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ABSTRACT. We construct a family of p — 1 square p X p ma-
trices (p is any prime) whose periodic cross-correlation values
are uniformly —p, 0, +p between all pairs of the matrices in
the family. For every one of the matrices in the family, all the
off-peak autocorrelation values are —p and 0, while the single
peak value is p(p — 1). For p = 127 (where the values —p, 0
+p are below 1% of the size p? of the matrices) utilization of
this construction has resulted in the superimposed embedding
of twelve of the matrices (as watermarks) in the standard image
“Lenna” and their subsequent retrieval without recourse to the

unmarked image.
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1 Introduction and background

The theme of this paper is the production of families 6f matrices suitable for
watermarking of digital images, an area introduced by our group in 1993
[18]. Digital watermarking requires families of matrices with a high sin-
gle autocorrelation peak, together with good balance, autocorrelation and
cross-correlation. Since image format varies, ranging from 8 bit greyscale to
sophisticated colour schemes, the watermark alphabet of symbols should be
compatible. Traditionally, sequences have been studied over an alphabet
composed of roots of unity. A special case is that of the binary alpha-
bet, where only two roots of unity are involved, -1 and +1. This is ideally
suited to watermarking of greyscale images, although it is possible to embed
and recover watermarks composed of complex roots of unity in colour and
greyscale images, as shown by van Schyndel et al [20]. Our construction of
arrays and theorems are valid for any alphabet whatsoever, in particular
for an alphabet of complex roots of unity.

Sequences, over finite alphabets, with balance and two-valued autocor-
relation have found applications in communications and radar: good ex-
positions are given by Golomb [7] and Schroeder {17). More recently, ap-
plications have been made in many areas of instrumentation and physical
measurement: Cathignol et al 4], Eysholdt et al [5)].

Matrices (arrays) with window properties, namely perfect maps, have
been applied to structured light for spatial indexing of medical images, as
described by Ozturk et al [16]. In vision research Bearse and Sutter [1]
combine arrays in the spatial domain and sequences in temporal domain to
develop the multifocal retinogram. Costas arrays have been used in radar
and sonar to remove ambiguities [8].

Perfect arrays (arrays for which all the off-peak periodic autocorrelation
values are zero, while the single peak is of order the size of the array) are
presented and analysed by Liike [12] and Liike et al [13] and by Bémer and
Antweiler [2]. Perfect arrays and uniformly redundant arrays [9] have found
application in coded aperture astronomy (see Kopilovich [11]).

Of the above array constructions, only Costas arrays involve families of
arrays with good cross-correlation (Maric [15]). However, their autocorre-
lation peak is low, because of the sparse nature of such arrays. Another
method of array construction involves the folding of sequences along the
diagonal of a non-square matrix, as illustrated by MacWilliams and Sloane
[14]. The sequences must be of composite length in order to fill the matrix
in a single pass.

The family of sequences with optimal auto and cross-correlation as deter-
mined by the Welch bound is the small Kasami set (and its generalization
to No/Kumar sequences). Arrays generated by this method are restricted
to the format (p™ + 1) x (p™ — 1) over p roots of unity (p prime). Examples
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are shown by Green et al [10].

In this paper, we provide a construction of new families of matrices with
a high single autocorrelation peak, and with balance, good autocorrelation
and cross-correlation. The family size and the auto and cross-correlation
of the family members are the same as that of the folded small Kasami set.
However, the arrays are available in square format p x p for any prime p
and the alphabet is flexible.

2 Summary

In Section 3, Preliminaries, we give the definitions for sequences, and then
for matrices, of autocorrelation and cross-correlation (all correlations in
this paper are even periodic). Correlation is the most important measure
of families of matrices for our purposes in their application as watermarks
on digital images.

Section 4 gives the basic construction, for each prime p and for each
pseudonoise sequence as a seed column, of a new family containing (p — 1)
square p X p matrices with good cross-correlation and good autocorrelation.
As in the method of construction of some perfect maps [16], our method
starts with a suitable seed column and generates the further columns by
a sequence of cyclic shifts. Suitable seed columns include all sequences
with good balance and autocorrelation. A theoretical treatment of these
sequences is given by Everett [6]. When the seed column has two-valued
autocorrelation, our constructed matrices have three-valued auto and cross-
correlation. The alphabet of the seed column becomes the alphabet of the
array. Each matrix is obtained from the seed column by using a sequence
of cyclic shifts of that seed to obtain the successive columns of the matrix.

3 Preliminaries

Take any column ¢ = (¢;) of p symbols co, ¢, ..., ¢p—1 (these symbols could
themselves be rows, matrices or higher dimensional arrays of symbols). For
each integer k, we define the k shift (or rotation) c* of ¢ to be the column

c* = (cf), where of =ciyk

and ¢ + k is calculated modulo p. Thus the entries of c¢* in order are
(Cks k41, - - -, Cksp—1) Where the subscripts are calculated modulo p. We
say the column c has period p if ¢ = c* happens only when k is a multiple
of p.

Shifts (or rotations) of matrices are defined similarly, as follows: for any
P X q matrix A = (a;5), i =0,1,...,p—1,5 = 0,1,...,9 — 1, and any
integers k, [, the shifted matrix of A, A(®d) = (ag";.")) is defined by:

k,l
“g,j ) = itk,j+t
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where i + k is calculated modulo p and j + ! is calculated modulo ¢. In-
formally, we can say that there has been a horizontal rotation to the left
by I columns and a vertical rotation upwards by k rows (in either order).
Likewise, we say that A has period (p, q) if A = A(®!) only if & is a multiple
of p and [ is a multiple of q.

For two columns a = (a;), b = (4;) of the same length p, of symbols, the
dot (or scalar) product a - b is defined by

p—1
aob=Za,,o-b,-

i=0

where a; - b; is some scalar (number) previously defined in terms of the
symbols a;, b; (this allows a;, b; to be real numbers, complex numbers,
sequences or arrays). The (even periodic) cross-correlation sequence of a
and b is the sequence of numbers

c(k)y=aeb*, k=0,1,2,...,p-1

.

When a = b we call the sequence c(k) the autocorrelation sequence of a.
Example 3.1: For the binary Legendre sequence (0,1,1,-1,1, -1, 1),
the autocorrelation sequence c(k) is (6, -1,—1,-1,-1, -1, ~1).

For two p x ¢ matrices A = (a;5), B = (b;;) their dot (or scalar) product
is

p-1g—-1

A.B=Zza’ij'bij

=0 j=0
where a;; - b;; is some scalar (number) previously defined in terms of the
symbols Qij, b,'j.
The number A - B is one of the numbers forming the (even periodic)

cross-correlation between A and B: the complete list of numbers is the
function (or p x ¢ matrix)

clk,)=AeB*) k=01,...,p-1,1=0,1,...,q—1

When A = B we call ¢(k,!) the autocorrelation of A. Cross and auto-
correlation of matrices were introduced by Calabro and Wolf [3].

We call a sequence or matrix balanced if all non-zero alphabet symbols
occur equally often.

4 p x p Construction

Construction 4.1: For a seed column c of length pand form = 1,2,...,p—
1 we construct a p X p matrix A,, with columns

mj .
co=c,cl=co,c2=c’1",C3=%”‘,...,cj+1=cj’ i=0,1,...,p—1.
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We write A, = (co,c1,...,co—1). We call mj the (differential) shift from
¢j t0 ¢j+1. The (accumulated) shift from co to c; is

i(7—1
0+m+2m+---+(j——1)m=%
calculated modulo p.

Theorem 4.2. (Cross-correlation between A,, and A, m # m’ )

(a) If p > 3 is prime, m # m', m, m’ € {1,2,...,p—1}, then A,, =
(co€1,--.,¢p-1) and any shift A%Y = (bo,by,...,by_1) of A
agree on at most two columns, that is, c; = b; for at most two values
of jin{0,1,...,p—1}.

(b) If the seed column c is a (binary) Legendre sequence of length p, with
autocorrelation values p—1,—1,—1,..., —1 then the cross-correlation
values of each distinct pair of matrices A,, and A,,; say of the family
Ap = {A1,As,...,Ap_1} are —p, 0, +p (When 0, 1,2 columns agree
respectively).

Proof: (a) Column Agreements. :
We find an equation (about accumulated shifts) equivalent to c; = b;. We
know c¢; = ¢c™/U~1)/2, Likewise, column j + I of A,/ is ¢™ U+DU+i-1)/2_
Thus the 5 column of Agf,’[) isbj =c™ where n = m'( +1)(j +1-1)/2+k.
Since ¢ has period p, we have that c; = b; if and only if
miG-1) _m'G+)(E+1+1)
2 2

Multiply Equation (1) by 2 and collect 52 and j terms:
(m’ = m);% + (m + m'(20 — 1))j + (Il — 1) + 2k) = 0 (mod p) (2)

+k (mod p) 1)

Now m’ —m # 0 (mod p) so the above quadratic equation is not of the
form 0 = 0, and so has at most two solutions for jin {0,1,2,...,p~1},
which completes the proof (recall that a polynomial equation ag + agz +
-+ + apz™ = 0, with coefficients a; from a field F, has at most n solutions
in F).

(b) Correlation Calculation
When 0 columns agree, each pair of columns contributes —1, giving a total
of —p. When 1 pair of columns agree, they contribute P — 1, and the other
P — 1 pairs of columns contribute —1 each, giving a total of p-1)+@-
1)(=1) = 0. When 2 pairs of columns agree, those two pairs contribute
2(p — 1) and the remaining p — 2 pairs contribute —1 each, giving a total
of2(p~1)-(p—-2)=p.

Theorem 4.3. (Autocorrelation of Ay,)
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(2) If p > 3 is prime, and the column ¢ has period p, then for m =
L,2,...,p — 1, the matrix A,, = (co,cy,...,¢p—1) and each non-
equal shift AS,'f'l) = (bo, by, ..., by_1) agree on at most one column,
that is, c; = b for at most one value of j in {0,1,...,p —1}.

(b) If again the seed column c is a (binary) Legendre sequence of length p,
with autocorrelation values (p—1), -1, —1,..., —1 then the autocorre-
lation values of each matrix Ay, in the family A, = {A1, Ao, ..., Ap_1}
are —p, 0, p(p — 1) (when 0, 1 or all p columns agree respectively).

Proof: (a) Column Agreements
We obtain an equation (about shifts) which is equivalent to c; = b;. We
know that ¢; = ¢c™(—1)/2, Likewise, c™U+0(U+-1)/2 i the j-column of
AR,

The j-column of A% is thus bj =cf,, = c" wheren = M%’“—‘Q +
k.

Since ¢ has period p, we have that c; = b; if and only if

mj(i—1) _ mG+DE+1-1)
2

5 + k (mod p) (3)

Now

G+DG+I-1) =5G - D)+ +1G - 1)+
=j(F-1)+U25-141)

so Equation (3) becomes

mi(25 —141)

> +k =0 (mod p) )

We note that the excluded case k = 0 =1 (mod p) would make Equation
(4) have the form 0 = 0, with solutions i = 0,1,2,...,p — 1 (meaning
A = AkD)

If K # 0 =1 (mod p), there are no solutions of (4) for j, and if I # 0

(mod p) then the unique solution in {0,1,...,p -1} is

-2 _1+1

jo="BL_"T2 (mod p)

calculated in the field Z, (where 2, m and ! have multiplicative inverses).
This completes the proof.

(b) Correlation Calculation
This is proved similarly to part (b) of Theorem 4.2.
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Remark 4.4: As well as Legendre sequences, suitable binary seed columns
for the construction include m-sequences for Mersenne primes, Hall se-
quences, biquadratic residue sequences, octic residue sequences etc. [6],
[7)-

The seed sequences need not be confined to a binary alphabet. Any
pseudonoise sequence over roots of unity would also be suitable for the
construction. '

Examples 4.5: Two small examples will make the construction clear.
We take for the seed column c the sequence of Example 3.1, namely the
Legendre sequence for p = 7, namely 011 —11 — 1 — 1. From the family
A7 = {A1,Ay,...,Ag}, we give the matrices A;, with a relative shift
sequence 1234560 and A, with a relative shift sequence 2461350. We
have rotated the shift sequences one position to obtain symmetry between
left and right in the matrices.

oj1|-1]-1]-1]1
1j1]1]0]1]1
1]-1]-1]11¢}-1]-1
11 j-1]1}1-1{1
1
-1

-1{0f-1]01]-1
1111 14-1
-1joj1]-1]110()-1

Matrix A;: m=1

L=l L] == o

0Oj1]-1|-1]-1]1]0O
11-1{0[-1]0]-1]1
1110 ]1]1]1
-1]-1f1}1}11/]-1]-1
11-1)-1}11[-1}-1]1
-110f(1]-1]1]07]-1
11 (-1]1-1]1f-1

Matrix As: m=2

The cross-correlation matrix for these two arrays is:

T 7T 7 7T 7T 0 7
-7 7 7T -7 0 -7 0
7 0 O 7 -7 -1 -7
T -7 -1 7T -7 7T =7
0 -7 -7 0 7 -7 7
-7 7 7 -1 -1 7 -7
-7 =T -1 =T 1 17 7
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Entries of —7 correspond to no columns matching, those of 0 correspond
to one column matching and those of 7 correspond to two columns match-
ing. For any pair of members of the family A; = {A1,Ay,..., Ag}, the
entries in their cross-correlation matrix are likewise —7,0, 7.

The autocorrelation matrices of A, As,..., Ag are equal and are

42 0 000 0 0
-7 000000
-7 0000 00
-7 000000
-7 000000
-7 000000
-7 0000 0 0

Each 0 entry corresponds to one column agreeing, and each ~7 entry
corresponds to no columns agreeing. The pattern shown is general, in the
sense that for each prime p > 3 Equation (4) has (a) one solution for non-
zero horizontal shift and any vertical shift (b) no solution for zero horizontal
shift and non-zero vertical shift and (c) full agreement for zero shifts in both
directions.

5 An Application

In [19] the authors, together with I. Svalbe and R. van Schyndel, report
on an embedding of the arrays discussed above as watermarks in a digital
image of “Lenna”. We took p = 127 = 27 — 1 and chose one of the eighteen
maximal length sequences (m-sequences) of length 127, denoted by c, as a
seed column for the construction. For eachofm =1,2,..., 126, as the value
of the multiplier, we considered the 127 x 127 array A, constructed with ¢
as a seed column and with a sequence of relative shifts: 0,m,2m, ... , 126m
(mod 127). Twelve of these matrices were selected with a random num-
ber generator, and all twelve superimposed on the image of Lenna on the
same 127 x 127 pixels. Each of these matrices was cyclically shifted in two
dimensions. This was done with many choices of the set of twelve arrays.
In all cases unambiguous retrieval of each of the twelve watermarks was ac-
complished by use of each array as a template, and without recourse to the
unmarked image. The process automatically retrieves the horizontal and
vertical shifts of each of the twelve matrices, which allows us to store 168
(= 12 x 14) bits of information in the composite watermark. The retrieval
of the individual arrays was possible because of the low cross-correlation
values for each pair of the 126 available matrices, and the low ofl-peak
autocorrelation values of each matrix (less than 1% of the peak).
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