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1 Introduction

We consider finite undirected multigraph without loops. Let G be a graph
and let V(G) and E(G) be the set of vertices and edges of G, respectively.
A(G) denotes the edge-connectivity of G. We allow repetition of vertices
(but not edges) in a path or cycle. k is a natural number. When k is fixed
and A(G) > k, we call a path (or cycle) P 2-reducible if \(G—-E(P)) > k-2.

Let k (> 5) is odd, A(G) > k, T = {u,v,s,t} C V(G) and let {uv =
f,vs} C E(G). It is known that there is a 2-reducible s, t-path containing f
([5]). We here prove that there are distinct edges g; # f (1 <7 < (k—1)/2)
incident to u such that there is a 2-reducible s, ¢-path P; containing f and
gi- The result is useful to give a sufficient condition for existence of a
2-reducible s, -path containing a given edge incident to u ([8]).

Let X, Y, {z} CV(G), XNY =0 and F, {f} C E(G). We often
denote {z} by z, X U {z} by X + z and FU {f} by F + f. We denote
by 9(X,Y;G) the set of edges with one end in X and the other in Y,
and define 8(X; G) := 8(X,V(G) — X;G), e(X,Y; Q) := |8(X,Y;G)| and
e(X; Q) := |0(X; G)|- We denote A(X,Y;G) the maximal number of edge-
disjoint paths between X and Y. We set A(X;G) := z;rényiélx Az, y;G) (note

that A(G) = A(V(G); G)). In such expressions we often omit G.
Our result is the following.

THEOREM 1 Ifk > 5 is odd, V(G) = WUS, WNS =0, \(W) >k,
each vertez in S has even degree, T = {u,v,s,t} C W, fi € 9(u,v),
f2 € 8(v, 3) and either |T| = 4 or |T| = 3 and s = t, then there are distinct
9i (1<i<(k—1)/2) in 8(u)— f1, such that for 1 <i < (k—1)/2, G has a
path P; between s and t containing f and g; with \(W;G - E(F;)) > k-2.
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For X C V(G), G/X denotes the graph obtained from G by identi-
fying all the vertices in X and deleting any resulting loops. In G/X, X
denotes the corresponding new vertex, each z € X is denoted by X and for
Y CV(G) with Y NX # 0, Y denotes (Y — X)U {X}. For z,y € V(G),
we write P = P[z,y] to denote that P is a path between z and y, and
we denote by P(a,b) a subpath of P between a and b for a,b € V(P).
G — E(P) is often denoted by G — P. We often write z € Por f € P
instead of z € V(P) or f € E(P), respectively. We sometimes give a path
by the edge set. If |X| > 2, | X |> 2 and e(X) =k, we call X and 8(X) a
k-set and a k-cut respectively. For a,b € N(z) with a # b (a = b, respec-
tively) and for f € 8(z,a) and g € 8(z,b) — f, G&* and G/ denotes the
graph (V(G), (E(G) + h) — {f,9}), (V(G), E(G) - {f,g}), respectively),
and is called a lifting of G at z, where h is a new edge between a and
b. We call G/9 admissible if for each y # z € V(G) — z, AMy,2;G9) =
My, 2;G). For K C V(G) U E(G), we define P(G,s,t,K,X):={P| P =
P[s,t] is a path in G containing K such that M(X;G — E(P)) > k — 2} and
we define P(G, s,t, K) := P(G, s,t, K,W), where W = {z € V(G) | e(z) >
k}. Weset X := V(G)— X and set N(X;G) := {a € V(G)- X | e(a,X) >
0}. We say that S C V(G) is dummy, if (1.1) below holds.

(1.1) S =0,{b}, or {b,b'},e(t') =k —1,e(b,b') < e(b)/2, and 2 < e(b) <
k—1 is even.

2  Preliminaries
We prepare some lemmas. Lemma 1 is obvious

LEMMA 1 If {z,y} CX C V(G), z € X, e(X) =k, and e(2, X;G) =k,
then M\(z,y;G/X) = Mz, y; G).

LEMMA 2 (Mader [2] and Frank [1}) Ifz € V(G), 3 # e(z) = k (k =2a
or 2a + 1) and there is no cut-edge incident to x, then there are distinct
edges {f1, s far 91, **,9a} € O(z) such that G/9 (1 < i< a)are
admissible.

LEMMA 3 (Mader [3])

(1) If X(G) > 2, u € V(G), and {f1, f2} C O(u), then there is a cycle C
containing fi and fo such that for each z # y € V(G), M=z,y;G —
E(C)) 2 Xz, y:G) - 2.

2) IFAG) >2, {s,t} CW CV(G), \(W) >k >4 and f € (s), then
there is a path P € P(G, s,t, f,W) such that A\(s,t; G—E(P)) > k—1.
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LEMMA 4 (Lemma 5 in [6] and [7]) If k¥ > 3 is odd, V(G) = X UY,
XY =0, e(X) = k+1, W C V(G), WNX # 0 £ WY, A\(W;G/X) > k,
MW;G/Y) > k, each vertex in W has even degree and for some z € X,
Az, Y) =k +1, then \(W;G) > k.

LEMMA 5 Ifk is odd, S is dummy, W =V (G) - S, \(W) > &k, V(G) =
XUY,XnNY =0,e(X)<k+1L,XNW#P£YNW,zeW,yeYNW
and Py[z,y] is a path in G/X such that \(W;G/X — E(P,)) > k—2, then
one of the following holds.

(1) G has a path Plz,y| such that P/X = P, and A\(W;G—E(P)) > k-2.
(2) e(X)=k+1landz e X.

(3) e(X)=k+1, z €Y and there are X; and X, so that X = X; U Xs,
XiNXy =0, e(X1) = e(X2) =k and either E(P)N&(X) =0 or
[E(P)NA(X)| =1 (i=1,2).

Proof. Assume that (1) and (2) do not hold.

Case 1. z € X.

e(X) = k (otherwise (2) occurs). Let g € E(P;) N 8(X). By Lemma
3 (2), there is a path P, € P(G/Y,Y,z,g) such that A(Y,z;G/Y — P;) =
k-1 Let P:= PLUP, in G. By Lemma 4 with k — 2 instead of k,
A(W;G — P) > k — 2 and (1) holds, a contradiction.
Case 2. z €Y.

Let Gy := G + h, where h is a new edge between z and y. Let C be a
cycle in G1/X with Cy = P, + h. By Corollary 6 in [7], (3) follows.

LEMMA 6 (Theorem 1.1in [5]) Ifk > 5 is odd, \(G) > k, T = {u,v,s,t} C
V(G), |T|=4, f € 8(v,s), g € 8(v,u) ande(X) > k+1 for each X C V(G)
with X NT = {s,u}, then P(G, s,t,{f,9}) #0.

LEMMA 7 Suppose that k > 3 is odd, S is dummy, W =V(G) - S, Z =
{z1,22} C W, e(z1) = e(z2) = k, e(z1,22) = (k—1)/2 and \(W/Z) > k.
Then

(1) If for some X C V(G) — 2 with X NW # 0, e(X) < k-1, then
z1 € X, N(z2)NX ={z1} and N(z1) N X = {z2}.

(2) If N(z1) N N(z2) # 0, then A(W) > k.

Proof. (1) z; € X since A(W/Z) > k. If there is y € N(z2) N X — x;, then
e(z2,X) > (k+1)/2 and e(X) > e(X + z2) +1 > k + 1, a contradiction.
Thus N(z2) N X = z;. Similerly N(z1) N X = z,.

(2) K thereis y € N(z1)NN(z2), then foreach Y C V(G)—=, withz, € Y,
either y € N(z2) NY or y € N(z;) NY, and so by (1), e(Y) > k. Thus
A(W) > k.

213



3 Proof of Theorem 1

In this section, let a := (k — 1)/2, F(G) = F(G,s,t) = F(G,s,t, fi) :=
{9 € a(u) -fl l P(G7satv{f1’9}) '-lé 0}1 for g€ F(G,S,t,fl), let I(G)g) =
I(G,s,t,g) := {P € P(G,s,t,{f1,9}) | P has no repeated vertices} and
let P(G,K) :=P(G,s,t,K). If z € W and e(z) > k+2, then by Lemma 2
for some g,h € 8(z) — {f1, f2}, G?" is admissible. If |[F(G9")| > a, then
|F(G)| > a and therefore we may assume

(3.1)e(z)=kork+1 foreachzeW.
(3.2) e(z) =k for each z € W — {u,v}.

Proof. Hz € W — {u,v}, e(z) =k +1 and 9(z) = {g1,---,gr+1}, then we
replace z and 8(z) by the graph in Figure 1, in which heavy edges represent
a = (k—1)/2 parallal edges, producing a new graph G’. If the result holds
in G', then it also holds in G.

Figure 1

A minimal counterexample G of Theorem 1 with the additional condi-
tions (3.1) and (3.2) is considered.

(3.3) If g € F(G), then I(G,g) # 0.

Proof. We choose P € P(G,{f1,9}) with minimal |R(P)|, where R(P)=
{repeated vertices in P}. Assume I(G,g) = @, then there is z € R(P). By
(3.1) and (3.2), € S. There are edge-disjoint paths P;[u,s] and P[u,t]
in P. For i = 1,2, if P; has a repeated vertex, then we can take simple
subpath of P; instead of P;. Thus P, and P, are simple. If g € P,, then
PoU{f1,f2} € I(G,g), and so g € P, and f; € P». Since z € V(P;) N
V(Pz), let P3 := {fz,fl}Upl (u, $)UP2(27, t). Then P; € P(G, {fl,g}) and
|R(P3)| < |R(P)| — 1, contrary to the minimality of |R(P)|.
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(3.4)|T|=4
Proof. Otherwise s = ¢ and by Theorem 9 in [7], |F(G)| > .
(3.5) S=0.

Proof. If there is z € S, then |F(G.)| > a for an admissible lifting G, of
G at = (see Lemma 2) and so |F(G)| > a.

(3.6) If X is a k-set, then X NT = {u,v} or {s,t}.

Proof. Case 1. | XNT|< 1.
|F(G/X,s,t)| > a. Let g € F(G/X) and let P, € I(G/X,g). By Lemma
5, there is P € P(G,{f1,9}) such that P/X = P;. If XNT # u then
9 € F(G). Thus let XNT =u. If F(G/X) C 8(u), then F(G/X) C F(G)
and if otherwise there is g € F(G/X) N d(z) for some z € X —u. By (3.4),
|F(G/X,z,z, )| > a, and thus |F(G)| > a.

Case 2. [ XNT|=2.
Let XNT = {u, s} or {u,t}. We choose minimal X. Let K := 8(u, X —u).
K| > e(u)/2 > a, since e(X — u) > k = e(X). For each g € K, by (3.5)
and Lemma 6, there is P, € ’P(G’/X X, 38,{f1,9}) since X is minimal if
X NT = {u,s} and there is P, € P(G/X,X,t,{f1,9}) f XNT = {u,t}.
By Lemma 5, there is P € P(G, s,t,{f1,9}) such that P/X = P,.

(8.7) If X is a k-set and X N T = {s,t}, then X = {s,t,x} for some
zeW-T.

Proof. Otherwise |X| > 4 by (3.2). Let X; := X, X, = X, (X)) =
{h1,h2,...,he}, hy = fo and let V(h;)N X =sfor 1 <i<rand # s for
r+1<i 5 k. We construct new graph G; as follows.

V(G1) = X1 U {s,t,z}, G1/{s,t,x} = G/ X,,

V(h;Gi)N{s,t,z} =s (1 <i<r), =tr+1<i<r+a),=
z(r+a+1<i<k),

e(s,t;G1) =k — (r + a), e(s,z;G1) = « and e(t,z;G1) = .
Then A(G1) > k and by the minimality of G, |F(G1)| > a. Let g € F(G,),
P, € I(G1,9) and let E(P,) N3(X,) = {h;, h;} fori < j.
(3.7.1) We can choose P, such thati <r.

Proof. Otherwise h; € 8(t; G1) and h; € 8(z;G,). If P,(u,z) contains f,,
then we take {fi, fo} U Pi(u,t) instead of P, and if P;(u,z) contains g,
then we take {f2, f1,h} U P,(u,z) instead of P;, where h € 8(z,t; G,).
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By (3.7.1), (3.6) and Lemma 6, there is P, € P(G/Xy,s,t, {hi, hj}).
Let P be a path in G with P/X; = P, and with P/X; = P>. Then
P € P(G,{f1,9}) and we have |F(G)| > a, a contradiction. Thus |X5| = 3.

(3.8) If X is a (k + 1)-set with X NT = v, then for somez € W, X =
{v,z}, e(v) = k and e(v,z) = .

Proof. Let g € F(G/X) — F(G) and let P, € I(G/X,g). Then P, can not
be extended to a path in I(G, g). By Lemma 5 and (3.6), (3.8) follows.

(3.9) 8(u, {s,t}) C F(G)-

Proof. If g € 8(u,t), then {f2, f1,9} € I(G, g) by (3.6). If g € 9(u, s), then
by Lemma 6, P(G, {f1,9}) # 0, and so g € F(G).

(3.10) If X is a (k+1)-set and XNT = {u, v}, then either 8(u, X) C F(G)
or X = {u,v} and e(u) = e(v) = k.

Proof. Assume that there is g € 8(u, X) — F(G). Let V(g9) N X = z. By
(3.9), = # s,t. By Lemma 6 and (3.6), there is P, € P(G/X,{f2,9})-
P, can not be extended to a path in P(G, {f2,9}). Thus by Lemma 5,
X = {u,v} and e(u) = e(v) = k.

(3.11) If z € V(G) — {s,v,u} and h € 3(z,v) then h is contained in no
k-cut.

Proof. Assume that there is a k-set X with h € §(X). By (3.6) and (3.7),
say X = {s,t,2z} wherez =t or z. |F(G/X,X,X,fi)] > a. Let g €
F(G/X,X,X, f1). We can choose P, € I(G/X, X, X, g) such that f; € P;.
Let {f2,1} = 8(X)NE(P,) and let y € V(g) N X. If y # s, then there is
P € I(G, s,t,g) such that P/X = P,. Wheny = s, (P,— f)U{h} € I(G,g)
ifz=tand (P, — f2)U{h,h1} € I(G,g) for h; € 8(2,t) if z = 2. Hence
g€ F(G) and | F(G) |> a.

(3.12) Ife(v) =k +1, then N(v) =T — .

Proof. Otherwise for some z € T, there is h € 8(v,z). By (3.11), A(W —
z,G - h) > k and |F(G — h)| > a, and thus |F(G)| > a.

(3.13) e(u) = k.

Proof. Otherwise e(u) = k+1 by (3.1). If N(u) C T, then e(u, {s,t}) > a,
contrary to (3.9). Thus there is g € d(u,z) for some z € W - T. If
MW —2,G~-g) >k, then |F(G —g)| > a, and so |F(G)| > a. Thus and
by (3.7), {s,t,z} is a k-set. Let h € d(z,t). {f2, f1,9,h} € I(G,g), and so
g € F(G). Hence 8(u) — d(u,v) C F(G), contrary to |F(G)| < a.
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(3.14) If {z1,22} CW —T, h € 3(z1,22) and h is contained in no k-cut,
then

(i) e(z1,72) = q,
(ii) F(G - h) - F(G) #0,

(iii) for each g € F(G — h) — F(G), G — h has paths Py[v,s] and P;[v,t]
so that {f1,9} C E(P), V(A)NV(P) = {v}, for (r,s) = (1,2) or
(271)1 z, € Ply z, € P2 and ’\(W - {z11x2};G ~h- E(Pl UPz)) =
k-2,

(iv) for path P* := {f2,h} U Pi(v,z,) U P2(z,,t) in G and for some Z C
V(G)=V(Py(s,2,)) with V(Ps(v,2,)) C Z, e(Z;G— E(P*)) = k—3.

Proof. In G—h, let S’ := {z,,z.} and let W' = W —{z;,2.}. |F(G-h)| >
a and |F(G)| < a and thus (ii) follows. Let g € F(G — h) — F(G). By
(3.3), we choose P € I(G—h, g) with minimal length. Let P; := P(v, s) and
P, := P(v,t). e({z1,22};G — P) < k — 3, otherwise P € I(G, g), contrary
to g ¢ F(G). Thus e(z1,z2) = a and {z1,z2} C V(P). If {z,,22} C P;
(=1 or 2), then we can replace P;(z;,z2) by hy € 9(z1,z2; G—h), contrary
to the minimality of P. Thus z, € P, z, € P; for (r,8) = (1,2) or (2,1).
Then f; ¢ P, {fi,9} C P and thus (iii) follows. For P* given in (iv),
A(G - P*) = k - 3, thus (iv) easily follows.

We denote by Q(21,22) the set of (g, P, P2, P*, Z) given in(3.14).

(3.15) If {z1,z2.23,24} C W — T, h € 8(x2,23), h is contained in no
k-cut and e(z;,zi41) = a (1 < i < 3), then for (i,5) = (2,3) or (3,2),
N(z;)NT =0, {u}, or {s} and N(z;) NT =0, {v}, or {t}.

Proof. By (3.14), there is (g, P, P», P*, Z) € Q(z2,23). For (i,7) = (2,3)
or (3,2), z; € P, and z; € P;. Then N(z;)NT = 0, {u}, or {s} and
N(z,)NT =0, {v}, or {t}.

(3.16) (A) If X is a minimal k-set with X NT = {v,u}, then for {z1,22} C
X —T, e(z,2) =0.

(B) If G has no k-set, then for {z1,22} C W —T, e(z1,22) = 0.

Proof. We shall prove (A) and (B) simultaneously. Assume that e(z;,z2) >
0. In (A), let X; := X and X, := X, then X, = {s,t,y} for somey € W
by (3.7). In (B), let X; := V(G) — {s,t} and X, := {s,t}. Let D be the
component of G — (X, UT) containing 2; and let V(D) = {z1,%2,...,Zn}.
n > 2 by {z1,22} C V(D). By (3.14), we may let e(z;,zi11) = a (1 £
i <n-—1). Forsome 1l < r < n—1, we choose (g,P,,P»,P*,Z) €
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Q(zy, Tr+1) such that P, U P, has the minimal length in G/ X,. In (A), we
can choose Z in X, otherwise A(G — P*) > k —2. Let Tp := X2 — s and
let hg € P*NO(V(D),To). E(P*/X2) C {f2, f1,9} U E(D) U {ho}. Since
e(Z;G — P*) <k-3=2a-2 and e(z;,zi41) = a, we have

(3.16.1) |P* N E(D)N3(Z)| < 2 and if the equlity holds 8(Z;G — P*) C
E(D).

(3.16.2) V(P) N X2 = {s}.

Proof. Otherwise V(P;)NX, = {y} and (A) occurs. For h € 8(y,t), {f2, R}U
P, (v,y) € I(G, g), a contradiction.

For some {y1,...,¥p} C V(D), we may let V(P*)NX, = {v,u,41,.--,¥p}
(in this order in P*). e(y;,Tp) = 0 for 1 < i < p— 1 by the minimality of
PLUP;. Let h, € P,nd(s, V(D)) (see (3.16.2)) and let hy € P,Nd(v, V(D)).
By (iv) in (3.14) we have V' (h;) C Z and V' (h;) C Z.

Case 1. |P*NE(D)N3(Z)| = 2.

First we consider the case that y, ¢ Z. |0(Z2) N {f1,9}| = 1 and
ZNnV(D) C P*. Let ZNnV(D) = {y1,Yi+15---,Ym}. Then {z,,z,11} =
{yi-1, 1} and ke € O8(v,y1). N(ZNV(D);G - P*) = {y1—1,¥m+1} C Z
by (3.16.1). Since e(y;;Z — V(D)) =1 (1 <£i £ m), |ZNnV(D)| =
e(Z — V(D);G — P*) > k-2 > 3. By (3.15) and e({y1,--.9p-1},To) =
0, e(y,+1,u) = e(yi42,v) = 1. Then for hz € 3('0,3/“.2), Pu {h3} U
Py(y142,t) € I(G,g), a contradiction. Next we consider the case that
v1 € 2. ZNV(D) C P*. Let ZNV(D) = {y1,Y141,---,Ym}- Then
hy € 8(s,9m). Since e(¥:,ZNV(D)) = 1(l <i < m),|ZNV(D)| =
e(ZUV(D);G—P*) > k—2 > 3. By (3.15) and e({y1,...,¥p—1},To) =0,
e(Ym—-1,v) =1, contrary tov € Z.

Case 2. |P*NE(D)NJ(Z)| =1.

For some 1 < I < p—1, there is h € P* N Ay, mi4+1) N I(Z). We
may let 3 = z, and yi41 = Zr41. By Pi(s,z,) C Z, {21,--,2,} C Z
and {Z,41,*-,Zn} C Z. Since |8(Z2) N {fi,g}| = 1, we have t ¢ Z,
[d(Z) N P*| = 4 and e(Z) = k + 1. By (3.10) and g ¢ F(G), we have
u € Z. Then by (3.8), Z = {v,z,}, e(v) = k, e(v,z,) =, 7+1=1n
and e(z,,Tp) = 1. If n > 3, then by the same argument for {z,—1,Zn—2}
instead of {2, %r+1}, we have n —2 =1 and e(v,z,) = a, a contradiction.
Thus n = 2 and h; € 9(s,2,).

It is easy to see (3.16.3) and we have (3.16.4) by (3.9).
(3.16.3) e(v,To) = e(z1,Tp) = 0.
(3.16.4) e(u, X2) < a .
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Ife(u, {v,z:}) > a+2, then e({z,, Z2,v,u}) < e({z1,22,v}) -3 = k-1,
a contradiction. Thus we have

(3.16.5) e(u, {v,z;}) <a+1.

By (3.16.4) and (3.16.5), e(u,z3) > 0 for some z3 € X; — {u,v,z1,z2}.
If |X;| = 5, then e(X;) = k by the parity. N(z3;G/X3) = {u,v,X,}. By
e(To,z2) = 1 and (3.16.3), e(To, {u,z3}) > a. By (3.16.4), e(Tp,z3) > 0.
Then d(u,z3) C F(G). e(u, X2 + z3) = k — e(u, {v,71}) > a by (3.16.5),
contrary to |F(G)| < a. If |X,| > 6, say z4 € X — {v,u,z1,%2,23}. If
e(z3,z4) > 0, then by the same argument, e(v,z;) = a (i =3o0rd), a
contradiction. Thus e(z3,z4) = 0. e(TUX?) < 3k —4if e(X;) = k, and so
G has no k-set. Since e(T") < 4k — 4, we have | X;| = 6. O(u,x;) — F(G) #
@ (=3 or 4), otherwise |F(G)| > a by (3.16.5), say for i = 3. Then
e(.’l:;;,t) =0and N(z3) =T —t. Let g4 € 9(u,x3), go € O(z3,8), hs €
6(1),:172), ho € B(zz,t) and let P := {gz,gl,fl,hz,ho}. Since g; ¢ F(G),
e(Y;G—P) <k-2forsomeY C V(G) —s. If {g1,92} C 8(Y), then
e(Y) > e(Y —z3) +3 > k + 3 since e(z3,v) < a and N(z3) = T - ¢.
Thus (Y)NE(P)=E(P)-g; (i=1or2)ande(Y)=k+1. 2, €Y,
otherwise N(z;) CY. e(Y) = e(Y —x3) +1, and so e(Y —z3) = k, contray
to {u,z:} C Y — z3. Now (3.16) is proved.

By (39), W =T #0. Let W — T = {21,---,zn}. By (3.7), (3.16) and
e(T) <4k —4,n < 3. First let n = 1 or 3, then e(v) = k+ 1 by the parity.
By (3.12), N(v) = T —v. Then N(z;) =T —v (1 < i < n) and thus
n = 1. Then d(u,z,) C F(G), contrary to |F(G)| < a. Next let n = 2,
then e(v) = k. If G has a k-set, let X, = {u,v,2;}, X5 = {s,t,22} and
e(X1) = e(X3) = k. e(u,X2) < «a since d(u, X)) C F(G) by (3.9), and
so e(v,z;) = e(u, X2) < a. If e(z,,X2 — 8) > 0, then 8(u,z;) C F(G), a
contradiction. Thus e(z;, X2) = e(z1,s). Then e(v, {z2,t}) >0by a+1 <
e({z2,t}, X1) = e({z2, t}, {v,u}) and it easily follows that d(u,z;) C F(G),
contrary to |F(G)| < a. Thus G has no k-set.

Cuse 1. e(v, 1) = a.

Since |F(G/{v,z:1})| > a, there is g € F(G/{v,z1}) — F(G). Let P €
I(G/{v,z:1},9). Then there is h € 8(v,z1) NP and A(G — P) < k—2. By
(3.9), g € 8(u,z2). V(P) is {s,z2,u,v,21,t} in this order and e(v,t) = 0.
By e(v,5;G — P) = e(v,s) > 0 and Lemma 7(2), e(z;,s) = 0. Then
N(z1) =T —s. For some X C V(G) — v, e(X;G - P) = k — 3. Since
e(u,z;) < a (otherwise e({u,v,2,}) < k)), e(z1,t) > 2 and e(z,,G —
P) > 0. By Lemma 7(1), {z1,u,t} C X and s € X. Then |3(X)NP| =3,
contrary to e(X;G — P) = k- 3.

Case 2. e(v,z;) < a (i=1,2).
By (3.9), for i = 1or 2, e(u,z;) > 0 and 8(u,z;) — F(G) # 0, say
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for i = 1. Then e(z;,t) = 0 and N(z;,) = T —t. Then e(v,t) = 0 and
N(t) = {u,8,z2}. Since d(u,z2) C F(G) and by (3.9), we have

(3.17) e(u, {v,z:}) > o+ 2.

e(v,z2) > 0, otherwise {u,s} is a separating set, a contradiction. Let
hy € 8(s,z1), g € 8(z1,u), ha € O(v,z2), h3 € I(z2,t) and let P :=
{h1, 9, f1,h2,h3}. Since g ¢ F(G), for some X C V(G) -z, e(X;G—P) <
k-2 If {9, fi} C 8(X), then by (3.17), e(X) > e(X —u)+3>k+3,a
contradiction. Thus E(P)N&(X) = E(P)—gor E(P)— f; and e(X) = k+1.
Since | X| is even, X = {z1,z2}, a contradiction. This completes the proof
of Theorem 1.
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