2-Reducible paths containing a specified edge in (2k + 1)-edge-connected graphs

Haruko Okamura

Department of Information Science and Systems Engineering Konan University, Okamoto Kobe 658-8501, Japan okamura@center.konan-u.ac.jp

1 Introduction

We consider finite undirected multigraph without loops. Let G be a graph and let V(G) and E(G) be the set of vertices and edges of G, respectively. $\lambda(G)$ denotes the edge-connectivity of G. We allow repetition of vertices (but not edges) in a path or cycle. k is a natural number. When k is fixed and $\lambda(G) \geq k$, we call a path (or cycle) P 2-reducible if $\lambda(G-E(P)) \geq k-2$.

Let $k \geq 5$ is odd, $\lambda(G) \geq k$, $T = \{u, v, s, t\} \subseteq V(G)$ and let $\{uv = f, vs\} \subseteq E(G)$. It is known that there is a 2-reducible s, t-path containing f ([5]). We here prove that there are distinct edges $g_i \neq f$ $(1 \leq i \leq (k-1)/2)$ incident to u such that there is a 2-reducible s, t-path P_i containing f and g_i . The result is useful to give a sufficient condition for existence of a 2-reducible s, t-path containing a given edge incident to u ([8]).

Let $X, Y, \{x\} \subseteq V(G), X \cap Y = \emptyset$ and $F, \{f\} \subseteq E(G)$. We often denote $\{x\}$ by $x, X \cup \{x\}$ by X + x and $F \cup \{f\}$ by F + f. We denote by $\partial(X,Y;G)$ the set of edges with one end in X and the other in Y, and define $\partial(X;G) := \partial(X,V(G) - X;G)$, $e(X,Y;G) := |\partial(X,Y;G)|$ and $e(X;G) := |\partial(X;G)|$. We denote $\lambda(X,Y;G)$ the maximal number of edge-disjoint paths between X and Y. We set $\lambda(X;G) := \min_{x \neq y \in X} \lambda(x,y;G)$ (note that $\lambda(G) = \lambda(V(G);G)$). In such expressions we often omit G.

Our result is the following.

THEOREM 1 If $k \geq 5$ is odd, $V(G) = W \cup S$, $W \cap S = \emptyset$, $\lambda(W) \geq k$, each vertex in S has even degree, $T = \{u, v, s, t\} \subseteq W$, $f_1 \in \partial(u, v)$, $f_2 \in \partial(v, s)$ and either |T| = 4 or |T| = 3 and s = t, then there are distinct g_i $(1 \leq i \leq (k-1)/2)$ in $\partial(u) - f_1$, such that for $1 \leq i \leq (k-1)/2$, G has a path P_i between s and t containing f_1 and g_i with $\lambda(W; G - E(P_i)) \geq k - 2$.

For $X \subseteq V(G)$, G/X denotes the graph obtained from G by identifying all the vertices in X and deleting any resulting loops. In G/X, Xdenotes the corresponding new vertex, each $x \in X$ is denoted by X and for $Y \subseteq V(G)$ with $Y \cap X \neq \emptyset$, Y denotes $(Y - X) \cup \{X\}$. For $x, y \in V(G)$, we write P = P[x, y] to denote that P is a path between x and y, and we denote by P(a, b) a subpath of P between a and b for $a, b \in V(P)$. G - E(P) is often denoted by G - P. We often write $x \in P$ or $f \in P$ instead of $x \in V(P)$ or $f \in E(P)$, respectively. We sometimes give a path by the edge set. If $|X| \ge 2$, $|\overline{X}| \ge 2$ and e(X) = k, we call X and $\partial(X)$ a k-set and a k-cut respectively. For $a, b \in N(x)$ with $a \neq b$ (a = b, respectively) and for $f \in \partial(x,a)$ and $g \in \partial(x,b) - f$, $G_x^{a,b}$ and $G^{f,g}$ denotes the graph $(V(G), (E(G) + h) - \{f,g\}), ((V(G), E(G) - \{f,g\}), \text{ respectively}),$ and is called a lifting of G at x, where h is a new edge between a and b. We call $G^{f,g}$ admissible if for each $y \neq z \in V(G) - x$, $\lambda(y,z;G^{f,g}) =$ $\lambda(y,z;G)$. For $K\subseteq V(G)\cup E(G)$, we define $\mathcal{P}(G,s,t,K,X):=\{P\mid P=0\}$ P[s,t] is a path in G containing K such that $\lambda(X;G-E(P)) \geq k-2$ and we define $\mathcal{P}(G, s, t, K) := \mathcal{P}(G, s, t, K, W)$, where $W = \{x \in V(G) \mid e(x) \geq x\}$ k. We set $\overline{X} := V(G) - X$ and set $N(X; G) := \{a \in V(G) - X \mid e(a, X) > a\}$ 0). We say that $S \subseteq V(G)$ is dummy, if (1.1) below holds.

(1.1) $S = \emptyset$, $\{b\}$, or $\{b,b'\}$, e(b') = k-1, $e(b,b') \le e(b)/2$, and $2 \le e(b) \le k-1$ is even.

2 Preliminaries

We prepare some lemmas. Lemma 1 is obvious

LEMMA 1 If $\{x,y\} \subseteq X \subseteq V(G)$, $z \in \overline{X}$, e(X) = k, and e(z,X;G) = k, then $\lambda(x,y;G/\overline{X}) = \lambda(x,y;G)$.

LEMMA 2 (Mader [2] and Frank [1]) If $x \in V(G)$, $3 \neq e(x) = k$ ($k = 2\alpha$ or $2\alpha + 1$) and there is no cut-edge incident to x, then there are distinct edges $\{f_1, \dots, f_{\alpha}, g_1, \dots, g_{\alpha}\} \subseteq \partial(x)$ such that G^{f_i, g_i} $(1 \leq i \leq \alpha)$ are admissible.

LEMMA 3 (Mader [3])

- (1) If $\lambda(G) \geq 2$, $u \in V(G)$, and $\{f_1, f_2\} \subseteq \partial(u)$, then there is a cycle C containing f_1 and f_2 such that for each $x \neq y \in V(G)$, $\lambda(x, y; G E(C)) \geq \lambda(x, y; G) 2$.
- (2) If $\lambda(G) \geq 2$, $\{s,t\} \subseteq W \subseteq V(G)$, $\lambda(W) \geq k \geq 4$ and $f \in \partial(s)$, then there is a path $P \in \mathcal{P}(G,s,t,f,W)$ such that $\lambda(s,t;G-E(P)) \geq k-1$.

LEMMA 4 (Lemma 5 in [6] and [7]) If $k \geq 3$ is odd, $V(G) = X \cup Y$, $X \cap Y = \emptyset$, e(X) = k+1, $W \subseteq V(G)$, $W \cap X \neq \emptyset \neq W \cap Y$, $\lambda(W; G/X) \geq k$, $\lambda(W; G/Y) \geq k$, each vertex in \overline{W} has even degree and for some $x \in X$, $\lambda(x,Y) = k+1$, then $\lambda(W;G) \geq k$.

LEMMA 5 If k is odd, S is dummy, W = V(G) - S, $\lambda(W) \ge k$, $V(G) = X \cup Y$, $X \cap Y = \emptyset$, $e(X) \le k+1$, $X \cap W \ne \emptyset \ne Y \cap W$, $x \in W$, $y \in Y \cap W$ and $P_1[x,y]$ is a path in G/X such that $\lambda(W; G/X - E(P_1)) \ge k-2$, then one of the following holds.

- (1) G has a path P[x,y] such that $P/X = P_1$ and $\lambda(W; G-E(P)) > k-2$.
- (2) $e(X) = k + 1 \text{ and } x \in X$.
- (3) e(X) = k + 1, $x \in Y$ and there are X_1 and X_2 so that $X = X_1 \cup X_2$, $X_1 \cap X_2 = \emptyset$, $e(X_1) = e(X_2) = k$ and either $E(P_1) \cap \partial(X) = \emptyset$ or $|E(P_1) \cap \partial(X_i)| = 1$ (i = 1, 2).

Proof. Assume that (1) and (2) do not hold.

Case 1. $x \in X$.

e(X)=k (otherwise (2) occurs). Let $g \in E(P_1) \cap \partial(X)$. By Lemma 3 (2), there is a path $P_2 \in \mathcal{P}(G/Y,Y,x,g)$ such that $\lambda(Y,x;G/Y-P_2)=k-1$. Let $P:=P_1 \cup P_2$ in G. By Lemma 4 with k-2 instead of k, $\lambda(W;G-P) \geq k-2$ and (1) holds, a contradiction.

Let $G_1 := G + h$, where h is a new edge between x and y. Let C be a cycle in G_1/X with $G_1 = P_1 + h$. By Corollary 6 in [7], (3) follows.

LEMMA 6 (Theorem 1.1 in [5]) If $k \geq 5$ is odd, $\lambda(G) \geq k$, $T = \{u, v, s, t\} \subseteq V(G)$, |T| = 4, $f \in \partial(v, s)$, $g \in \partial(v, u)$ and $e(X) \geq k+1$ for each $X \subseteq V(G)$ with $X \cap T = \{s, u\}$, then $\mathcal{P}(G, s, t, \{f, g\}) \neq \emptyset$.

LEMMA 7 Suppose that $k \geq 3$ is odd, S is dummy, W = V(G) - S, $Z = \{x_1, x_2\} \subseteq W$, $e(x_1) = e(x_2) = k$, $e(x_1, x_2) = (k - 1)/2$ and $\lambda(W/Z) \geq k$. Then

- (1) If for some $X \subseteq V(G) x_2$ with $X \cap W \neq \emptyset$, $e(X) \leq k 1$, then $x_1 \in X$, $N(x_2) \cap X = \{x_1\}$ and $N(x_1) \cap \overline{X} = \{x_2\}$.
- (2) If $N(x_1) \cap N(x_2) \neq \emptyset$, then $\lambda(W) \geq k$.

Proof. (1) $x_1 \in X$ since $\lambda(W/Z) \geq k$. If there is $y \in N(x_2) \cap X - x_1$, then $e(x_2, X) \geq (k+1)/2$ and $e(X) \geq e(X + x_2) + 1 \geq k + 1$, a contradiction. Thus $N(x_2) \cap X = x_1$. Similarly $N(x_1) \cap \overline{X} = x_2$.

(2) If there is $y \in N(x_1) \cap N(x_2)$, then for each $Y \subseteq V(G) - x_2$ with $x_1 \in Y$, either $y \in N(x_2) \cap Y$ or $y \in N(x_1) \cap \overline{Y}$, and so by (1), $e(Y) \ge k$. Thus $\lambda(W) \ge k$.

3 Proof of Theorem 1

In this section, let $\alpha:=(k-1)/2,\ F(G)=F(G,s,t)=F(G,s,t,f_1):=\{g\in\partial(u)-f_1\mid \mathcal{P}(G,s,t,\{f_1,g\})\neq\emptyset\},\ \text{for }g\in F(G,s,t,f_1),\ \text{let }I(G,g)=I(G,s,t,g):=\{P\in\mathcal{P}(G,s,t,\{f_1,g\})\mid P\ \text{has no repeated vertices}\}\ \text{and let }\mathcal{P}(G,K):=\mathcal{P}(G,s,t,K).\ \text{If }x\in W\ \text{and }e(x)\geq k+2,\ \text{then by Lemma 2}\ \text{for some }g,h\in\partial(x)-\{f_1,f_2\},\ G^{g,h}\ \text{is admissible.}\ \text{If }|F(G^{g,h})|\geq\alpha,\ \text{then }|F(G)|\geq\alpha\ \text{and therefore we may assume}$

(3.1) $e(x) = k \text{ or } k + 1 \text{ for each } x \in W.$

(3.2) e(x) = k for each $x \in W - \{u, v\}$.

Proof. If $x \in W - \{u, v\}$, e(x) = k + 1 and $\partial(x) = \{g_1, \dots, g_{k+1}\}$, then we replace x and $\partial(x)$ by the graph in Figure 1, in which heavy edges represent $\alpha = (k-1)/2$ parallal edges, producing a new graph G'. If the result holds in G', then it also holds in G.

Figure 1

A minimal counterexample G of Theorem 1 with the additional conditions (3.1) and (3.2) is considered.

(3.3) If $g \in F(G)$, then $I(G,g) \neq \emptyset$.

Proof. We choose $P \in \mathcal{P}(G, \{f_1, g\})$ with minimal |R(P)|, where $R(P) = \{\text{repeated vertices in } P\}$. Assume $I(G,g) = \emptyset$, then there is $x \in R(P)$. By (3.1) and (3.2), $x \in S$. There are edge-disjoint paths $P_1[u,s]$ and $P_2[u,t]$ in P. For i=1,2, if P_i has a repeated vertex, then we can take simple subpath of P_i instead of P_i . Thus P_1 and P_2 are simple. If $g \in P_2$, then $P_2 \cup \{f_1, f_2\} \in I(G,g)$, and so $g \in P_1$ and $f_1 \in P_2$. Since $x \in V(P_1) \cap V(P_2)$, let $P_3 := \{f_2, f_1\} \cup P_1(u,x) \cup P_2(x,t)$. Then $P_3 \in \mathcal{P}(G, \{f_1, g\})$ and $|R(P_3)| \leq |R(P)| - 1$, contrary to the minimality of |R(P)|.

$$(3.4) \mid T \mid = 4.$$

Proof. Otherwise s = t and by Theorem 9 in [7], $|F(G)| \ge \alpha$.

(3.5)
$$S = \emptyset$$
.

Proof. If there is $x \in S$, then $|F(G_x)| \ge \alpha$ for an admissible lifting G_x of G at x (see Lemma 2) and so $|F(G)| \ge \alpha$.

(3.6) If X is a k-set, then $X \cap T = \{u, v\}$ or $\{s, t\}$.

Proof. Case 1. $|X \cap T| \leq 1$.

 $|F(G/X,s,t)| \geq \alpha$. Let $g \in F(G/X)$ and let $P_1 \in I(G/X,g)$. By Lemma 5, there is $P \in \mathcal{P}(G,\{f_1,g\})$ such that $P/X = P_1$. If $X \cap T \neq u$ then $g \in F(G)$. Thus let $X \cap T = u$. If $F(G/X) \subseteq \partial(u)$, then $F(G/X) \subseteq F(G)$ and if otherwise there is $g \in F(G/X) \cap \partial(x)$ for some $x \in X - u$. By (3.4), $|F(G/\overline{X},x,x,f_1)| \geq \alpha$, and thus $|F(G)| \geq \alpha$.

Case 2.
$$|X \cap T| = 2$$
.

Let $X \cap T = \{u, s\}$ or $\{u, t\}$. We choose minimal X. Let $K := \partial(u, X - u)$. $|K| \ge e(u)/2 \ge \alpha$, since $e(X - u) \ge k = e(X)$. For each $g \in K$, by (3.5) and Lemma 6, there is $P_1 \in \mathcal{P}(G/\overline{X}, \overline{X}, s, \{f_1, g\})$ since X is minimal if $X \cap T = \{u, s\}$ and there is $P_1 \in \mathcal{P}(G/\overline{X}, \overline{X}, t, \{f_1, g\})$ if $X \cap T = \{u, t\}$. By Lemma 5, there is $P \in \mathcal{P}(G, s, t, \{f_1, g\})$ such that $P/\overline{X} = P_1$.

(3.7) If X is a k-set and $X \cap T = \{s,t\}$, then $X = \{s,t,x\}$ for some $x \in W - T$.

Proof. Otherwise $|X| \geq 4$ by (3.2). Let $X_1 := \overline{X}$, $X_2 = X$, $\partial(X_1) = \{h_1, h_2, \ldots, h_k\}$, $h_1 = f_2$ and let $V(h_i) \cap X_2 = s$ for $1 \leq i \leq r$ and $\neq s$ for $r+1 \leq i \leq k$. We construct new graph G_1 as follows.

$$V(G_1) = X_1 \cup \{s, t, x\}, G_1/\{s, t, x\} = G/X_2,$$

 $V(h_i; G_1) \cap \{s, t, x\} = s \ (1 \le i \le r), = t(r+1 \le i \le r+\alpha), = x(r+\alpha+1 \le i \le k),$

$$e(s, t; G_1) = k - (r + \alpha), e(s, x; G_1) = \alpha \text{ and } e(t, x; G_1) = r.$$

Then $\lambda(G_1) \geq k$ and by the minimality of G, $|F(G_1)| \geq \alpha$. Let $g \in F(G_1)$, $P_1 \in I(G_1, g)$ and let $E(P_1) \cap \partial(X_1) = \{h_i, h_j\}$ for i < j.

(3.7.1) We can choose P_1 such that $i \leq r$.

Proof. Otherwise $h_i \in \partial(t; G_1)$ and $h_j \in \partial(x; G_1)$. If $P_1(u, x)$ contains f_1 , then we take $\{f_1, f_2\} \cup P_1(u, t)$ instead of P_1 , and if $P_1(u, x)$ contains g, then we take $\{f_2, f_1, h\} \cup P_1(u, x)$ instead of P_1 , where $h \in \partial(x, t; G_1)$.

By (3.7.1), (3.6) and Lemma 6, there is $P_2 \in \mathcal{P}(G/X_1, s, t, \{h_i, h_j\})$. Let P be a path in G with $P/X_2 = P_1$ and with $P/X_1 = P_2$. Then $P \in \mathcal{P}(G, \{f_1, g\})$ and we have $|F(G)| \geq \alpha$, a contradiction. Thus $|X_2| = 3$.

(3.8) If X is a (k+1)-set with $X \cap T = v$, then for some $x \in W$, $X = \{v, x\}$, e(v) = k and $e(v, x) = \alpha$.

Proof. Let $g \in F(G/X) - F(G)$ and let $P_1 \in I(G/X, g)$. Then P_1 can not be extended to a path in I(G, g). By Lemma 5 and (3.6), (3.8) follows.

(3.9) $\partial(u, \{s, t\}) \subseteq F(G)$.

Proof. If $g \in \partial(u,t)$, then $\{f_2,f_1,g\} \in I(G,g)$ by (3.6). If $g \in \partial(u,s)$, then by Lemma 6, $\mathcal{P}(G,\{f_1,g\}) \neq \emptyset$, and so $g \in F(G)$.

(3.10) If X is a (k+1)-set and $X \cap T = \{u, v\}$, then either $\partial(u, \overline{X}) \subseteq F(G)$ or $X = \{u, v\}$ and e(u) = e(v) = k.

Proof. Assume that there is $g \in \partial(u, \overline{X}) - F(G)$. Let $V(g) \cap \overline{X} = x$. By (3.9), $x \neq s,t$. By Lemma 6 and (3.6), there is $P_1 \in \mathcal{P}(G/X, \{f_2,g\})$. P_1 can not be extended to a path in $\mathcal{P}(G, \{f_2,g\})$. Thus by Lemma 5, $X = \{u,v\}$ and e(u) = e(v) = k.

(3.11) If $x \in V(G) - \{s, v, u\}$ and $h \in \partial(x, v)$ then h is contained in no k-cut.

Proof. Assume that there is a k-set X with $h \in \partial(X)$. By (3.6) and (3.7), say $X = \{s,t,z\}$ where x = t or z. $|F(G/X,X,X,f_1)| \geq \alpha$. Let $g \in F(G/X,X,X,f_1)$. We can choose $P_1 \in I(G/X,X,X,g)$ such that $f_2 \in P_1$. Let $\{f_2,g_1\} = \partial(X) \cap E(P_1)$ and let $y \in V(g_1) \cap X$. If $y \neq s$, then there is $P \in I(G,s,t,g)$ such that $P/X = P_1$. When y = s, $(P_1-f_2) \cup \{h\} \in I(G,g)$ if x = t and $(P_1 - f_2) \cup \{h,h_1\} \in I(G,g)$ for $h_1 \in \partial(z,t)$ if x = z. Hence $g \in F(G)$ and $|F(G)| \geq \alpha$.

(3.12) If e(v) = k + 1, then N(v) = T - v.

Proof. Otherwise for some $x \in \overline{T}$, there is $h \in \partial(v, x)$. By (3.11), $\lambda(W - x, G - h) \ge k$ and $|F(G - h)| \ge \alpha$, and thus $|F(G)| \ge \alpha$.

(3.13) e(u) = k.

Proof. Otherwise e(u)=k+1 by (3.1). If $N(u)\subseteq T$, then $e(u,\{s,t\})\geq \alpha$, contrary to (3.9). Thus there is $g\in \partial(u,x)$ for some $x\in W-T$. If $\lambda(W-x,G-g)\geq k$, then $|F(G-g)|\geq \alpha$, and so $|F(G)|\geq \alpha$. Thus and by (3.7), $\{s,t,x\}$ is a k-set. Let $h\in \partial(x,t)$. $\{f_2,f_1,g,h\}\in I(G,g)$, and so $g\in F(G)$. Hence $\partial(u)-\partial(u,v)\subseteq F(G)$, contrary to $|F(G)|<\alpha$.

- (3.14) If $\{x_1, x_2\} \subseteq W T$, $h \in \partial(x_1, x_2)$ and h is contained in no k-cut, then
 - (i) $e(x_1,x_2)=\alpha$,
 - (ii) $F(G-h)-F(G)\neq\emptyset$,
- (iii) for each $g \in F(G-h) F(G)$, G-h has paths $P_1[v,s]$ and $P_2[v,t]$ so that $\{f_1,g\} \subseteq E(P_1)$, $V(P_1) \cap V(P_2) = \{v\}$, for (r,s) = (1,2) or (2,1), $x_r \in P_1$, $x_s \in P_2$ and $\lambda(W \{x_1,x_2\}; G-h-E(P_1 \cup P_2)) = k-2$,
- (iv) for path $P^* := \{f_2, h\} \cup P_1(v, x_r) \cup P_2(x_s, t) \text{ in } G \text{ and for some } Z \subseteq V(G) V(P_1(s, x_r)) \text{ with } V(P_2(v, x_s)) \subseteq Z, e(Z; G E(P^*)) = k 3.$

Proof. In G-h, let $S':=\{x_1,x_2\}$ and let $W'=W-\{x_1,x_2\}$. $|F(G-h)|\geq \alpha$ and $|F(G)|<\alpha$ and thus (ii) follows. Let $g\in F(G-h)-F(G)$. By (3.3), we choose $P\in I(G-h,g)$ with minimal length. Let $P_1:=P(v,s)$ and $P_2:=P(v,t)$. $e(\{x_1,x_2\};G-P)\leq k-3$, otherwise $P\in I(G,g)$, contrary to $g\notin F(G)$. Thus $e(x_1,x_2)=\alpha$ and $\{x_1,x_2\}\subseteq V(P)$. If $\{x_1,x_2\}\subseteq P_i$ (i=1 or 2), then we can replace $P_i(x_1,x_2)$ by $h_1\in\partial(x_1,x_2;G-h)$, contrary to the minimality of P. Thus $x_r\in P_1$, $x_s\in P_2$ for (r,s)=(1,2) or (2,1). Then $f_2\notin P$, $\{f_1,g\}\subseteq P_1$ and thus (iii) follows. For P^* given in (iv), $\lambda(G-P^*)=k-3$, thus (iv) easily follows.

We denote by $\Omega(x_1, x_2)$ the set of (g, P_1, P_2, P^*, Z) given in (3.14).

(3.15) If $\{x_1, x_2.x_3, x_4\} \subseteq W - T$, $h \in \partial(x_2, x_3)$, h is contained in no k-cut and $e(x_i, x_{i+1}) = \alpha$ $(1 \le i \le 3)$, then for (i, j) = (2, 3) or (3, 2), $N(x_i) \cap T = \emptyset$, $\{u\}$, or $\{s\}$ and $N(x_j) \cap T = \emptyset$, $\{v\}$, or $\{t\}$.

Proof. By (3.14), there is $(g, P_1, P_2, P^*, Z) \in \Omega(x_2, x_3)$. For (i, j) = (2, 3) or $(3, 2), x_i \in P_1$ and $x_j \in P_2$. Then $N(x_i) \cap T = \emptyset$, $\{u\}$, or $\{s\}$ and $N(x_i) \cap T = \emptyset$, $\{v\}$, or $\{t\}$.

- (3.16) (A) If X is a minimal k-set with $X \cap T = \{v, u\}$, then for $\{z_1, z_2\} \subseteq X T$, $e(z_1, z_2) = 0$.
- (B) If G has no k-set, then for $\{z_1, z_2\} \subseteq W T$, $e(z_1, z_2) = 0$.

Proof. We shall prove (A) and (B) simultaneously. Assume that $e(z_1, z_2) > 0$. In (A), let $X_1 := X$ and $X_2 := \overline{X}$, then $X_2 = \{s, t, y\}$ for some $y \in W$ by (3.7). In (B), let $X_1 := V(G) - \{s, t\}$ and $X_2 := \{s, t\}$. Let D be the component of $G - (X_2 \cup T)$ containing z_1 and let $V(D) = \{x_1, x_2, \ldots, x_n\}$. $n \geq 2$ by $\{z_1, z_2\} \subseteq V(D)$. By (3.14), we may let $e(x_i, x_{i+1}) = \alpha$ ($1 \leq i \leq n-1$). For some $1 \leq r \leq n-1$, we choose $(g, P_1, P_2, P^*, Z) \in A$

 $\Omega(x_r,x_{r+1})$ such that $P_1\cup P_2$ has the minimal length in G/X_2 . In (A), we can choose Z in X_1 , otherwise $\lambda(G-P^*)\geq k-2$. Let $T_0:=X_2-s$ and let $h_0\in P^*\cap\partial(V(D),T_0)$. $E(P^*/X_2)\subseteq\{f_2,f_1,g\}\cup E(D)\cup\{h_0\}$. Since $e(Z;G-P^*)\leq k-3=2\alpha-2$ and $e(x_i,x_{i+1})=\alpha$, we have

(3.16.1) $|P^* \cap E(D) \cap \partial(Z)| \leq 2$ and if the equility holds $\partial(Z; G - P^*) \subseteq E(D)$.

 $\textbf{(3.16.2)}\ V(P_1)\cap X_2=\{s\}.$

Proof. Otherwise $V(P_1) \cap X_2 = \{y\}$ and (A) occurs. For $h \in \partial(y,t)$, $\{f_2,h\} \cup P_1(v,y) \in I(G,g)$, a contradiction.

For some $\{y_1, \ldots, y_p\} \subseteq V(D)$, we may let $V(P^*) \cap X_1 = \{v, u, y_1, \ldots, y_p\}$ (in this order in P^*). $e(y_i, T_0) = 0$ for $1 \le i \le p-1$ by the minimality of $P_1 \cup P_2$. Let $h_1 \in P_1 \cap \partial(s, V(D))$ (see (3.16.2)) and let $h_2 \in P_2 \cap \partial(v, V(D))$. By (iv) in (3.14) we have $V(h_1) \subseteq \overline{Z}$ and $V(h_2) \subseteq Z$.

Case 1. $|P^* \cap E(D) \cap \partial(Z)| = 2$.

First we consider the case that $y_1 \notin Z$. $|\partial(Z) \cap \{f_1,g\}| = 1$ and $Z \cap V(D) \subseteq P^*$. Let $Z \cap V(D) = \{y_l, y_{l+1}, \dots, y_m\}$. Then $\{x_r, x_{r+1}\} = \{y_{l-1}, y_l\}$ and $h_2 \in \partial(v, y_l)$. $N(Z \cap V(D); G - P^*) - \{y_{l-1}, y_{m+1}\} \subseteq Z$ by (3.16.1). Since $e(y_i; Z - V(D)) = 1$ $(l \leq i \leq m), |Z \cap V(D)| = e(Z - V(D); G - P^*) \geq k - 2 \geq 3$. By (3.15) and $e(\{y_1, \dots, y_{p-1}\}, T_0) = 0$, $e(y_{l+1}, u) = e(y_{l+2}, v) = 1$. Then for $h_3 \in \partial(v, y_{l+2}), P_1 \cup \{h_3\} \cup P_2(y_{l+2}, t) \in I(G, g)$, a contradiction. Next we consider the case that $y_1 \in Z$. $\overline{Z} \cap V(D) \subseteq P^*$. Let $\overline{Z} \cap V(D) = \{y_l, y_{l+1}, \dots, y_m\}$. Then $h_1 \in \partial(s, y_m)$. Since $e(y_i, \overline{Z} \cap \overline{V(D)}) = 1$ $(l \leq i \leq m), |\overline{Z} \cap V(D)| = e(Z \cup V(D); G - P^*) \geq k - 2 \geq 3$. By (3.15) and $e(\{y_1, \dots, y_{p-1}\}, T_0) = 0$, $e(y_{m-1}, v) = 1$, contrary to $v \in Z$.

Case 2. $|P^* \cap E(D) \cap \partial(Z)| = 1$.

For some $1 \leq l \leq p-1$, there is $h \in P^* \cap \partial(y_l, y_{l+1}) \cap \partial(Z)$. We may let $y_l = x_r$ and $y_{l+1} = x_{r+1}$. By $P_1(s, x_r) \subseteq \overline{Z}$, $\{x_1, \dots, x_r\} \subseteq \overline{Z}$ and $\{x_{r+1}, \dots, x_n\} \subseteq Z$. Since $|\partial(Z) \cap \{f_1, g\}| = 1$, we have $t \notin Z$, $|\partial(Z) \cap P^*| = 4$ and e(Z) = k+1. By (3.10) and $g \notin F(G)$, we have $u \in \overline{Z}$. Then by (3.8), $Z = \{v, x_n\}$, e(v) = k, $e(v, x_n) = \alpha$, r+1 = n and $e(x_n, T_0) = 1$. If $n \geq 3$, then by the same argument for $\{x_{n-1}, x_{n-2}\}$ instead of $\{x_r, x_{r+1}\}$, we have n-2=1 and $e(v, x_1) = \alpha$, a contradiction. Thus n=2 and $h_1 \in \partial(s, x_1)$.

It is easy to see (3.16.3) and we have (3.16.4) by (3.9).

(3.16.3) $e(v,T_0)=e(x_1,T_0)=0$.

(3.16.4) $e(u, X_2) < \alpha$.

If $e(u, \{v, x_1\}) \ge \alpha + 2$, then $e(\{x_1, x_2, v, u\}) \le e(\{x_1, x_2, v\}) - 3 = k - 1$, a contradiction. Thus we have

 $(3.16.5) e(u, \{v, x_1\}) \leq \alpha + 1.$

By (3.16.4) and (3.16.5), $e(u, x_3) > 0$ for some $x_3 \in X_1 - \{u, v, x_1, x_2\}$. If $|X_1| = 5$, then $e(X_2) = k$ by the parity. $N(x_3; G/X_2) = \{u, v, X_2\}$. By $e(T_0, x_2) = 1$ and (3.16.3), $e(T_0, \{u, x_3\}) \ge \alpha$. By (3.16.4), $e(T_0, x_3) > 0$. Then $\partial(u,x_3) \subseteq F(G)$. $e(u,X_2+x_3) = k - e(u,\{v,x_1\}) \ge \alpha$ by (3.16.5), contrary to $|F(G)| < \alpha$. If $|X_1| \ge 6$, say $x_4 \in X_1 - \{v, u, x_1, x_2, x_3\}$. If $e(x_3, x_4) > 0$, then by the same argument, $e(v, x_i) = \alpha$ (i = 3 or 4), a contradiction. Thus $e(x_3, x_4) = 0$. $e(T \cup X_2) \le 3k - 4$ if $e(X_2) = k$, and so G has no k-set. Since $e(T) \leq 4k-4$, we have $|X_1| = 6$. $\partial(u,x_i) - F(G) \neq 0$ \emptyset (i=3 or 4), otherwise $|F(G)| \ge \alpha$ by (3.16.5), say for i=3. Then $e(x_3,t) = 0$ and $N(x_3) = T - t$. Let $g_1 \in \partial(u,x_3), g_2 \in \partial(x_3,s), h_2 \in \partial(x_3,s)$ $\partial(v, x_2), h_0 \in \partial(x_2, t)$ and let $P := \{g_2, g_1, f_1, h_2, h_0\}$. Since $g_1 \notin F(G)$, e(Y; G - P) < k - 2 for some $Y \subseteq V(G) - s$. If $\{g_1, g_2\} \subseteq \partial(Y)$, then $e(Y) \ge e(Y - x_3) + 3 \ge k + 3$ since $e(x_3, v) < \alpha$ and $N(x_3) = T - t$. Thus $\partial(Y) \cap E(P) = E(P) - g_i$ (i = 1 or 2) and e(Y) = k + 1. $x_1 \in Y$, otherwise $N(x_2) \subseteq \overline{Y}$. $e(Y) = e(Y - x_2) + 1$, and so $e(Y - x_2) = k$, contray to $\{u, x_1\} \subseteq Y - x_2$. Now (3.16) is proved.

By (3.9), $W - T \neq \emptyset$. Let $W - T = \{x_1, \dots, x_n\}$. By (3.7), (3.16) and $e(T) \leq 4k - 4$, $n \leq 3$. First let n = 1 or 3, then e(v) = k + 1 by the parity. By (3.12), N(v) = T - v. Then $N(x_i) = T - v$ ($1 \leq i \leq n$) and thus n = 1. Then $\partial(u, x_1) \subseteq F(G)$, contrary to $|F(G)| < \alpha$. Next let n = 2, then e(v) = k. If G has a k-set, let $X_1 = \{u, v, x_1\}$, $X_2 = \{s, t, x_2\}$ and $e(X_1) = e(X_2) = k$. $e(u, X_2) < \alpha$ since $\partial(u, X_2) \subseteq F(G)$ by (3.9), and so $e(v, x_1) = e(u, X_2) < \alpha$. If $e(x_1, X_2 - s) > 0$, then $\partial(u, x_1) \subseteq F(G)$, a contradiction. Thus $e(x_1, X_2) = e(x_1, s)$. Then $e(v, \{x_2, t\}) > 0$ by $\alpha + 1 \leq e(\{x_2, t\}, X_1) = e(\{x_2, t\}, \{v, u\})$ and it easily follows that $\partial(u, x_1) \subseteq F(G)$, contrary to $|F(G)| < \alpha$. Thus G has no k-set.

Case 1. $e(v, x_1) = \alpha$.

Since $|F(G/\{v,x_1\})| \ge \alpha$, there is $g \in F(G/\{v,x_1\}) - F(G)$. Let $P \in I(G/\{v,x_1\},g)$. Then there is $h \in \partial(v,x_1) \cap P$ and $\lambda(G-P) < k-2$. By (3.9), $g \in \partial(u,x_2)$. V(P) is $\{s,x_2,u,v,x_1,t\}$ in this order and e(v,t)=0. By e(v,s;G-P)=e(v,s)>0 and Lemma 7(2), $e(x_1,s)=0$. Then $N(x_1)=T-s$. For some $X \subseteq V(G)-v$, e(X;G-P)=k-3. Since $e(u,x_1)<\alpha$ (otherwise $e(\{u,v,x_1\})\le k$)), $e(x_1,t)\ge 2$ and $e(x_1,t;G-P)>0$. By Lemma 7(1), $\{x_1,u,t\}\subseteq X$ and $s\in \overline{X}$. Then $|\partial(X)\cap P|=3$, contrary to e(X;G-P)=k-3.

Case 2. $e(v, x_i) < \alpha \ (i = 1, 2)$.

By (3.9), for i = 1 or 2, $e(u, x_i) > 0$ and $\partial(u, x_i) - F(G) \neq \emptyset$, say

for i = 1. Then $e(x_1, t) = 0$ and $N(x_1) = T - t$. Then e(v, t) = 0 and $N(t) = \{u, s, x_2\}$. Since $\partial(u, x_2) \subseteq F(G)$ and by (3.9), we have (3.17) $e(u, \{v, x_1\}) > \alpha + 2$.

 $e(v,x_2)>0$, otherwise $\{u,s\}$ is a separating set, a contradiction. Let $h_1\in\partial(s,x_1),\ g\in\partial(x_1,u),\ h_2\in\partial(v,x_2),\ h_3\in\partial(x_2,t)$ and let $P:=\{h_1,g,f_1,h_2,h_3\}$. Since $g\notin F(G)$, for some $X\subseteq V(G)-x_1,\ e(X;G-P)< k-2$. If $\{g,f_1\}\subseteq\partial(X)$, then by (3.17), $e(X)\geq e(X-u)+3\geq k+3$, a contradiction. Thus $E(P)\cap\partial(X)=E(P)-g$ or $E(P)-f_1$ and e(X)=k+1. Since |X| is even, $\overline{X}=\{x_1,x_2\}$, a contradiction. This completes the proof of Theorem 1.

References

- [1] A. Frank, On a theorem of Mader. Discrete Mathematics 101, 49-57 (1992)
- [2] W. Mader, A reduction method for edge-connectivity in graphs. Ann. Discrete Math. 3, 145-164 (1978)
- [3] W. Mader, Paths in graphs, reducing the edge-connectivity only by two. Graphs and Comb. 1, 81-89 (1984)
- [4] H. Okamura, Paths and edge-connectivity in graphs. J. Comb. Theory Ser. B 37, 151-172 (1984)
- [5] H. Okamura, Paths containing two adjacent edges in (2k + 1)-edge-connected graphs, Discrete Math. 111, 401-407 (1993)
- [6] H. Okamura, 2-reducible cycles containing two specified edges in (2k+1)-edge-connected graphs, Contemporary Math. 147,259-277 (1993)
- [7] H. Okamura, 2-reducible cycles containing three consecutive edges in (2k+1)-edge-connected graphs, Graphs and Comb. 11, 141-170 (1995)
- [8] H. Okamura, 2-reducible paths containing a specified edge of distance two in (2k + 1)-edge-connected graphs, in preparation.