Decoding Goppa Codes with MAGMA

Giorgio Faina and Massimo Giulietti *

Dipartimento di Matematica e Informatica Università degli Studi di Perugia Via Vanvitelli, 1 06123 Perugia, Italy

faina@dipmat.unipg.it giuliet@dipmat.unipg.it

Abstract

The aim of this note is to provide a programme for the Computer Algebra package MAGMA, which is suitable to decode one-point Goppa Codes defined from Hermitian curves.

Key words: Decoding Goppa Codes, Hermitian Curves.

1 Introduction

Ideas from Algebraic Geometry become useful in Coding Theory after Goppa's construction [4]. He had the beautiful idea of associating to an algebraic curve $\mathcal C$ defined over the finite field with q elements $\mathbf F_q$, some linear codes. These codes, nowadays called algebraic-geometric or Goppa codes, are defined from two divisors D and G on C, where one of them, say D, is the sum of distinct $\mathbf F_q$ -rational points of C.

The problem of decoding algebraic-geometric codes has been deeply investigated in the past few decades. A first attempt to decode Goppa codes was made by Driencurt [2] for elliptic curves. At the end of the 1980's, Justesen, Larsen, Jensen, Havemose and Høholdt [6], [8] found for algebraic-geometric codes on plane curves a generalization of the decoding

^{*}The research was supported by Italian MURST progetto 40% Strutture Geometriche, Combinatoria e loro applicazioni, by CNR Progetto Strategico Applicazioni della matematica per la tecnologia e la società sottoprogetto Calcolo Simbolico and by GN-SAGA

algorithm of Arimoto [1] and Peterson [9] for Reed-Solomon codes. This was generalized to arbitrary curves by Skorobogatov and Vladut [11]. In this way one gets the *basic* and *modified* decoding algorithm [15].

In this note we will mainly concerned with the basic algorithm for Goppa codes which are defined from Hermitian curves \mathcal{X} and are such that the support of the divisor G consists of just one \mathbf{F}_q -rational point of \mathcal{X} . These codes, called *one-point Hermitian* or simply *Hermitian* codes, will be introduced in Section 2. In Section 3 we describe the basic algorithm for such codes, whereas a MAGMA programme which realizes the algorithm is provided in Section 4.

2 One-point Hermitian codes

2.1 Linear codes

Let \mathbf{F}_q be a finite field with q elements and \mathbf{F}_q^n the vector space of n-tuples over \mathbf{F}_q . A q-ary linear code \mathbf{C} of length n and dimension k is a k-dimensional subspace of \mathbf{F}_q^n . The number of non-zero positions in a vector $\mathbf{x} \in \mathbf{C}$ is called the Hamming weight $w(\mathbf{x})$ of \mathbf{x} ; the Hamming distance $d(\mathbf{x}, \mathbf{y})$ between two vectors $\mathbf{x}, \mathbf{y} \in \mathbf{C}$ is defined by $d(\mathbf{x}, \mathbf{y}) = w(\mathbf{x} - \mathbf{y})$. The minimum distance of \mathbf{C} is

$$d(\mathbf{C}) := \min\{w(\mathbf{x}) \mid \mathbf{x} \in \mathbf{C}, \, \mathbf{x} \neq 0\},\,$$

and a q-ary linear code of length n, dimension k and minimum distance d is indicated as an $[n, k, d]_q$ code. For such codes the Singleton bound holds:

$$d \leq n-k+1$$
.

A generator matrix of C is a $k \times n$ matrix whose rows form an \mathbf{F}_q -bases of C.

The dual of a code C is indicated as C^{\perp} , and it consists of all the vectors of \mathbf{F}_q^n which are orthogonal to all codewords from C, that is

$$\mathbf{C}^{\perp} := \{ \mathbf{x} \in \mathbf{F}_q^n \mid \langle \mathbf{x}, \mathbf{y} \rangle = 0 \text{ for any } \mathbf{y} \in \mathbf{C} \},$$

where \langle , \rangle denotes the inner product in \mathbf{F}_q^n . If G is a generator matrix of \mathbf{C} , then

$$\mathbf{C}^{\perp} = \{ \mathbf{x} \in \mathbf{F}_q^n \mid G\mathbf{x}^T = \mathbf{0} \},\,$$

where \mathbf{x}^T denotes the transpose of \mathbf{x} ; moreover, \mathbf{C}^{\perp} has dimension n-k. A parity check matrix of a code is any generator matrix of its dual.

2.2 Goppa codes

Throughout this section C will be a curve defined over \mathbf{F}_q . For background facts on curves we refer to [3], [5], [10], [12].

We fix the following notation.

- $\mathbf{F}_q(\mathcal{C})$ denotes the field of \mathbf{F}_q -rational functions of \mathcal{C} .
- For $f \in \mathbf{F}_q(\mathcal{C}) \setminus \{0\}$, $\operatorname{div}(f)$ denotes the divisor associated to f.
- For E divisor of C, L is the following \mathbf{F}_q -vector space

$$\mathcal{L} = \{ f \in \mathbf{F}_q(\mathcal{C}) \setminus \{0\} \mid E + \operatorname{div}(f) \ge 0 \} \cup \{0\} ;$$

moreover we let $\ell(E) = \dim_{\mathbf{F}_q}(\mathcal{L}(E))$.

Let P_1, \ldots, P_n be n distinct \mathbf{F}_q -rational points of \mathcal{C} and let G be a divisor of \mathcal{C} defined over \mathbf{F}_q and such that $v_{P_i}(G) = 0$ for $i = 1, \ldots, n$. Let e be the following \mathbf{F}_q -linear map

$$e: \mathcal{L}(G) \to \mathbb{F}_q^n, \qquad f \mapsto (f(P_1), \dots, f(P_n)),$$

and set $D = P_1 + P_2 + ... + P_n$.

Definition 2.1 The Goppa code associated with D and G is $C_{D,G} := e(\mathcal{L}(G))$.

Lemma 2.2 Let $k := \dim_{\mathbf{F}_q}(\mathbf{C}_{D,G})$ and d be the minimum distance of $\mathbf{C}_{D,G}$. Then

- 1. $k = \ell(G) \ell(G D)$;
- 2. $d \ge n \deg(G)$.

Lemma 2.3 Let g be the genus of C, and let k and d as above. Then

1. if $n > \deg(G)$ then $k = \ell(G)$; moreover, a generator matrix of $\mathbf{C}_{D,G}$ is given by

$$M := \left(\begin{array}{ccc} f_1(P_1) & \dots & f_1(P_n) \\ \vdots & \vdots & \vdots \\ f_k(P_1) & \dots & f_k(P_n) \end{array}\right)$$

where f_1, \ldots, f_k is an \mathbf{F}_q -basis of $\mathcal{L}(G)$;

2. if $n > \deg(G) > 2g - 2$, then $k = \deg(G) + 1 - g$.

Definition 2.4 If $G = \gamma P$ for some P \mathbf{F}_q -rational point of C and some $\gamma \in \mathbf{Z}$, then $C_{D,G}$ is called one-point Goppa code.

The parameters of a one-point Goppa code are closely related to the Weierstrass semigroups of the underlying curve.

Definition 2.5 The Weierstrass semigroups H(P) of C at a point $P \in C$ is defined as

$$H(P) := \{ a \in \mathbb{Z} \mid \exists f \in \mathbb{F}_q(\mathcal{C}) \text{ such that } (f)_{\infty} = aP \},$$

where $(f)_{\infty}$ denotes the polar divisor of f. The elements in H(P) are called non-gaps at P.

We have that $\mathcal{L}(\gamma P) = \mathcal{L}(\gamma^* P)$ where γ^* is the biggest non-gap at P less than or equal to γ . Therefore for a one-point Goppa code it is usually assumed that the integer γ is a non-gap at P.

2.3 One-point Hermitian codes

We present here certain one-point Goppa codes constructed from the Hermitian curve $\mathcal X$ which is defined for q squared by the equation

$$Y^{\sqrt{q}}Z + YZ^{\sqrt{q}} = X^{\sqrt{q}+1}.$$

This curve is non-singular of genus $g=\sqrt{q}(\sqrt{q}-1)/2$ and it has $q\sqrt{q}+1$ \mathbf{F}_q -rational points. These points are $P_\infty=(0,1,0)$ and $P_{a,b}=(a,b,1)$ where $a\in \mathbf{F}_q$ and $b^{\sqrt{q}}+b=a^{\sqrt{q}+1}$. Set

$$D:=\sum_{a\in\mathbf{F}_{a,b}\sqrt{q}+b=a\sqrt{q}+1}P_{a,b},$$

and

$$G:=mP_{\infty}, \qquad m\in \mathbf{Z}.$$

We consider the one-point Goppa code

$$\mathbf{C}_m := \mathbf{C}_{D,G} \subseteq \mathbf{F}_q^n$$
,

whose length is $n := q\sqrt{q}$. Let x = X/Z and y := Y/Z so that $y^{\sqrt{q}} + y = x^{\sqrt{q}+1}$. Thanks to the following proposition it is possible to calculate exactly the dimension and the minimum distance of both C_m and its dual (see [13] and [16]).

Proposition 2.6 An F_q -basis of $\mathcal{L}(G)$, $m \geq 0$, is given by

$$\{x^i y^j : i\sqrt{q} + j(\sqrt{q} + 1) \le m, i \ge 0, 0 \le j \le \sqrt{q} - 1\}$$

3 Decoding Hermitian codes

We keep the notation of the previous section. From now on, we let $C = C_m^{\perp}$, the dual of the one-point Goppa code constructed from the Hermitian curve as in Subsection 2.3.

Let d be the minimum distance of C. Suppose that $x \in C$ is a transmitted codeword from which we receive y = x + e. Notice that x is unique whenever y has distance at most (d-1)/2 to C.

Definition 3.1 The vector $\mathbf{e} = (e_1, \dots, e_n)$ is called the error vector of \mathbf{y} . The e_i 's are called the error values of \mathbf{y} and the weight of \mathbf{e} is the number of errors of \mathbf{y} . The set $\{i \in \{1, \dots, n\} \mid e_i \neq 0\}$ is the set of error positions of \mathbf{y} .

Lemma 3.2 [7, Prop. 6.1] Let H be a parity check matrix of C. Suppose that y = x + e, $x \in C$, and that $J \subseteq \{1, ..., n\}$ is a set with at most d - 1 elements which contains the set of error positions. Then e is the unique solution of the following linear equations in $z = (z_1, ..., z_n)$:

$$H\mathbf{z}^T = H\mathbf{y}^T$$
 and $z_k = 0$ for all $k \notin J$.

Proof. Certainly e satisfies the equations. Let z be another solution. Then $H(z-e)^T=0$ and so $z-e\in C$. Moreover, the weight of z-e is less than or equal to $\#J\leq d-1$. Therefore, z=e. \diamond

Now, let

$$H(P_{\infty}) = \{ \rho_1 = 0, \rho_2, \ldots \}, \qquad m = \rho_l.$$

For $y \in \mathbb{F}_q^n$, $i, j \in \mathbb{N}$ such that $\rho_i + \rho_j \leq \rho_l$ and $J \subseteq \{1, \ldots n\}$, we set

$$K_{ij}(\mathbf{y}) := \{ f \in \mathcal{L}(\rho_i P_{\infty}) \mid \langle \mathbf{y}, e(fg) \rangle = 0, \text{ for all } g \in \mathcal{L}(\rho_i P_{\infty}) \},$$

and

$$L_j(J) := \{ f \in \mathcal{L}(\rho_j P_\infty) \mid e(f)_k = 0 \text{ for all } k \in J \},$$

where $e(f)_k$ is the kth-coordinate of $e(f) = (f(P_1), \ldots, f(P_n))$.

Lemma 3.3 ([14]) Let y = x + e, $x \in C$, and let I be the set of error positions of y. Then

- (1) $K_{ij}(y) = K_{ij}(e)$;
- (2) $L_j(I) \subseteq K_{ij}(\mathbf{y});$
- (3) $L_j(I) = K_{ij}(y)$ provided that the minimum distance of $C_{\rho_i}^{\perp}$ is greater than the weight of e.

Then the following proposition holds.

Proposition 3.4 ([14]) Suppose that $l \ge 2g + 2$, where $g = \sqrt{q}(\sqrt{q} - 1)$ is the genus of \mathcal{X} . For l even, set i = l/2, j = l/2 - g + 1, t = l/2 - g; for l odd, set i = (l-1)/2, j = (l+1)/2 - g + 1, t = (l-1)/2 - g. Then

- i) $\rho_i + \rho_j \leq \rho_l$;
- ii) if y = x + e with $x \in C$ and $w(e) \le t$, then $K_{ij}(y) = L_j(I)$;
- iii) $L_j(I) \neq \{0\};$
- iv) For any $f \in L_i(I)$, $\#\{k \mid f(P_k) = 0\} \le d 1$.

Therefore, we have the so-called *basic algorithm* for the code C, i.e. giving y = x + e with $x \in C$ we can compute e whenever w(e) is less than or equal to l/2 - g.

Basic algorithm.

Given $C = C_{\rho_l}$ with $l \geq 2g + 2$.

Step 1. Fix i and j fulfilling the hypothesis of Proposition 3.4. Calculate F_q -basis for $\mathcal{L}(\rho_l P_{\infty})$, $\mathcal{L}(\rho_i P_{\infty})$ and $\mathcal{L}(\rho_j P_{\infty})$.

Step 2. Once the (possibly altered) message y has been received, calculate a function f in $L_j(I) = K_{ij}(y)$, $f \neq 0$.

Step 3. Set $J = \{k \mid f(P_k) = 0\}$. Then calculate e such that

$$He^T = Hy^T$$
 and $e_k = 0$ for all $k \notin J$.

Step 4. Put x = y - e.

4 The MAGMA programme

4.1 Preliminary settings

Suppose that the prime power \sqrt{q} is contained in the variable sq, and that $l \geq 2g + 2$ is contained in the variable 1.

```
q:=sq^2;
K:=GF(q);
R<x,y>:=PolynomialRing(K,2);
n:=sq^3;
g:=((sq)*(sq-1)) div 2;
```

4.2 Step 1

First we construct a function which computes the dimension of an \mathbf{F}_q -space $\mathcal{L}(\mathbf{t}P_{\infty})$. We refer to Proposition 2.6.

```
dim:=function(t)
    if t eq 0 then
       return 1;
    else
       base:={};
       for r in [0..t] do
            for s in [0..sq-1] do
                if r*sq+s*(sq+1) le t then
                    base:=base join {r*q+s*(q+1)};
                end if;
           end for;
       end for;
       return #base;
   end if:
end function;
   Next we calculate \rho_l, i, j, \rho_i and \rho_j, and we put them in the variables
Rl, i, j, Ri, Rj respectively.
nongaps:=[];
for x in [0..l+g-1] do
  if dim(x+1) eq dim(x)+1 then
    Append(~nongaps,x);
  end if;
end for:
R1:=nongaps[1];
if IsEven(1) then
  i:=1 div 2;
  j:=1 div 2-g+1;
    else
  i:=(1-1) div 2;
  j:=(1+1) div 2 -g+1;
end if:
Ri:=nongaps[i];
Rj:=nongaps[j];
   We denote by BaseR1 an \mathbf{F}_q-base of \mathcal{L}(\rho_l P_{\infty}), by BaseRi an \mathbf{F}_q-
```

base of $\mathcal{L}(\rho_i P_{\infty})$, and by BaseRj an \mathbf{F}_q -base of $\mathcal{L}(\rho_j P_{\infty})$.

```
BaseR1:=[];
for s in [0..sq-1] do
  for r in [0..R1] do
     if r*sq+s*(sq+1) le Rl then
       Append("BaseRl,(x^r)*(y^s));
     end if;
  end for;
end for;
BaseRi:=[];
for s in [0..sq-1] do
  for r in [0..R1] do
     if r*sq+s*(sq+1) le Ri then
       Append(~BaseRi,(x^r)*(y^s));
    end if:
  end for:
end for;
BaseRj:=[];
for s in [0..sq-1] do
  for r in [0..R1] do
    if r*sq+s*(sq+1) le Rj then
       Append(~BaseRj,(x^r)*(y^s));
    end if:
  end for:
end for;
k:=#BaseR1;
   By Points we denote the sequence of all \mathbf{F}_q-rational affine points of
\mathcal{X}.
Points:=[];
for u in K do
  for v in K do
    if Evaluate(x^(sq+1)+y^sq+y,[u,v]) eq 0 then
      Append("Points,[u,v]);
    end if:
  end for;
end for;
```

Finally we construct the parity check matrix of C, denoted as H, its transpose Ht and an F_q -basis of C, denoted as CodeBase.

```
seq:=[];
k:=dim(Rl);
for I in [1..k] do
    for v in [1..n] do
        ing:=Evaluate(BaseRl[I],Points[v]);
        Append(~seq,ing);
    end for;
end for;
M1:=KMatrixSpace(K,k,n);
H:=M1![seq[t]:t in [1..k*n]];
Ht:=Transpose(H);
W1:=VectorSpace(K,k);
O:=W1![O:t in [1..k]];
Par,Gen:=Solution(Ht,O);
CodeBase:=Basis(Gen);
```

4.3 Step 2

Suppose that the sequence Y contains the message $y \in \mathbb{F}_q^n$. We have to find a non-zero function in $L_j(I) = K_{ij}(y)$, i.e. a non-zero \mathbb{F}_q -linear combination $f = \sum \alpha_i f_i$, $f_i \in \text{BaseRj}$ such that

$$\sum_{i} \alpha_{i} \left(\sum_{l=1...n} y_{l} g(P_{l}) f_{i}(P_{l}) \right) = 0$$

for all g in BaseRi and for all f_i in BaseRj . Then to find the α_i 's we have to solve an appropriate homogeneous linear system over \mathbf{F}_q .

```
Z:=W2![0:I in [1..#BaseRi]];
D,A:=Solution(Xtr,Z);
N:=Basis(A);
f:=R!&+[N[1][s]*BaseRj[s]:s in [1..#BaseRj]];
```

4.4 Step 3

We put the error positions in a variable J.

Note that

$$He^T = Hy^T$$
 and $e_k = 0$ for all $k \notin J$

is equivalent to

$$eH2^T = yH^T$$
 and $e_k = 0$ for all $k \notin J$,

where H2 is obtained by deleting the columns of H corresponding to the positions $k \notin J$. Therefore the error E can be calculated as follows.

```
seq:=[];
for v in J do
    for I in [1..k] do
        entr:=Evaluate(BaseRl[I],Points[v]);
        Append(~seq,entr);
    end for;
end for;
M3:=KMatrixSpace(K,#J,k);
H2t:=M3![seq[t]:t in [1..k*#J]];
W3:=VectorSpace(K,n);
YM:=W3![Y[I]:I in [1..n]];
YHt:=YM*Ht;
Err:=Solution(H2t,YHt);
E:=[K|];
```

```
u:=1;
for I in [1..n] do
   if I in J then
     E[I]:=Err[u];
     u:=u+1;
   else
     E[I]:=0;
   end if;
end for;
```

4.5 Step 4

Finally, the transimetted codeword X can be easily calculated.

```
X:=[K|];
for I in [1..n] do
  X[I]:=Y[I]-E[I];
end for;
```

References

- [1] S. Arimoto, Encoding and decoding of p-ary group codes and the correction system, *Inform. Processing in Japan* 2 (1961), 320-325.
- [2] Y. Driencourt, Some properties of elliptic codes over a field of characteristic 2, Proc. AAECC-3, Grenoble 1985, Lect. Notes Comp. Sc. 229 (1986), 185-193.
- [3] W. Fulton, Algebraic Curves. An introduction to Algebraic Geometry, W.A. Benjamin, New York, 1969.
- [4] V.D. Goppa, Algebraic-Geometric Codes, Math. USSR-Izv. 21(1) (1983), 75-93.
- [5] R. Hartshorne, Algebraic Geometry, Grad. Texts in Math. Vol. 52, Springer-Verlag, New York/Berlin, 1977.
- [6] A. Havemose, Decoding algebraic geometric codes, Ph.D Dissertation, Danmarks Tekniske Hojskole, Denmark, 1989.
- [7] T. Høholdt, J.H. van Lint and R. Pellikaan, Agebraic geometric codes, in Handbook of Coding Theory (V.S. Pless, W.C. Huffman and R.A. Brualdi Eds.), vol. 1, 871-961, Elsevier, Amsterdam 1998.

- [8] J. Justesen, K.J. Larsen, H.E. Jensen A. Havemose and T. Høholdt, Construction and decoding of a class of algebraic geometric codes. IEEE Trans. Inform. Theory 35 (1989), 811-821.
- [9] W.W. Peterson, Encoding and error-correction procedures for the Bose-Chauduri codes, IRE Trans. Inform. Theory IT-6 (1960), 459– 470.
- [10] A. Seidenberg, Elements of the Theory of Algebraic Curves,
- [11] A.N. Skorobogatov and S.G. Vlåduţ, On the decoding of algebraic-geometric codes, *IEEE Trans. Inform. Theory* **36** (1990), 1051-1060.
- [12] H. Stichtenoth, Algebraic Function Fields and Codes, Springer Verlag, Berlin/Heidelberg/New York, 1993.
- [13] H. Stichtenoth, A note on Hermitian codes over $GF(q^2)$, IEEE Trans. Inform. Theory 34(5) (1988), 1345-1348.
- [14] F. Torres, Notes on Goppa codes, Quaderno del seminario di Geometrie Combinatorie G. Tallini 136 (2000), Dipartimento di Matematica Istituto G. Castelnuovo, La Sapienza, Rome.
- [15] M.A. Tsfasman and S.G. Vlăduţ, Algebraic-Geometric Codes, Kluwer, Amsterdam, 1991.
- [16] K. Yang and P.V. Kumar, On the true minimum distance of Hermitian codes, Coding theory and algebraic geometry, Lecture Notes in Math. Vol. 1518, 99-107, Springer-Verlag, Berlin-Heidelberg, 1992.