Decoding Goppa Codes with MAGMA

Giorgio Faina and Massimo Giulietti *

Dipartimento di Matematica e Informatica
Universita degli Studi di Perugia
Via Vanvitelli, 1
06123 Perugia, Italy

faina@dipmat.unipg.it giuliet@dipmat.unipg.it

Abstract

The aim of this note is to provide a programme for the Computer
Algebra package MAGMA, which is suitable to decode one-point
Goppa Codes defined from Hermitian curves.
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1 Introduction

Ideas from Algebraic Geometry become useful in Coding Theory after
Goppa’s construction [4]. He had the beautiful idea of associating to an
algebraic curve C defined over the finite field with ¢ elements F,, some
linear codes. These codes, nowadays called algebraic-geometric or Goppa
codes, are defined from two divisors D and G on C, where one of them, say
D, is the sum of distinct Fy-rational points of C.

The problem of decoding algebraic-geometric codes has been deeply
investigated in the past few decades. A first attempt to decode Goppa
codes was made by Driencurt [2] for elliptic curves. At the end of the
1980’s, Justesen, Larsen, Jensen, Havemose and Hgholdt [6], [8] found for
algebraic-geometric codes on plane curves a generalization of the decoding
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algorithm of Arimoto [1] and Peterson [9] for Reed-Solomon codes. This
was generalized to arbitrary curves by Skorobogatov and Vladug [11]. In
this way one gets the basic and modified decoding algorithm [15].

In this note we will mainly concerned with the basic algorithm for Goppa
codes which are defined from Hermitian curves X and are such that the
support of the divisor G consists of just one F,-rational point of X'. These
codes, called one-point Hermitian or simply Hermitian codes, will be in-
troduced in Section 2. In Section 3 we describe the basic algorithm for
such codes, whereas a MAGMA programme which realizes the algorithm
is provided in Section . ‘

2 One-point Hermitian codes

2.1 Linear codes

Let F, be a finite field with q elements and F} the vector space of n-
tuples over Fy. A g-ary linear code C of length n and dimension % is a &-
dimensional subspace of Fy. The number of non-zero positions in a vector
x € C is called the Hamming weight w(x) of x; the Hamming distance
d(x,y) between two vectors x,y € C is defined by d(x,y) = w(x ~ y).
The minimum distance of C is

d(C) := min{w(x) | x € C, x # 0},

and a g-ary linear code of length n, dimension £ and minimum distance d
is indicated as an [n, k, d], code. For such codes the Singleton bound holds:

. d<n—-k+1.

A generator matriz of C is a k x n matrix whose rows form an F,-bases of

C.
The dual of a code C is indicated as C*, and it consists of all the
vectors of F7 which are orthogonal to all codewords from C, that is

C' :={x € Fj | (x,y) =0foranyy € C},

where (,) denotes the inner product in F7. If G is a generator matrix of

C, then
Ct={x¢€ F,';IG'xT=O},

" where xT denotes the transpose of x; moreover, C* has dimension n — k.
A parity check matrix of a code is any generator matrix of its dual.

222



2.2 Goppa codes

Throughout this section C will be a curve defined over F,. For background
facts on curves we refer to (3], (3], [10], [12].
We fix the following notation.

e F,(C) denotes the field of Fg-rational functions of C.
e For f € F,(C)\ {0}, div(f) denotes the divisor associated to f.
e For E divisor of C, L is the following F,-vector space

L ={f € Fg(C)\ {0} | E +div(f) 2 0} U {0};

moreover we let ¢(E) = dimg, (L(E)).

Let P;,..., P, be n distinct F,-rational points of C and let G be a
divisor of C defined over F, and such that vp,(G) =0 fori=1,...,n. Let
e be the following F,-linear map

e:L(G) = Fy,  fr(f(R),....f(P)),
andset D=P, + P +...+ P,.

Definition 2.1 The Goppa code associated with D and G is Cpg =
e(L(G)).

Lemma 2.2 Let k := dimp,(Cp,g) and d be the minimum distance of
Cp,g- Then

1. k=¥¢G)-¢G-D);
2. d>n—deg(G) .
Lemma 2.3 Let g be the genus of C, and let k and d as above. Then
1. if n > deg(G) then k = €(G); moreover, a generator matriz of Cp g
is given by
@A) ... filP)
M = Do :
fulPr) ... fi(Pr)
where f1,..., fx is an Fy-basis of L(G);
2. ifn > deg(G) > 29— 2, then k = deg(G) +1 —g.

Definition 2.4 If G = yP for some P F,-rational point of C and some
v € Z, then Cp ¢ is called one-point Goppa code.
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The parameters of a one-point Goppa code are closely related to the
Weierstrass semigroups of the underlying curve.

Definition 2.5 The Weierstrass semigroups H(P) of C at a point P € C
is defined as

H(P):={a € Z| 3f € Fy(C)such that () = aP}, -

where (f)oo denotes the polar divisor of f.
The elements in H(P) are called non-gaps at P.

We have that L£(yP) = L(y*P) where v* is the biggest non-gap at P
less than or equal to . Therefore for a one-point Goppa code it is usually
assumed that the integer 7 is a non-gap at P.

2.3 One-point Hermitian codes

We present here certain one-point Goppa. codes constructed from the Her-
mitian curve X which is defined for ¢ squared by the equation

YVIZ 4+ YZVT = XVITL,

This curve is non-singular of genus g = /g(,/g — 1)/2 and it has ¢,/g +1
F,-rational points. These points are Poo = (0,1,0) and P,p = (a,b,1)
where @ € F, and bV + b = av7*!. Set

D:= Z Pa,ln

a€F4,bVi+b=avat!

and
G :=mPy, m € Z.

We consider the one-point Goppa code
Cn:=CpcC F:;:

whose length is n := q/g. Let z = X/Z and y := Y/Z so that yv7 +
y = zV7*!, Thanks to the following proposition it is possible to calculate
exactly the dimension and the minimum distance of both C,,;, and its dual

(see [13] and [16]).
Proposition 2.6 An F,-basis of L(G), m > 0, is given by

{z'y : iVi+j(g+1)<m,i20,0<5</g-1}
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3 Decoding Hermitian codes

We keep the notation of the previous section. From now on, we let C = C%,
the dual of the one-point Goppa code constructed from the Hermitian curve

as in Subsection 2.3.

Let d be the minimum distance of C. Suppose that x € C is a trans-
mitted codeword from which we receive y = x + e. Notice that x is unique
whenever y has distance at most (d —1)/2 to C.

Definition 3.1 The vector e = (ey,...,€,) is called the error vector of y.
The e;’s are called the error values of y and the weight of e is the number
of errors of y. The set {i € {1,...,n} | e; # 0} is the set of error positions

ofy.

Lemma 3.2 (7, Prop. 6.1] Let H be a parity check matriz of C. Suppose
thaty =x+e,x € C, and that J C {1,...,n} is a set with at most d — 1
elements which contains the set of error positions. Then e is the unique
solution of the following linear equations in z = (2y,...,2,):

Hz" =HyT and 2z, =0 forallk ¢ J.

Proof. Certainly e satisfies the equations. Let z be another solution. Then
H(z-e)T =0 and so z—e € C. Moreover, the weight of z — e is less
than or equal to #J < d — 1. Therefore, z = e. o
Now, let
H(Py)={p1 =0,p2,...}, m=p.

Fory € Fy,4,j € N such that p; + p; < prand J C {1,...n}, we set
Kij(v) :={f € L(pjPx) | {y.e(fg)) =0, for all g € L(p;Pe)},

and
Li(J):={f € L(pjPx) | e(f)x =0for all k € J},

where e(f);. is the kth-coordinate of e(f) = (f(P1),- .., F(Pn))-

Lemma 3.3 ([14]) Lety = x+e, x € C, and let I be the set of error
positions of y. Then

(1) Kij(y) = Kij(e):
(2) L;i(I) € Kij(y);

(3) Lj{I) = K;j(y) provided that the minimum distance of C‘,J;i is greater
than the weight of e.

Then the following proposition holds.
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Proposition 3.4 ([14]) Suppose that | > 2g + 2, where g = \/g(\/7 — 1)
is the genus of X. Forl even, seti=1/2,j=1/2—g+1,t=1/2—g; for
lodd, seti=(1—-1)/2,j=(1+1)/2-g+1,t=(1—-1)/2—g. Then

i) pi+pi<p;

ii) ify =x+e withx € C and w(e) <t, then K;;j(y) = L;(I);
iii) Lj(I) # {0},
iv) Forany f € Li(I), #{k| f(P:) =0} <d-1.

Therefore, we have the so-called basic algorithm for the code C, i.e.
giving y = x+e with x € C we can compute e whenever w(e) is less than
or equal to I/2 — g.

Basic algorithm.

Given C = C,, with [ > 2g + 2.

Step 1. Fix i and j fulfilling the hypothesis of Proposition 3.4. Calculate
F,-basis for £(p1Pos), L(piPo) and L(pjPeo)-

Step 2. Once the (possibly altered) message y has been received, cal-
culate a function f in L;(I) = Ki;(y), f #0.

Step 3. Set J = {k| f(Px) = 0}. Then calculate e such that

HeT = HyT and e, =0 forallk ¢ J.

Step 4. Putx=y —e.

4 The MAGMA programme

4.1 Preliminary settings

Suppose that the prime power /7 is contained in the variable sq, and
that { > 2g + 2 is contained in the variable 1.

q:=sqQ"2;

K:=GF(q);
R<x,y>:=PolynomialRing(K,2);
n:=sq-3;

g:=((sq)*(sq-1)) div 2;
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4.2 Step 1

First we construct a function which computes the dimension of an Fy-space
L(tPs). We refer to Proposition 2.6.

dim:=function(t)
if ¢t eq O then

return 1;
else
base:={};

for r in [0..t] do
for s in [0..sq~1] do
if r*sq+s*(sq+l) le t then
base:=base join {r*q+s*(q+1)};
end if;
end for;
end for;
return #base;
end if;
end function;

Next we calculate gy, i, j, pi and p;, and we put them in the variables
Rl, i, j, Ri, Rj respectively.

nongaps:=[];
for x in [0..1+g-1] do
if dim(x+1) eq dim(x)+1 then
Append(~nongaps,x) ;
end if;
end for;
R1l:=nongaps(1];
if IsEven(l) then

i:=1 div 2;
j:=1 div 2-g+1;
else

i:=(1-1) div 2;

j:=(1+1) div 2 -g+1;
end if;
Ri:=nongaps(il;
Rj:=nongaps[j];

We denote by BaseRl an F,-base of L(pPx), by BaseRi an F-
base of £(p;Peo), and by BaseRj an F,-base of L(p;Poo).
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BaseRl:=[];
for s in [0..sq-1] do
for r in [0..R1l] do
if r*sq+s*(sq+1) le Rl then
Append ("BaseR1, (x"r)*(y~s));
end if;
end for;
end for;
BaseRi:=[];
for s in [0..sq-1] do
for r in [0..R1] do
if r*sq+s*(sq+l1) le Ri then
Append(~BaseRi, (x“r)*(y~s));
end if;
end for;
end for;
BaseRj:=[];
for s in {0..sq-1] do
for r in [0..R1] do
if rxsq+s*(sq+1) le Rj then
Append(~BaseRj, (x"r)*(y~s));
end if;
end for;
end for;
k:=#BaseRl;

By Points we denote the sequence of all F,-rational affine points of
X.

Points:=[];
for u in K do
for v in K do
if Evaluate(x"(sq+1)+y~sq+y,[u,v]) eq O then
Append (“Points, [u,v]);
end if;
end for;
end for;

Finally we construct the parity check matrix of C, denoted as H, its
transpose Ht and an Fg-basis of C, denoted as CodeBase.
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seq:=[];
k:=dim(Rl);
for I in [1..k] do
for v in [1..n] do
ing:=Evaluate(BaseR1[I],Points[v]);
Append(~seq,ing); B
end for;
end for;
M1:=KMatrixSpace(K,k,n);
H:=M1![seq[t]:t in [1..k*n]];
Ht:=Transpose(H);
W1l:=VectorSpace(K,k);
0:=W1!{0:t in [1..X]];
Par,Gen:=Solution(Ht,0);
CodeBase:=Basis(Gen);

4.3 Step 2

Suppose that the sequence Y contains the message y € Fg. We have
to find a non-zero function in L;(I) = Kjj(y), i.e. a non-zero F,-linear
combination f =) «;f;, fi € BaseRj such that

Zai ( Z ylg(Pz)fi(Pl)) =0

i=l...n

for all gin BaseRi and for all f; in BaseRj . Then to find the a;’s we
have to solve an appropriate homogeneous linear system over F,.

comp:=[];
for t in [1..#BaseRi] do
for s in [1..#BaseRj] do

sind:=&+[Evaluate(BaseRi(t] ,Points[v])*Evaluate(BaseRj[s],Points[
Ylvl: v in [1..n]];
Append(~comp,sind) ;
end for;
end for;
M2:=KMatrixSpace(K, #BaseRi,#BaseRj);
X:=M2![comp[t]:t in [1..#BaseRi*#BaseRj]];
Xtr:=Transpose(X);
W2:=VectorSpace(K,#BaseRi) ;
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Z:=W2![0:1 in [1..#BaseRil]l;
D,A:=Solution(Xtr,2);

N:=Basis(4);
f:=R1&+[N[1] [s]*BaseRj[s]:s in [1..#BaseRjl]};

4.4 Step 3

We put the error positions in a variable J.
J:=[v:v in [1..n]|Evaluate(f,Points[v]) eq 0];

Note that
HeT = HyT and e =0 forallk ¢ J
is equivalent to
eH2T =yHT and e, =0 forallk ¢ J,

where H2 is obtained by deleting the columns of H corresponding to the
positions k ¢ J. Therefore the error E can be calculated as follows.

seq:=[];
for v in J do
for I in [1..k] do
entr:=Evaluate(BaseR1[I],Points[v]);
Append(~seq,entr);
end for;
end for;
M3:=KMatrixSpace(K,#J,k);
H2t:=M3![seq[t]:t in [1..k*#J]];

W3:=VectorSpace(K,n);
YM:=W3![Y[IJ:I in (1..n]];
YHt :=YM=Ht;

Err:=Solution(H2t,YHt);

E:=[KI];
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u:=1;
for I in (1..n] do
if I in J then
E{I]:=Err[u];
us=u+i;
else
E[I]:=0;
end if;
end for;

4.5 Step 4

Finally, the transimetted codeword X can be easily calculated.

X:=[KI];

for I in [1..n] do
X{1]:=Y[I]-E[1];

end for;
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