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Abstract

Let ny, ny, ..., nx be integers of at least two. Johansson gave
a minimum degree condition for a graph of order exactly n; 4+ na +
*++ + ni to contain k vertex-disjoint paths of order ny, ng, ..., ng,
respectively. In this paper, we extend Johansson’s result to a corre-
sponding packing problem as follows. Let G be a connected graph
of order at least ny 4+ n2 + --- + nx. Under this notation, we show
that if the minimum degree sum of three independent vertices in G

is at least 3([%J+l"?2j++l%”

then G contains k vertex-disjoint paths of order ny, no, ..., ng,
respectively, or else ny = ny = -+ = n, = 3, or k = 2 and
n; = ny = odd. The graphs in the exceptional cases are com-
pletely characterized. In particular, thesc graphs have more than
m 4+ n2 + - -- + ny vertices.

Introduction

We consider only undirected graphs without loops or multiple edges.

Johansson[4] gave an El-Zahar type condition (see [1]) for a graph to

be partitioned into paths with prescribed lengths.

Theorem A (Johansson[4]) Suppose that G is a connected graph with
|G| = ni+ny+ -+ + ng, where n,, ny, ..., 0t are integers of at least two.
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If every vertez of G has degree at least

3+ 5]+ 5]

then G contains vertez-disjoint paths Py, Ps, ..., P such that |P;| = n;
forl1<i<k. m]

Note that it is assumed in Theorem A that every n; is greater than or
equal to two. Also there exist several examples showing that the assump-
tion is necessary. (See the exceptional graphs in Theorem 1.) However,
it is quite natural to consider the cases where some n;’s are one. If we
employ the same degree condition as in Theorem A, then any additional
ny’s with n; = 1 does not affect the degree condition (because [1/2] = 0).
Thus such a problem is equivalent to the packing problem corresponding to
Johansson’s result. Moreover, we consider a degree sum condition instead
of the minimum degree condition.

For a graph G and a positive integer k, we define 04(G) to denote the
minimum degree sum of k independent vertices in G. (If G does not contain
an independent set of k vertices, then we define o1(G) = o0.)

In order to state our main result, we need some graph theoretical nota-
tions. Let Hy and H, be graphs. The graph H; U H; is the vertex-disjoint
union of H, and H,. The graph H, + H, is the join of H; and H;, which
is obtained from H, U H, by joining every pair of vertices x in H; and y
in H,. For a positive integer m, the vertex-disjoint union of m copies of a
graph H is denoted by mH.

Theorem 1 Suppose that G is a connected graph with |G| > ny +ny +
-+ ng, where ny, ny, ..., 0y are integers of at least two. If

0 2 3%+ |3+ + 3.

then G contains vertez-disjoint paths Py, Py, ..., P such that |Pi| = n;
for 1 <i <k, orelse

(1) ny = ny = -+ = n = 3, and for some integers a, b and ¢ with a =
b= c=2(mod 3) and a+b+c = 3k, G is the join K+ (KUK,UKR,),

(2) k=2 and n1 = ny = 1(mod 2), and for some integer m with m 2 3,
G is the join Ky + mK,, 1, or

(38) m = ny = --- = nt = 3, and for some integer m withm 2k +1, G
is the join of mK, and a graph on k — 1 vertices.



Since these exceptional graphs have more than n+ny+- - -+ng vertices,
it is immediate to obtain the following corollary, which is a o3 version of
Johansson’s theorem, and of course implies Johansson’s theorem.

Corollary 2 Suppose that G is a connected graph with |G| = ny +ny +
©+++ng, where ny, ny, ..., ny are integers of at least two. If

) L] n2 g
(@ 2 3(|5 ]+ 7]+ +|5]).
then G contains vertez-disjoint paths Py, P, ..., P such that |Pi| = n;
for1<i<k. (]

2 Lemmas Concerning Long Paths

In this section, we prove several lemmas which we use in the proof of
Theorem 1.

We use the following notation and terminology. A path P in a graph G
is said to be dominating if E(G — V(P)) = 0. A path is said to be one-way
mazimal if one of the endvertex called the terminal has no neighbor outside
the path.

Lemma 3 Let G be a connected graph without hamiltonian paths. Suppose
that P is a longest path in G and Q is o one-way mazimal path in G -V(P).
If P is not dominating, then |P|+|Q| > 03(G) + 1.

Proof. Let « and « be the endvertices of P, and w be the terminal of Q.
Suppose that P is oriented from u to v. For a vertex z € V(P), 2% and 2~
denote the successor and the predecessor of z, respectively. For X C V(P),
we write X+ for {2t | z € X}.

Note that Ng(u) C V(P) and Ng(v) C V(P) since P is a longest
path, and that Ng(w) C V(P) U V(Q) since Q is oneway maximal. We
claim that Ng(u)~, Ng(v)* and Ng(w) are mutually disjoint subsets of
V(PYuV(Q) - {w}. If No(u)~ N Na(w) # 0 or Ng(v)* n Ne(w) # 0,
then we can easily find a path through V(P) U {w}, which contradicts
the maximality of P. If + € Ng(u)~ N Ng(v)*, then we have a cycle
C = ux*Puyx~ Pu consisting of |P| — 1 vertices. By the assumption
that P is not dominating, there exists a component H' of G' — V(P) with
|H'| > 2. Since G is connected, we can take a path containing at least two
vertices of H' and all vertices of C', which is longer than P, a contradiction.

By the maximality of P, u, v and w are mutually nonadjacent, and
hence

03(G) < degg(u) + degg(v) + degg(w)
= [Ng(u)™|+ [Na(v)*| + |Ne(w)|
< |P+Q|-1.
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Thus we have proved that |P| + |Q| > ¢3(G) + 1. O

Lemma 4 Let G be a connected graph without hamiltonian paths, and P
be a longest path in G. Then |P| > 203(G) + 1.

Proof. If P is not dominating, then let @ be a one-way maximal path in
G — V(P) such that the starting vertex has a neighbor in P. Then, since
P is a longest path, it follows that |P| > 2|Q| + 1. Also by Lemma 3, we
have |P| +|Q| > 03(G) + 1. Hence |P| > £|P|+ }(2|Q| +1) > %03(G) +1.

Suppose that P is dominating. Let u and v be the endvertices of P, and
let w be a vertex not in P. Then by the maximality of P, it is not difficult
to see that |P| > degg(u) + degg(v) + 1, and that |[P| > 2degg(w) + 1.
Since u, v and w are mutually nonadjacent, 3|P| > 2(degg(u) + degg(v) +
1) + (2degg(w) + 1) > 203(G) + 3, and the desired inequality follows. O

Note that the minimum degree version of Lemmas 3 and 4 was proved in
[3] (Lemma 4). In order to prove Theorem 1, we need the characterization
of the extremal structure of Lemma 3.

Lemma 5 Let G be a connected graph without hamiltonian paths, P a
longest path in G, and Q a longest path in G — V(P). If|Q| > 2 and
|P| + |Q| = 03(G) + 1, then one of the followings holds:

(5a) G = K1 + (K, U Ky U K,) for some integers a, b and c with2 < a <
b<ec,

(3b) G = K, + tK, for some integers a > 2 and t > 4, or

(5¢) G C K+ tK; for some integers s and t with t > s +2 2 4.

Proof. Let u and v be the endvertices of P, and w an endvertex of Q.
We use the same notations as in the proof of Lemma 3. Let H be the
component of G — V(P) containing the path Q.

By the argument in the proof of Lemma 3, the equality |P| + |@Q| =
03(G) + 1 implies that degg(u) + degg(v) + degg(w) = 03(G) and

(1) V(P)UV(Q) — {w} is the disjoint union of Ng(u)~, Ng(v)* and
Ng(w).

In particular, w is adjacent to all vertices in Q. Thus @) is a spanning path
of H, and every vertex in H can play the same role as w. Consequently,
we can observe that

(2) H is complete, and for every vertex 2 € V(H),
Ng(z) NV (P) = Ng(w) N V(P) =V (P) - (Ng(u)~ U Ng(v)*).
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Let X = Ng(w) N V(P), and let u;, uy, ..., uy be the vertices in X along
the orientation of P. We prove the following claim:

(3) If u is adjacent to a vertex  in u] Pv, then z € X.

Suppose not. Let x € Ng(u) be a vertex in V(uf Pv) — X such that zPv
is as short as possible. By (1), x is contained in exactly one of Ng(u)™,
Ng(v)* and Ng(w). By the definition of z, we have z € Ng(w). Iz €
Ng(v)*, then we can find a path ] Puz Pva~ Pu,w which is longer than P,
a contradiction. Hence z € Ng(u)™, i.e., 2+ € Ng(u). By the minimality
of zPv, x* is contained in X. Then there exists a path vPrtwu, PuzPuf
longer than P, a contradicion. Hence we have proved (3).
By symmetry, the following statement holds:

(3’) If v is adjacent to a vertex x in uPu], then z € X.
Next we prove the following two claims:

(4) lutPui, | =2 for every i with 1<i < s~ 1.

(3) Ng(u) = V(u*Pu;)U X and Ng(v) = V(u,Pv-) U X.

If |u;-*Pu,-'_‘_,| > 3, then uf™* is contained in none of the sets Neg(u)™,
Ng(v)* and Ng(w), contradicting (1). If [uf Pui,| = 1, then since
|Q| = |H| > 2, taking a vertex w' € V(H) — {w}, we can find a path
uPu;ww'uiy Py which is longer than P, a contradiction. Thus (4) has
been proved.

By (3’) and (4), any vertex z in V(uPu]) U X~ is contained in nei-
ther Ng(v)* nor Ng(w). Hence by (1), we have z € Ng(u)~. This
shows Ng(u) = V(u*Pu;) U X. By symmetry, it follows that Ng(v) =
V(usPr~)U X.

Now we mention the following claim:

(6) In every component H' of G — V(P), there exists a path Q' with
Q' =1Ql.

Let Q' be a longest path in H’. Since Q is longest in G — V(P), we have
|Q'] < |Q|. Since P is not dominating, by applying Lemma 3 to @', we
have |P| +[Q'| 2 3(G) + 1. This implies |Q'] > |Q]. Thus Q) = |Q]
holds.

This claim implies that every component H’ of G — V(P) can play the
same role as H, and hence by (2), (4), and (5), we have the following:

(7) Every component of G — V(P) is a complete graph of same order,
and for every vertex z € V(G) — V(P), Ng(z)NV(P) = X.

Thus in particular, every component of G—V(P) is a component of G- X,
In addition, we can prove the following:
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(8) Every component of P — X is a component of G-X.

This is because, if there is an edge joining different components of I’ — X,
then we can easily find a path longer than P.

Let @ = |H|, b = |[uPuj| and ¢ = [ufPy|. We may assume that
b < ¢. Also, by the maximality of P, we have a < b. Then Pl +1Q| =
a+b+c+3s—2, which is equal to o3(G)+ 1 by the assumption. Thus we
have

(9) 03(G)=a+b+c+3s-3.

Let h be the number of components in G — V(P). If s=1and h =1,
then G is a subgraph of K, + (Kq U Ky U K.). However, G cannot be a
proper subgraph since 03(G) = a + b+ ¢ by (9). Thus (a) follows. Ifs=1
and h > 2, then taking a vertex &’ in G — V(P) — V(H). we have gy (G) £
degs(u)+degg(w)+degg(w’) = 2a+b. By (9), a+b+c < o3(G) < 2a+b,
implying ¢ < a. Since we assumed a < b<c, wehavea=b=c. Thus G
is a subgraph of K + (h + 2)K,. Considering the condition of o3(G), we
conclude that G is isomorphic to &'y + (h + 2)K,, and (b) follows.

If s > 2, then 03(G) < degg(u) + degg(w) + deg(uF) < (b+s-1)+
(a+s—-1)+(s+1)=a+b+3s—1. Then by (9), we have ¢ < 2. Thus we
have a = b = ¢ = 2. This implies that G is a subgraph of K, + (A + AR,
and (c) follows. This completes the proof of Lemma 5. a

Lemma 6 Letd = ||+ %)+ --+[5] withn; > 2.1 <i < k. Suppose
P and Q are vertez-disjoint paths with |P| > 2d+1 and |P|+|Q| > 3d +1.
Then, one can divide these paths to obtain vertez-disjoint paths of order
Ry, Ny ..., Ay, unless |P|+|Q| =3d+1 and

(6a) ny =ny=---=n, =3 (henced = k) and |P| = |Q| = 2 (mod 3), or

(6b) k =2, ny = ny = 1(mod 2) (henced =n — 1), |P] =20 — 1 and
Q| = n1 — 1.

Proof. We may assume that ny > np > -+ > ni. Let r be the number of
odd integers among ny, nz, . .., 7. Then, it follows that ny+ne+---+ng =
9d+r. When k = 1, since |P| > 2d+1 > n;, we can obtain a path of order
ny from P. Hence we assume k > 2. Then, since n; 2 2 for each 7 > 3, we
have d > ﬂl"’—’;ﬂ +(k=2) > ny + k — 3, and hence

(10) ny < d — k + 3, in which equality holds if and only if ny = ny =
1(mod 2) and n; < 3 for ¢ 2 3.

Now, we shall remove paths of order n;, ns, ... from P and Q. We
assume that we can remove these paths up to n;, and cannot take a path
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of order nj;,. Note that we can always remove a path of order n;, since
|P| > 2d +1 > n;. Thus j > 1. Then, there remain at most two paths of
order less than n;; . Hence,

[PI+1Q < ni4na+---+nj+2(njpi —1)
< my+np+-+np+njp —2
< @d+r)4+(d-k+3)-2
= 3d+1+r-k
< 3d+1,

where equality must hold, since |P| + |Q| > 3d + 1. In particular, we
have |P| + |Q| = 3d + 1. By the equality for the last inequality, we have
r = k, namely, all n; (1 < i < k) are odd. By the equality of the second
inequality, we have j + 1 = k. By the equality of the third inequality, we
have ny = ny = d — k4 3, and hence equality in (10) holds. If & = 2, then
by (10), we have n; = ny = 1 (mod 2). Further by the equality of the first
inequality, we have |P|=n;+n;, —1=2n; —1 and |Q| = n, — 1. Thus

(b) follows. If k& > 3, then by (10) again, we have ny = ny = +-- = n4 = 3.
Further by the equality of the first inequality, each of P and @ consists of
2 (mod 3) vertices. Thus (a) follows. a

3 Proof of Theorem 1

We use the following lemma, which plays a key role in the proof of Jo-
hansson’s theorem. In fact, Lemma 3 in [4] deals with only the case
where |G| = ny + - -- + nt. However, the same argument works also when
|Gl > ny + -+ + ng.

Lemma 7 ([4], Lemma 5) Let G be a graph of order at least ny+- - -+ny,
where n; 2 2 for 1 <i < k. If G contains a path P satisfying that

No(@) VP 2 | 3|+ [ 3]+ + | 2]

for allx € V(G) - V(P), then G contains vertez-disjoint paths of order ny,
Ngy «vuy Ny m]

Proof of Theorem 1. Let d = [4- ]+ |52 ] +---+|5%]). Define L ={z €
V(G) | degg(z) < d}.

Let P be a longest path in G. If P is a hamiltonian path, then since
|P| > ny 4+ ny + -+ ng, we are done. If not, choose P so that |V(P)N L|
is as large as possible. Moreover, subject to the condition, we prefer the
situation where many endvertices of P are in L if any.
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Suppose first that P is a dominating path. If no vertex in V(G)-V(P)
is in L, then by Lemma 7, G contains the desired paths. So let w €
V(G)-V(P) be a vertexin L. Let u and v be the endvertices of P, so that
P is oriented from u to v. We claim that Ng(u)~, Ng(v)* and Ng(w) are
pairwise disjoint subsets of V(). By the maximality of P, one can easily
observe that Ng(u)~NNg(w) = 0 and Ng(v)* N Ng(w) = 0. Suppose that
there exists a vertex € Ng(u)~NNg(v)™. Note that one of  and v is not
contained in L, since degg(u) + degg(v) + degg(w) > 03(G) > 3d. Thus
z is not contained in L, for otherwise we can take another longest path
P' with V(P') = V(P), increasing the number of endvertices contained
in L, a contradiction. Then, we can easily find a longest path P" with
V(P") = V(P)U {w} — {z}, contradicting the maximality of |V/(P) N L|.
This shows that Ng(u)™ N Ng(v)* = 0. Then, |P| > degg(u) + degg(v) +
degg(w) > 03(G) > 3d 2 ny + n2 + -+ + n, and hence G contains the
desired paths.

Suppose that P is not dominating. Let Q be alongest path in G~V (P)
so that |Q| > 2. By Lemmas 3 and 4, we have |P| > 2d+1 and |P|+|Q| >
3d + 1. Then by Lemma 6, we may assume that |P| + |Q| = 3d + 1, and
(6a) or (6b) holds. The equality |P|+|Q| = 3d+1 implies that a3(G) = 3d
and |P| +|Q| = ¢3(G) + 1. Thus by Lemma 5, (5a), (5b) or (5c) holds.

Suppose first that G satisfies (5a). Then d3(G) (=3d) =a+b+ec,
[Pl =b+c+1and |Q| = a. If (6a) holds, then a + b+ c = 3d = 3k
anda = b+c+1 = 2(mod 3). b # 2(mod 3) or equivalently ¢ #
2(mod 3), then we can easily find k vertex-disjoint paths of order three in
G =K, +(K,UK,UK,). Hence we have a = b = ¢ = 2(mod 3), and (1)
follows. If (6b) holds, then since |P| = 2ny — 1 and |Q] = ny — 1, we have
a=b=c=mn; —1, and hence (2) holds.

Next suppose that G satisfies (5b). Then a3(G) = 3d = 3a, |P| = 2a+1
and |Q| = a. Hence @ = d. If (6a) holds, then k = d = a and a = 2 (mod 3).
Since G = K; + tK, with t > 4, G contains

2a+1 a 2a -1 a—2 a—2
l 3 J+(t—2)l§J 2 —3 +2 3 =k-1+ 3

vertex-disjoint paths of order three. Thus we may assume that a = 2.
Namely k = 2, and (3) is satisfied. If (6b) holds, then we havea = d = n; -1
and hence (2) holds.

Finally, suppose that G satisfies (5¢). Then from the proof of Lemma
5, we see that 03(G) = 3d = 35+ 3, |P| = 35+ 2 and |Q| = 2. Hence
d = s+ 1. If (6a) holds, then (3) follows easily. If (Gb) holds, then since
|P| = 2n,—1and |Q| = ny — 1, we have n; = 3 and s = 1. This contradicts
the condition s > 2 in (5¢).

This completes the proof of Theorem 1. ]
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