, A, h, \Gamma).$$

Proof: Set $\Pi = Aut A$. By Theorem 2, we have

$$Iso(D,A,g,\Gamma) = \frac{1}{\mid \Pi_{2g} \mid \cdot \mid \Gamma \mid} \sum_{(\sigma,\gamma) \in \Pi_{2g} \times \Gamma} \mid H^1(G;A)^{(\sigma,\gamma)} \mid .$$

Let κ be an automorphism of A such that $\kappa(g) = h$. Furthermore, let $(\sigma, \gamma) \in \Pi_{2g} \times \Gamma$. Then $[\alpha] \in H^1(G; A)^{(\sigma, \gamma)}$ if and only if $\sigma \alpha^{\gamma} - \epsilon^{\gamma} \sigma(g) + \epsilon g = \alpha + \delta s$ for some $s \in C^0(G; A)$, i.e.,

$$\kappa \sigma \kappa^{-1} (\kappa \alpha)^{\gamma} - \epsilon^{\gamma} \kappa \sigma \kappa^{-1} (h) + \epsilon h = \kappa \alpha + \delta(\kappa s).$$

Since $\kappa \sigma \kappa^{-1} \in \Pi_{2h}$, $[\alpha] \in H^1(G; A)^{(\sigma, \gamma)}$ if and only if $[\kappa \alpha] \in H^1(G; A)^{(\kappa \sigma \kappa^{-1}, \gamma)}$. By the fact that a mapping $[\alpha] \longmapsto [\kappa \alpha]$ is bijective, we have

$$\mid H^1(G;A)^{(\sigma,\gamma)}\mid=\mid H^1(G;A)^{(\kappa\sigma\kappa^{-1},\gamma)}\mid \text{ for each } (\sigma,\gamma)\in\Pi_{2g}\times\Gamma.$$

Since $\Pi_{2h} = \kappa \Pi_{2g} \kappa^{-1}$, it follows that

$$Iso(D, A, g, \Gamma) = Iso(D, A, h, \Gamma).$$

Now, we consider the number of Γ -isomorphism classes of g-cyclic A-covers of D in the case of ord(2g) = 1.

Proposition 2. Let D, G, A and Γ be as in Theorem 2. If ord(2g) = 1, then the number of Γ -isomorphism classes of g-cyclic A-covers of D is equal to that of Γ -isomorphism classes of A-coverings of G.

Proof: Since ord(2g) = 1, we have $\Pi_{2g} = \Pi = Aut \ A$ and g = -g. For $(u, v) \in A(D)$, $((u, h), (v, k)) \in A(D_g(\alpha))$ if and only if $k = \alpha(u, v) + h - g$, i.e., $h = \alpha(v, u) + k - g$. Then $((u, h), (v, k)) \in A(D_g(\alpha))$ if and only if $((v, k), (u, h)) \in A(D_g(\alpha))$. Thus, $D_g(\alpha)$ is an A-covering $G^{\alpha-g}$ of G. Therefore the result follows.

Let D be a connected symmetric digraph, p prime and $F_p = GF(p)$ the finite field with p elements. Let F_p^r be the r-dimensional vector space over F_p . Then the additive group F_p^r has the IEP and the general linear group $GL_r(F_p)$ is the automorphism group of F_p^r . Furthermore, $GL_r(F_p)$ acts transitively on $F_p^r \setminus \{0\}$.

Corollary 3. Let D be a connected symmetric digraph, G its underlying graph and $\Gamma \leq Aut \ D$. Let g, h be any two elements of $F_2^T \setminus \{0\}$. Then

$$Iso(D, F_2^r, g, \Gamma) = Iso(D, F_2^r, h, \Gamma).$$

Furthermore, $Iso(D, F_2^r, g, \Gamma)$ is equal to that of Γ -isomorphism classes of F_2^r -coverings of G.

Proof: Note that 2g = 2h = 0. By Theorem 3 and Proposition 2.

In the case of p > 2, the similar result to Corollary 3 is obtained by [12,15].

For a connected symmetric digraph D, let B(D) = m - n + 1 be the Betti-number of D, where m = |A(D)|/2 and n = |V(D)|. We give the number of I-isomorphism classes of g-cyclic F_2^r -covers of D for any $g \in F_2^r$.

Corollary 4. Let D be a connected symmetric digraph and $g \in F_2^T$. Then the number of I-isomorphism classes of g-cyclic F_2^T -covers of D is

$$Iso(D, F_2^r, g, I) = 1 + \sum_{h=1}^r \frac{(2^B - 1)(2^{B-1} - 1)\cdots(2^{B-h+1} - 1)}{(2^h - 1)(2^{h-1} - 1)\cdots(2 - 1)},$$

where B = B(D).

Proof: By Corollary 2 of [11].

3 Isomorphisms of orbit-cyclic abelian covers

Let D be a connected symmetric digraph, A a finite abelian group with the IEP, $\Gamma \leq Aut \ D$ and $\Pi = Aut \ A$. For a nonidentity element g of A, the Π -orbit on A containing g is denoted by $\Pi(g)$. A cyclic A-cover $D_h(\alpha)$ of D is called $\Pi(g)$ -cyclic if $h \in \Pi(g)$. Let \mathcal{D}_k be the set of all k-cyclic A-covers of D for any $k \in A$, and let $\mathcal{D} = \bigcup_{h \in \Pi(g)} \mathcal{D}_h$. Then \mathcal{D} is the set of all $\Pi(g)$ -cyclic A-covers of D. Let $\mathcal{D}/\cong_{\Gamma}$ and $\mathcal{D}_h/\cong_{\Gamma}$ be the set of all Γ -isomorphism classes over \mathcal{D} and \mathcal{D}_h , respectively. The Γ -isomorphism class of \mathcal{D}_h containing $D_h(\alpha)$ is denoted by $[D_h(\alpha)]$.

Theorem 4. Let D be a connected symmetric digraph, A a finite abelian group with the IEP, $\Gamma \leq Aut \ D$ and $\Pi = Aut \ A$. Furthermore, let $g \in A \setminus \{0\}$. Then

$$\mid \mathcal{D}/\cong_{\Gamma}\mid = Iso(D, A, h, \Gamma)$$
 for each $h \in \Pi(g)$.

Proof: For any $h \neq g \in \Pi(g)$ and any $\tau \in C(D)$, let

$$\beta = \sigma^{-1}(\tau^{\gamma} + \epsilon \sigma(g) - \epsilon^{\gamma} h - \delta s), \ \gamma \in \Gamma, \ s \in C^0(G; A),$$

where σ is an automorphism of A such that $\sigma(g) = h$, and G is the underlying graph of D. By Theorem 2, we have $D_g(\beta) \cong {}_{\Gamma}D_h(\tau)$.

For each $h \neq g \in \Pi(g)$, we define a map $\Phi_h : \mathcal{D}_g / \cong_{\Gamma} \longrightarrow \mathcal{D}_h / \cong_{\Gamma}$ by

$$\Phi_h([D_g(\beta)]) = [D_h(\tau)],$$

where $D_g(\beta) \cong_{\Gamma} D_h(\tau)$. Since \cong_{Γ} is an equivalence relation over \mathcal{D} , Φ_h is injective. By Theorem 3, we have

$$\mid \mathcal{D}_a/\cong_{\Gamma}\mid=\mid \mathcal{D}_h/\cong_{\Gamma}\mid<\infty.$$

Thus Φ_h is a bijection. Therefore it follows that

$$\mid \mathcal{D}/\cong_{\Gamma}\mid = Iso(D, A, h, \Gamma).$$

Let $A = F_2^T$. Then a cyclic F_2^T -covers $D_g(\alpha)$ is called *nonzero-cyclic* if g is not equal to the nuit 0 of F_2^T . The set \mathcal{D} is the set of all nonzero-cyclic F_2^T -covers.

Corollary 5. Let D be a connected symmetric digraph. Then

$$\mid \mathcal{D}/\cong_I \mid = 1 + \sum_{h=1}^r \frac{(2^B - 1)(2^{B-1} - 1)\cdots(2^{B-h+1} - 1)}{(2^h - 1)(2^{h-1} - 1)\cdots(2 - 1)},$$

This is a generalization of Corollary 9 in [17].

Now, we state the structure of Γ -isomorphism classes of $\Pi(g)$ -cyclic A-covers of D.

Theorem 5. Let D be a connected symmetric digraph, A a finite abelian group with the IEP, $\Gamma \leq Aut \ D$ and $\Pi = Aut \ A$. Let σ_h be a fixed automorphism of A such that $\sigma_h(g) = h$ for $h \in \Pi(g)$. Then any Γ -isomorphism class of $\Pi(g)$ -cyclic A-covers of D is of the form

$$\bigcup_{h\in\Pi(g)} \{D_h(\sigma_h\beta) \mid \beta = \sigma\alpha^{\gamma} - \epsilon^{\gamma}\sigma(g) + \epsilon g + \delta s, \ \sigma \in \Pi_{2g}, \ \gamma \in \Gamma, \ s \in C^0(G;A)\},\$$

where $\alpha \in C(D)$ and G is the underlying graph of D.

Proof: Let $\tau \in C(D)$, $h \neq g \in \Pi(g)$ and $[[D_h(\tau)]]$ the Γ -isomorphism class of \mathcal{D} containing $D_h(\tau)$. By the first half of the proof of Theorem 4, there exists a g-cyclic A-cover $D_g(\alpha)$ such that $[[D_h(\tau)]] = [[D_g(\alpha)]]$.

In the proof of Theorem 4, the map Φ_h is a bijection from $\mathcal{D}_g/\cong_{\Gamma}$ into $\mathcal{D}_h/\cong_{\Gamma}$ for any $h\neq g\in \Pi(g)$. Thus there exists an h-cyclic A-cover $D_h(\beta)$ such that $D_g(\alpha)\cong_{\Gamma}D_h(\beta)$ for any $h\neq g\in \Pi(g)$. We define a map $\Psi_h:[D_g(\alpha)]\longrightarrow [D_h(\beta)]$ by

$$\Psi_h(D_g(\alpha')) = D_h(\sigma_h \alpha'), \ \alpha' = \sigma \alpha^{\gamma} - \epsilon^{\gamma} \sigma(g) + \epsilon g + \delta s,$$

where $\sigma \in \Pi_{2g}$, $\gamma \in \Gamma$, $s \in C^0(G; A)$ and $\sigma_h(g) = h$. By Theorem 2, Ψ_h is well-defined. It is clear that Ψ_h is injective.

Now, let $D_h(\eta)$ be any element of $[D_h(\beta)]$. Then we have $D_h(\eta) \cong \Gamma D_g(\alpha)$. By Theorem 2, there exist $\sigma' \in \Pi$, $\nu \in \Gamma$ and $t \in C^0(G; A)$ such that $\eta = \sigma' \alpha^{\nu} - \epsilon^{\nu} \sigma'(g) + \epsilon h + \delta t$ and $\sigma'(2g) = 2h$. Let $\mu = \sigma_h^{-1} \sigma' \alpha^{\nu} - \epsilon^{\gamma} \sigma_h^{-1} \sigma'(g) + \epsilon g + \delta(\sigma_h^{-1} t)$. Then we have

$$\sigma_h^{-1}\sigma'\in\Pi_{2g}$$
 and $\Psi_h(D_g(\mu))=D_h(\eta)$.

Therefore Ψ_h is surjective, i.e., bijective. Hence it follows that

$$[D_h(\beta)]$$

$$= \{ D_h(\sigma_h \alpha') \mid \alpha' = \sigma \alpha^{\gamma} - \epsilon^{\gamma} \sigma(g) + \epsilon g + \delta s, \ \sigma \in \Pi_{2g}, \ \gamma \in \Gamma, \ s \in C^0(G; A) \},$$

and so the result follows.

Corollary 6. [15,Theorem 5] Let D be a connected symmetric digraph, G its underlying graph, A a finite abelian group with the IEP and $\Gamma \leq Aut \ D$. Suppose that $g \in A$ has odd order. Let σ_h be a fixed automorphism of A such that $\sigma_h(g) = h$ for $h \in \Pi(g)$. Then any Γ -isomorphism class of $\Pi(g)$ -cyclic A-covers of D is of the form

$$\bigcup_{h\in\Pi(g)} \{D_h(\sigma_h\beta) \mid \beta = \sigma\alpha^{\gamma} + \delta s, \ \sigma\in\Pi_g, \ \gamma\in\Gamma, \ s\in C^0(G;A)\},\$$

where $\alpha \in C(D)$.

Corollary 7. Let D be a connected symmetric digraph, $\Pi = GL_r(F_2)$ and $\Gamma \leq Aut \ D$. Set $e = (10 \cdots 0)^t \in F_2^T$. Furthermore, A_g be a fixed element of $GL_r(F_2)$ such that $A_g e = g$ for each $g \neq 0 \in F_2^T$. Then any Γ -isomorphism class of nonzero-cyclic F_2^T -covers of D is of the form

$$\bigcup_{g\neq 0} \{D_g(A_g\beta) \mid \beta = B\alpha^{\gamma} - \epsilon^{\gamma}Be + \epsilon e + \delta s, , B \in \Pi, \ \gamma \in \Gamma, \ s \in C^0(G; F_2^r)\},$$

where $\alpha \in C(D)$.

4 Isomorphisms of cyclic \mathbb{Z}_{2^m} -covers

Let Z_n be the cyclic group of order n. Then Z_n has the IEP.

We shall consider the number of *I*-isomorphism classes of *g*-cyclic Z_{2^m} -covers of a connected symmetric digraph D, for any $g \in Z_{2^m}$. Set $\Pi_{2g} = \{\sigma \in Aut \ Z_{2^m} \mid \sigma(2g) = 2g\}$.

Theorem 6. Let D be a connected symmetric digraph, $g \in \mathbb{Z}_{2^m}$ and $ord(2g) = 2^{m-\mu}$. Set B = B(D). Then the number of I-isomorphism classes of g-cyclic \mathbb{Z}_{2^m} -covers of D is

$$Iso(D, \mathbb{Z}_{2^m}, g, I)$$

$$=\begin{cases} 2^{mB-\mu}+2^{(m-\mu)B-1}(2^{\mu(B-1)}-1)/(2^{B-1}-1) & \text{if } \mu \neq m \text{ and } B > 1, \\ 2^{m-\mu-1}(\mu+2) & \text{if } \mu \neq m \text{ and } B = 1, \\ 2^{m(B-1)+1}-1+(2^{m(B-1)}-1)/(2^{B-1}-1) & \text{if } \mu = m \text{ and } B > 1, \\ m+1 & \text{if } \mu = m \text{ and } B = 1, \end{cases}$$

Proof: Let G be the underlying graph of D and T a spanning tree of G. Set $E(G) \setminus E(T) = \{u_1v_1, \dots, u_Bv_B\}$, where B = B(D) is the Betti number of D. Assume that $d_T(u_i, v_i)$ is odd if $1 \le i \le l$, and even otherwise. Then, let

$$\mathcal{F}_T(Z_{2^m};B) = \{(a_1 - g, \cdots, a_l - g, a_{l+1}, \cdots, a_B) \mid (a_1, \cdots, a_B) \in (Z_{2^m})^B\}.$$

By Corollary 2, the number of *I*-isomorphism classes of *g*-cyclic \mathbb{Z}_{2^m} -covers of D is equal to that of Π_{2g} -orbits on $\mathcal{F}_T(\mathbb{Z}_{2^m};B)$. By Burnside's Lemma, we have

$$Iso(D, Z_{2^m}, g, I) = \frac{1}{\mid \Pi_{2g} \mid} \sum_{\sigma \in \Pi_{2\sigma}} \mid \mathcal{F}_T(Z_{2^m}; B)^{\sigma} \mid.$$

For
$$\rho \in \Pi$$
, let $\mathcal{F}(\rho) = \{h \in Z_{2^m} \mid \rho(h) = h\}$. Then we have
$$|\mathcal{F}_T(Z_{2^m}; B)^{\sigma}| = |(Z_{2^m})^{\sigma}|^B = |\mathcal{F}(\sigma)|^B.$$

But we have

$$\Pi_{2g} = \{ \lambda \in \mathbb{Z}_{2^m} \mid (\lambda, 2^m) = 1 \text{ and } \lambda 2g = 2g \}.$$

Then

$$\lambda \in \Pi_{2g} \Leftrightarrow 2\lambda g \equiv 2g \pmod{2^m} \Leftrightarrow 2g(\lambda - 1) \equiv 0 \pmod{2^m}$$

 $\Leftrightarrow \lambda - 1 \in \langle ord(2g) \rangle$.

Thus we have $\mid \Pi_{2g} \mid = 2^m/ord(2g)$. That is, $\mid \Pi_{2g} \mid = 2^{\mu}$ if $2g \in K_{\mu}(m)$, where $K_{\mu}(m) = \{k \in Z_{2^m} \mid k \in < 2^{\mu} >, \ k \notin < 2^{\mu+1} > \}$. Let $ord(2g) = 2^{m-\mu}$. If ord(2g) = 1, then $2g = 2^m$. Otherwise $\Pi_{2g} = \{2^{m-\mu}\nu + 1 \mid \nu = 0, 1, \dots, 2^{\mu} - 1\}$.

By Lemma 3 of [8], $|\mathcal{F}(\rho)| = 2^k$ if $\rho - 1 \in K_k(m)$. Thus we have

$$|\{\lambda \in \Pi_{2g} \mid |\mathcal{F}(\lambda)| = 2^{m-\mu+t}\}| = 2^{\mu-t-1} \ (0 \le t \le \mu - 1), \\ |\{\lambda \in \Pi_{2g} \mid |\mathcal{F}(\lambda)| = 2^m\}| = 1.$$

Therefore the result follows. Specially, the third and fourth parts of the formula are given by Theorem 8 of [8].

Finally, we give an example for the computation of the number $Iso(D, A, h, \Gamma)$ when Γ is non-trivial. Let $D = KD_3$ be the complete symmetric digraph with three vertices 1,2,3, and $A = Z_4 = \{0, 1, 2, -1\}$ (the additive group). Furthermore, let $\Gamma = S_3$ be the symmetric group of degree 3 and g = 1. Then we have $G = K_3$ (the complete graph with three vertices), $\Pi = Aut \ Z_4 = \{1, -1\}$ and $\Pi_2 = \Pi$. Thus, the number $Iso(KD_3, Z_4, 1, S_3)$ of S_3 -isomorphism classes of 1-cyclic Z_4 -covers of KD_3 is equal to that of $\Pi \times S_3$ -orbits on $H^1(K_3; Z_4)$.

Let T be the spanning tree of K_3 such that $E(T) = \{23, 13\}$. By [15, Corollary 1], we have

$$D_1(\alpha) \cong {}_ID_1(\alpha_T)$$

for each $\alpha \in C(KD_3)$. Let $C_T(KD_3) = \{\alpha_T \mid \alpha \in C(KD_3)\}$. Then $Iso(KD_3, Z_4, 1, S_3)$ is equal to that of $\Pi \times S_3$ -orbits on $C_T(KD_3)$.

All T-voltages are given as follows:

$$\alpha_i(1,2)=i, \alpha_i(2,3)=\alpha_i(1,3)=0,\ i=0,1,2,3.$$

But, we have

$$\alpha_3 = \alpha_1^{\gamma}$$
, $\gamma = (12)$ and $\alpha_2 = \sigma \alpha_0 - \epsilon \sigma(1) + \epsilon \cdot 1$, $\sigma = -1$.

Furthermore, if $\alpha_1 = \sigma \alpha_0^{\gamma} - \epsilon^{\gamma} \sigma(1) + \epsilon \cdot 1 + \delta s$, then we have $-1 = -\sigma(1) + 1 = 1$, a contradiction. Thus, the $\Pi \times S_3$ -orbits on $C_T(KD_3)$ are given as follows: $\{\alpha_0, \alpha_2\}, \{\alpha_1, \alpha_3\}$. Therefore it follows that

$$Iso(KD_3, Z_4, 1, S_3) = 2,$$

and the representatives of S_3 -isomorphism classes of 1-cyclic Z_4 -covers of KD_3 are $D_1(\alpha_0)$, $D_1(\alpha_1)$.

Acknowledgement. The author would like to thank the referee for helpful comments and useful suggestions.

References

- Y. Cheng and A.L. Wells, Jr., Switching classes of directed graphs, J. Combin. Theory Ser. B 40 (1986), 169-186.
- [2] K. Dresbach, Über die strenge Isomorphie von Graphenüberlagerungen, Diplomarbeit, Univ. of Cologne (1989).
- [3] J.L. Gross and T.W. Tucker, Generating all graph coverings by permutation voltage assignments, *Discrete Math.* 18 (1977), 273-283.
- [4] J.L. Gross and T.W. Tucker, Topological Graph Theory, Wiley-Interscience, New York, (1987).
- [5] M. Hofmeister, Counting double covers of graphs, J. Graph Theory 12 (1988), 437-444.
- [6] M. Hofmeister, Isomorphisms and automorphisms of graph coverings, Discrete Math. 98 (1991), 175-185.
- [7] M. Hofmeister, Graph covering projections arising from finite vector spaces over finite fields, *Discrete Math.* 143 (1995), 87-97.
- [8] S. Hong, J.H. Kwak and J. Lee, Regular graph coverings whose covering transformation groups have the isomorphism extension property, Discrete Math. 148 (1996), 85-105.
- [9] A. Kerber, Algebraic Combinatorics via Finite Group Actions, BI-Wiss. Verl., Mannheim, Wien, Zü rich, (1991).
- [10] J.H. Kwak and J. Lee, Isomorphism classes of graph bundles, Canad. J. Math. XLII (1990), 747-761.
- [11] J.H. Kwak, J. Chun and J. Lee, Enumeration of regular graph coverings having finite abelian covering transformation groups, SIAM. J. Disc. Math. 11 (1998), 273–285.
- [12] H. Mizuno and I. Sato, Isomorphisms of some covers of symmetric digraphs (in Japanese), Trans. Japan SIAM. 5-1 (1995), 27-36.
- [13] H. Mizuno and I. Sato, Characteristic polynomials of some covers of symmetric digraphs, Ars Combinatoria 45 (1997), 3-12.

- [14] H. Mizuno, J. Lee and I. Sato, Isomorphisms of connected cyclic abelian covers of symmetric digraphs, submitted.
- [15] H. Mizuno and I. Sato, Isomorphisms of cyclic abelian covers of symmetric digraphs, Ars Combinatoria 54 (2000), 51-64.
- [16] I. Sato, Isomorphisms of some graph coverings, Discrete Math. 128 (1994), 317-326.
- [17] I. Sato, Isomorphisms of cyclic abelian covers of symmetric digraphs II, submitted.
- [18] D.A. Waller, Double covers of graphs, Bull. Austral. Math. Soc. 14 (1976), 233-248.