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Abstract

Let G be a graph. Let 4 denote the minimum cardinality of a
dominating set in G. Let (3, respectively ¢, denote the maximum,
respectively minimum, cardinality of a maximal independent set in
G. We show v + A > [2y/n — 1], where n is the number of vertices
of G. A straightforward construction shows that given any G’ there
exists a graph G such that v(G) + A(G) = [2y/n — 1] and G’ is an
induced subgraph of G, making classification of these y+A minimum
graphs difficult.

We then focus on the subclass of these graphs with the stronger
condition that 8+ A = [24/n — 1]. For such graphs i = 8 and thus
the graphs are well-covered. If G is graph with 8+ A = [2y/n — 1],
we have 8 = [ﬁ]. We give a catalogue of all well-covered graphs
with A < 3 and 8 = [z%7]. Again we establish that given any G’
we can construct G such that G’ is an induced subgraph of G and
G satisfies 8 = [z%7]. In fact, the graph G can be constructed so
that 8(G)+ A(G) = [2y/n—1]. We remark that A(G) may be much
larger than A(G').

We conclude the paper by analyzing integer solutions to [ z57]+

= [2y/n — 1]. In particular for each n, the values of A that
satisfy the equation form an interval. When n is a perfect square,
this interval contains only one value, namely /n. For each (n,A)
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solution to the equation, there exists a graph G with n vertices,
maximum degree A, and 8 = [ 57 ]-

1 Introduction

We consider finite, simple graphs G = (V, E) with n vertices. For v € V,
the open neighbourhood of v is given by N(v) = {v € V|uv € E}, and
the closed neighbourhood of v is given by N[v] = {v} U N(v). For a set
of vertices X C V, we define N(X) = UyexN(v) and N[X] = Uyex N[v].
The private neighbourhood of v in X is PN(v,X) = N[v] - N[X — {v}]. If
N[X]) =V, wesay X is a dominating set of G. Let v denoted the minimum
cardinality of a dominating set in G. (For a general graph parameter p,
we use p(G) to explicitly state the graph when necessary for clarity.) Let
B, respectively i, denote the maximum cardinality of an independent set,
respectively the minimum cardinality of a maximal independent set, in G.
Since every maximal independent set is a dominating set, it is clear

7<i<B

[2]. For an in depth study of domination theory the reader is directed to
[9, 10]. The maximum degree and minimum degree in G are denoted A
and 6 respectively.

The Gallai-type problem of characterizing graphs with v+ A = n and
i+A = nis studied in [4] and [5]. It is the case that i+ A < n for any graph.
We study the complementary extremal problem of characterizing graphs
with 7+ A as small as possible. Specifically we show y+A > [2y/n—1]. We
also demonstrate that a complete characterization of graphs which achieve
this minimum value is unlikely. Thus we turn our focus to a restricted class
of graphs; those for which 8 + A = [2y/n — 1]. Clearly in such graphs
B=i=r.

If i = B, we say G is well-covered; that is, each maximal independent set
has the same cardinality, for example, see [8]. The problem of determining
whether or not a graph is not well-covered is NP-complete, [1]. However,
characterizations of subclasses of the well-covered graphs do exist. For
example, well-covered graphs with girth at least five have been characterized
in [7], see also [6].

We establish that if 8+ A = [2y/n — 1], then § = [AL-H.I This latter

condition implies G is well-covered. We characterize all such graphs with
A < 3. We also present evidence that a complete characterization of these
graphs is unlikely.

We complete the paper with a study of the integer solutions to

‘-Ail-l +A=[2v/n—1]
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For any integer solution, there exists a graph with n vertices, and maximum
degree A, such that 8+ A = [2y/n —1].

2 v+ A is minimum

Proposition 2.1 Let G be a graph with n vertices. Then 4(G) + A(G) >
[2y/n—1].

Proof: Let D C V(G) be a dominating set of size . Each vertex in D can
dominate at most A + 1 vertices. Hence - (A + 1) > n. This implies that
Y+ A 2z + A Fix n and let f(A) = 47 + A. Consider A as a real
variable and then we have the following:

n+ A%+ A
f&) = —x5—

, _ A242A4+(1—n)
) = (A+1)2

Solving for the feasible root of f/, we find f has a global minimum on
the domain 0 < A < n — 1. This minimum is achieved when A = vn—1.
Hence v + A > f(A) > 2y/n — 1. Restricting A and v to integer values
gives the result. |

Corollary 2.2 Let G be a graph with the property v+ A = [2/7 — 1].
Then v = [&45]- .

We examine the problem of finding integer solutions to (24l +A =
[2y/n — 1] in the final section of the paper. At this point we show that
given an integer solution to this equation, there is a graph G with n ver-
tices, maximum degree A, and domination number [4%;]. Moreover, the
following theorem shows that a forbidden subgraph classification of these
minimum v + A graphs is impossible.

Theorem 2.3 Letn and D be integers such that [ 557] +D = [2y/n—1].
Then there ezists a graph G such that [V(G)| = n, A(G) = D, and v(G) =
[piil- Moreover, given any graph H on 0 <p <n— [ D7 vertices, with
A(H) < D, the graph G can be selected so that H is an induced subgraph
of G. )

Proof: Let n and D be integers as above. Let g = [5571- Consider a

graph H satisfying the above hypothesis. To V(H) we add two disjoint
sets of vertices X and Y such that |X| = g and |Y| = n— g —p. Let
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V(G) = V(H)U X UY. Partition the vertices in V(H) UY into g parts,
say Vi,Va,...,V, such that |V;] = D fori = 1,2,...,9—1 and |Vl =
n—g—(g—1)-D. Note that |Vg| < D. Label the vertices of X as
T1,Z2,...,Zg. Join each z; to all the vertices of V;. We now observe that
Y(G) < g, A(G) = D. Thus 7(G) + A(G) < [2v/n—1]. |

We note that a strengthening of this result to A(H) < D is not possible.
Consider n =9, A = 2, and H = Cs. Each vertex in a dominating set of
G would need to dominate itself and two other private neighbours. Since
D = A(H) =2, no edges can be added to the vertices in the C5. However,
Cs does not have the property that any dominating set has each vertex
dominating exactly three private neighbours.

Corollary 2.4 Given any graph H, there exists a graph G such that v(G)+
A(G) = [2V/]V(G)] — 1] and H is an induced subgraph of G.

Proof: Let D = max{A(H) +1, [ |V(H)|]} and n = (D +1)2.

3 B+ A is minimum

In light of the non-structure results above, we restrict our attention to
graphs that satisfy the stronger condition that 8+ A = [2y/n — 1]. Since
B(G) > i(G) > 7(G) for any graph G, we have 8+ A > v+ A, and
B+ A =[2yn—1] implies v + A = [2y/n —1]
Defintion 3.1 A graph G is well-covered if each mazimal independent set
has the same cardinality. That is, B(G) = i(G).

Proposition 3.2 Let G be a graph on n vertices such that B+ A = [2y/n—
1]. Then

1. G is well-covered;
2. each component of G is well-covered;
3 B=v= [K'_iﬁ] .

Since any maximal independent set is a dominating set, and each vertex
is such a set can dominate at most A + 1 vertices, we have |S]|-(A+1) > n,
for any maximal independent set S in a graph with n vertices. This gives
the following result.

Proposition 3.3 Let G be a graph with n vertices such that § = Fresal
then G is well-covered.
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In the special case that (A + 1)|n, we can classify the graphs with
B=z41
Theorem 3.4 Let G be a graph on n vertices where 8 = z4y. Then
G =pKa41-

Proof: Let D C V(G) be a maximum independent set. Thus D is also
a dominating set where each vertex can dominate at most A + 1 vertices.
Since B (A + 1) = n, each vertex in D must have exactly A + 1 private
neighbours.

Let v € D and let z,y be private neighbours of v. Since G is well
covered, r and y must be adjacent. Otherwise, D U {z,y} — {v} is an
independent set of size 3 + 1.

Thus, for any vertex v € D: v has degree A, N(v) is complete, and v has
no common neighbours with any other vertex in D. That is, G = 8Ka+1.

Corollary 3.5 Let G be a graph on n vertices where §+ A = [2\/n — 1]
and (A +1)|n. Then G = Kaq41-

Corollary 3.6 Let G be a graph on n vertices where n = t2 for some
integer t. Then B+ A = [2y/n — 1] if and only if G = tK,.

Proof: From Proposition 2.1 we know that £%7 + A has a minimum value
of 2y/n —1=2t—1when A=/ —1=t—1 Thus (A+1)n. }

In the proof of Theorem 3.4 we observed that the private neighbours of
any vertex in D must form a clique; otherwise, an independent set of size
|D| + 1 exists. As a consequence we have the following result.

Corollary 3.7 Let G be a well-covered graph. Suppose D is an mazimal
independent set in G. Then D is a dominating set and the private neigh-
bours of each v € D form a clique.

In Theorem 3.4 we observe that a disjoint union of cliques is the only
graph on n vertices with 8 = z%5. If (A +1) [n, it is easy to construct a
graph with 8 = [zf7] by using a disjoint union of cliques. However, the
following result shows it is impossible to classify all graphs with 8 = [zf7]

in terms of forbidden subgraphs.

Theorem 3.8 Let H be a graph. Then there exists a well-covered graph G
such that H is an induced subgraph of G. Moreover, G can be constructed
so that B(G) + A(G) = [2y/n —1].
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Proof: Let H be a graph on p vertices, say {1,2,...,p}. Consider p
copies of K3, each with a vertex labeled 0. Identify vertex 0 in copy i with
vertex i in H, for i = 1,2,...p. We now have a graph on ¢p vertices with
maximum degree A(H) +t — 1. We add to this graph, m disjoint copies
of Ky acsy- Call this graph G. We now have [V(G)| = tp + m(t + A(H)),
A(G) = A(H)+t—1, and B(G) = m+p. We know that 83+A > [2/n—1].
If we find values of ¢ and m such that 8+ A < 2,/n, then we can conclude
that 8+ A = [2y/n — 1]. Fix m and consider ¢ as a real variable. Solving

m+p+A(H)+t—1<2v/tp+m(t+ A(H))
for t gives

m+1+p—A(H)—-2y/m+p—pA(H)
<t< m+1l+p-A(H)+2v/m+p~pA(H)

Clearly, if m > p(A(H) — 1), the solution interval, for ¢, contains integer
values. JJ

We remark that attaching a clique to each vertex of H in the above
proof, ensures the resulting graph is well-covered. Graphs where the pen-
dant edges form a matching play an important role in the study of well-
covered graphs, [3, 6, 7]. (An edge is a pendant edge if it is incident with a
vertex of degree one. Such graphs may be viewed as having a K attatched
to each vertex.)

This section concludes with a catalogue of graphs with 8 = [a47] and
A is small.

Proposition 3.9 Suppose G is a graph on n vertices with § = [z5+].
1. If A =0, then G = BK;.

2. IfA=1,thenG=PKyifnisevenand G=(8-1)K UK, ifn is
odd.

We now classify graph with A = 2. Let A = {2K,,C4, P;} and B =
{C7,C5 U K2}. We delay the proofs our our catalogue theorems until the
end of the paper.

Theorem 3.10 Let G be a graph on n = 3t +r vertices, where t and r are
integers with 0 <r < 3. Suppose A =2 and § = [z55]. Then G is one of
the following graphs:

1. If r =0, then G =tKj.
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F,

Figure 1: The graphs Fy, F3, and F3

2. Ifr=1, thenG =

(a) tK3U K},

(b) (t —1)K3U H, where H € A,
(c¢) (t —2)K3 U H, where H € B, or
(d) (t - 3)K3U2Cs.

3. Ifr=2, then G=tK3UKj5 or (t —1)K3 U Cs.

The catalogue for A = 3 uses the graphs Fj, F», and F3 that appear in
Figure 1. The following generalization of the disjoint union of two graphs
is also used. Observe that K3 U K3 is a well-covered graph with 8 = 2.
Also, if we add any edge zy with z in the first K3 and y in the second,
we still have a well-covered graph with 8 = 2. (Of course we now have
A = 3.) In fact, we can add any subset of a perfect matching between the
two K3’s and retain a well-covered graph with 8 = 2 and A = 3. This idea
is generalized in the following definition.

Defintion 3.11 Let G1,G2, and G be graphs. The r;otation
G1UG2UGs

refers to any graph obtained from the graph
G1UG2UG;

by adding edges between G2 and Gs, under the restriction that A(Gy U
G20 G3) = A(G1 UGy U G3).

203



Theorem 3.12 Suppose G is graph with § = I-AL-H and A = 3. Further
suppose |V (G)| = 4t + r where 0 < r < 4. Then G is one of the following
graphs:

1. Ifr =0, then G =tKj,.

2 Ifr=1, then G =

(a) tK4 U K,
(b) (t-1)K4UK3UK,,
(c) t—1)K,UCs,
(d) (t-2)KsUK; O K30 Ks,
(e) (t—2)K4U K30 F,
) t—2)K4UF;, or
(9) (t—2)K4 U F5,
8 Ifr=2, thenG =

(a) tK4U K,
(b) t-1)K,UK3UKj, or
(c) (¢t - 1)Ks U Fy.

4. If r =3, then G =tK4U K3.

4 TFeasible A, 8 pairs

We conclude the paper with a discussion of solutions to 8+ A = [2/n—1].

Proposition 4.1 Let n be a positive integer. Define t and k such that
n=1t2—k where 0 < k < 2t—1. Then (n,A) is a pair of integers satisfying

n
[A+1.|+A—|'2\/1_;—1'|
if and only if A is an integer with
t—VE—1<A<t+vk-1, when0<k<t

or

- VAT 1-3 SA<t+VAE-DF1-3, whent <k <2%~1
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Proof: Suppose n =2 — k where 0 < k < t. Then (t —0.5)% < n < t? and
we have [2\/n — 1] = 2t — 1. Consequently, we need to solve

n n+A%2+A
2%-1= [A+1]+A— [—m—]

Since the right hand side of this equation has a minimum value (over all
A) of 2/n — 1 > 2t — 2. We reduce our problem to solving

n+A2+A) _ (tz—k+A2+A)

-1>
2 1—( Atl A+l

The solution is
t—-vVEk-1<A<t+Vk-1

The other case is similar. |

Corollary 4.2 Let n be a fized integer. The feasible values of A for any
graph on n vertices with 8 + A = [2y/n — 1] form an interval.

When n = t2 for some integer £, we know from the above proposition
that any 8 + A minimum graph, say G, must have A = ¢t — 1. Thus,
(A 4+ 1)|n and G = tK,. This is precisely a restatement of Corollary 3.6.

Corollary 4.3 Let n =t% — 1 for some integer t, and let G be a graph on
n vertices with B+ A = [2y/n—1]. Then G is one of the following graphs:

o t+1)Kiy

o (t—1)Ke

o (t-1)K, UK,
e K3UCs

Proof: Since n =12 —1, we have t —2 < A < t. (To avoid trivialities, we
assume that ¢t > 1.) If A =t—2 or A =t, then (A +1)|n, and by Corollary
3.5 we have G = (t + 1)K;—; or G = (t — 1)K, 41, respectively.

Now suppose A =t — 1 and let D be a maximum independent set of
G. Consequently, |D| = t. Now each vertex in D has t private neighbours
with the exception of one vertex which has ¢ —1 private neighbours, or t —2
vertices of D have ¢ private neighbours and 2 vertices, say u and v, each
have t — 1 private neighbours and have one common neighbour say z. In
the former case, it follows that G = (¢ — 1)K; U K;_;. We complete the
proof by showing in the latter case, t =3 and G = K3 U Cs.
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First, if £ = 2, then n = 3 and A = 1. Consequently, G = K, U K} =
(t—1)KyUK;_;. Hence t > 3. Now consider S = N[{u,v}]. The subgraph
induced by S must have independence number 2; otherwise, we can find an
independent set of size 3+ 1. The private neighbours of » and v must form
cliques of size t — 1. Thus each member of PN(u,S) can be adjacent to
at most one vertex in S\PN(u,S). Similarly for the members PN (v, S),
they have at most one neighbour in S\PN (v, S). The vertex z can have at
most ¢ — 3 neighbours in N({u,v}). Hence, there is at least one vertex in
PN (u, S), say y, which is not adjacent to z, and there is at least one vertex
in PN (u, S), say z, which is not adjacent to 2. The vertices y and z must
be adjacent to avoid an independent set of size three, namely {z,y, z}. We
claim there can be no other member 3’ € N(u) such that ' € N(z). Such
a vertex y’ gives the independent set {z,y’, z}. (Note that 2 has degree A.)
Similarly, there is no member, other that z, of N(v) which is not adjacent
to z. Since |N(u)UN(v)—{z}| = 2t —4, and z is adjacent to all neighbours
of u and v except y and z, we have 2t —4 — 2 <t — 3. Thus, ¢t < 3 and we
conclude G = K3 U Cs. |

5 Proofs of catalogue theorems

Proof of Theorem 3.10: Suppose G is a graph satisfying the above
hypothesis. Since A =2, G is a union of paths and cycles. If r = 0, then
by Corollary 3.5 G = tK3.

Suppose r = 2. This implies 8 =t + 1. Let D be a maximum indepen-
dent set, (and thus D is a dominating set). Observe that n = 3¢t + 2 and
B-(A+1)=3t+3 =n+1. Two situations can occur. First, there is some
vertex v € D such that v dominates exactly two vertices (itself and one
other) and every other vertex in D dominates exactly three vertices. As
observed above, the private neighbours of each vertex in D form a clique,
ie. G=tK3U Ks.

The second possibility is that each vertex in D dominates exactly three
vertices. Thus some vertex £ € V — D is dominated by two distinct vertices
u and v. Let N(u) = {z,y} and N(v) = {z, z}. The vertices y and z must
be adjacent, otherwise D U {z,y, z} — {u,v} is an independent set of size
B+ 1. Hence G = (t — 1)K3UCs.

Finally suppose r = 1. This implies f=¢t+1and 8- (A+1)=n+2.
Let D be an independent set of size 3. Partition D into D; and Ds.
The vertices in D, each have three private neighbours and D; contains the
remainder of the vertices. Thus, D consists of | D, | copies of K3 and N[Dy]
is K3 free. Since n = 1 mod 3, it must be the case that |D;| = 1 mod 3.
Thus, 1 < |Dy|. Also | D3| < 4. To see this, suppose that |Dy| = k. Thus
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|Di| =t + 1 — k. Each vertex in D, dominates 3 vertices and each vertex
in D, dominates itself, at most one other private neighbour, and at most
one other vertex which is a common neighbour of two vertices in Dy. Thus
|N[D2]| < 2.5k. This gives 3(t+1—k)+2.5k >3t +1and k < 4.

Observe that since D; dominates 3|D; | vertices, D, dominates a total of
3|Dy| —2 vertices. If | Dy| = 1, then N[{D;] = K;. If |Do| = 2, then we must
construct a well covered graph on 4 vertices such that each independent
set has size 2. The possibilities are 2K, Py and Cy4. If |D2| = 3, then
IN[D5]| = 7. The possibilities for N[D;] are C7 and Cs U Ka. (Recall,
N[D,)] is a K3-free union paths and cycles with 8 = 3.) If |Dy| = 4, then
|N[D:]| = 10. The only possibility is 2Cs. |

Proof of Theorem 3.12: Let G be a graph satisfying the hypothesis. If
r =0, then by Corollary 3.5 G = tKj.

Suppose that 7 = 3. Then n is odd and -4 = n+ 1. Thus in any dom-
inating set we have one of two situations: either all vertices have 4 private
neighbours with the exception of one vertex who has 3 private neighbours;
or all but two vertices have 4 private neighbours and the remaining two
vertices have 3 private neighbours and one neighbour in common. We show
that latter cannot occur and thus G = tK4 U K3.

Since n is odd, there is a vertex of even degree. The only possibility
is there exists a vertex u of degree 2. Consider the graph H = G\N{u].
We can add u to any maximal independent set in H, to obtain a maximal
independent set in G of cardinality one larger. Thus H is well covered.
Since H has 4t vertices, S(H) = ¢t and H is well covered, we know that
H = tK,. Hence, N[u] sends no edges to H. Consequently u has three
private neighbours which must form a clique. That is, G = tK4U K3. This
complete 7 = 3.

Now suppose that r = 2. Observe that § =¢t+1and §-4=n+2.
We cannot have 6(G) = 0, for such a vertex would dominate only itself
(in any dominating set) resulting with a dominating set that dominates at
most 4t + 1 = n — 1 vertices. Consider the case 6(G) = 1. Let u be a
vertex of degree 1 and let v be its neighbour. Consider any g3 set of G
containing u. Each vertex other that u must have 4 private neighbours to
ensure 3 -4 = n + 2. Thus each vertex in G\N[u] has degree three. Hence
G =tK4UKos.

We now examine the case §(G) = 2. Consider a vertex u with deg(u) = 2
and let H = G\N|u]. Again H is well covered with 3(H) = f(G)—1. Since
|[V(H)| = 4(t — 1) + 3, we know that H = (t — 1) K4 U K3. Let w,v be the
two neighbours of u. If wv € E(G), then the only possible edges between
H and NJu] are between the two K3’s. Thus G = (t — 1)K; U K30 K3.
On the other hand, if wv & E(G), we consider a (-set, say S, containing
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u. We know that the private neighbours of u form a clique, thus w must
dominated by some z in V(H) N S. Clearly the only vertices in H that
can send edges to N|[u] are in the K3. Let the z,y,z be the vertices of
the K3 in H. Observe the subgraph induced by {y,2,w,v} must have
independence number 2. Otherwise we can remove {z,u} from S and add
the three independent vertices from {y, 2, w, v} to from an independent set
of size B + 1, contrary to the definition of 5. To avoid an independent set
of size three in {y,w,v}, we need one of the edges yw or yv to be present
in G. Similarly, we need one of the zv or 2w to be present. In both cases,
G= (t - 1)K4 U Fy.

Suppose 6(G) = 3. Werecall 3 =t+1 and 48 = n + 2. Since G is
3-regular, any maximum independent set, say .S, must dominate the graph
in such a way that there are two vertices z,y (not in S) such that z and y
are each adjacent to two vertices in S. First consider the case that = and
y are both adjacent to the same two vertices in S, say u,v. Both u and v
have one other neighbour each, say z and 2’ respectively. If zy € E(G),
then z and 2’ cannot have degree 3. It is easy to verify that without loss
of generality, xz and yz' are both edges. Finally, 22’ must be an edge for
G to be 3-regular. In this case G = (t — 1)K4 U K3U K3. Next consider
the case that N(z) NS = {t,u} and N(y) NS = {w,v}. Both ¢ and u
must have two other neighbours, say t’,t" and u’,u”, respectively. Since ¢/
and t” are private neighbours of ¢, they are adjacent. Similarly, v’ and »”
are adjacent. The subgraph induced by {#',t”,z,v',u"} cannot contain an
independent set of size three. However, the vertex z has degree at most one
in this induced subgraph. Without loss of say z is not adjacent to t’,u’, u".
Now this set must have an independent pair of vertices since ¢’ can only
be adjacent to one of u’ or u”, resulting in an independent set of size three
N[{t,u}]. This contradicts the fact that S is a maximum independent set.
This completes the case that  and y do not have a common neighbour in
S.

We conclude with the case that N(z)NS = {u,v} and N(y)NS = {v,w}.
Let T = N({u,v,w}). We have |T| =7 and the subgraph induced by T in
G, say H, has maximum degree 2 and independence number 3. This implies
that H is not bipartite. Both z and y have degree one in H. Thus H consists
of K3U Py or CsU P,. In both cases we get the subgraph of G induced by
N[{u,v,w}] contains an independent set of size 4, a contradiction.

Our final case to consider is r = 1. Thus,n =4t +1and 8 =t +1.
Let u be a vertex of minimum degree. Since n is odd, we have deg(u) < 2.
If deg(u) = 0, then G = tK, U K. If deg(u) = 1, then let H = G\N[u].
Now |V(H)| = 4(t — 1) + 3. Hence H = (t — 1)K4 U K3. We have G =
(t - 1)K4 U K3 0 K,.

Suppose deg(u) = 2. Again let H = G\N[u]. We have |V(H)| =
4(t — 1) + 2. Let N(u) = {z,y}. First assume zy € E(G). We consider all
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possibilities for H. If H = (t — 1)K4 U K>, then G = (t — 1)K, U K3U K.
If H= (t - 2)K4 U K3 0K3, then G = (t - 2)K4 UK; CJK;; OK;;. Finally,
if H=(t—2)K4U Fy, then G = (t — 2)K4U K3 U Fy.

We now consider the case 2y ¢ E(G). Begin by assuming that H =
(t —1)K4U Ks. Let w be a vertex in the K> component in H, and let
S = N[{u,w}]. We have |S| = 5 and the subgraph in G induced by S is
well covered with independence number 2. If this subgraph is triangle free,
then it must be Cs. If it contains a triangle then it must be K3 U Ko.

Next consider H = (t — 2)K; U K3 U K3. Let the two K3s have vertex
sets {w;,ws,ws} and {v;,v2,v3}. Let § = N[{u,w;,v1}]. Observe that
the subgraph induced by S is well covered and has independence number
three. If any w; or v; (¢ = 1,2,3) has degree two, then we can apply
the case above (zy € F(G)) with this degree 2 vertex equal to u. Thus
assume all vertices in the two triangles have degree three. Since the private
neighbours of u form a clique, we must have z adjacent to a vertex of the
triangles, say w;. If y is not adjacent to any vertex in {v;,v2,vs}, then
each of z,ws, and w; must be adjacent to some v; to ensure each v; has
degree 3. At this point y is only adjacent to u and every other vertex
in G has degree 3. This contradicts our assumption that » has minimum
degree. Hence suppose without loss of generality that yv; € F(G). We may
also assume that vow, € E(G); otherwise, only = and y can send edges to
{v2, we,v3, ws}. The latter implies we have a vertex in this set with degree
less than three. Consider vs3. If vsws € E(G), then {v3, ws,z,y} forms
an independent set of size four, a contradiction. If vsy € E(G), then we
must have w3z € E(G). Thus G = (k — 2)K4 U F». If vgz € E(G), then
w3y € E(G) and G = (k — 2)K4 U F3.

We conclude with the case that H = (¢t — 2)K4 U F;. The graph F}
contains two nonadjacent vertices of degree three, say r and s. The set
z,y,r, s forms an independent set of size four, implying that G contains an
independent set of size ¢t + 2. This is impossible. This completes the proof.
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