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Abstract

Given a graph, a no-hole 2-distant coloring (also called N-coloring)
is a function f that assigns to each vertex a non-negative integer
(color) such that the separation of the colors of any pair of adja-
cent vertices must be at least 2, and all the colors used by f form a
consecutive set (the no-hole assumption). The minimum consecutive
N-span of G, csp, (G), is the minimum difference of the largest and
the smallest colors used in an N-coloring of G, if there exists such
a coloring; otherwise, define csp,(G) = co. Here we investigate the
exact values of csp, (G) for unit interval graphs (also known as 1-unit
sphere graphs). Earlier results by Roberts [18] indicate that if G is
a unit interval graph on n vertices, then csp,(G) is either 2x(G) — 1
or 2x(G) =2, if n > 2x(G) — 1; espy(G) = oo, if n < 2x(G) -1,
where x(G) denotes the chromatic number. We show that in the
former case (when n > 2x(G) — 1), both values of csp,(G) are at-
tained, and give several families of unit interval graphs such that
cspy(G) = 2x(G) — 2. In addition, the exact values of csp,(G) are
completely determined for unit interval graphs with x(G) = 3.

1 Introduction

The no-hole 2-distant coloring is originated from T-coloring, a channel as-
signment problem introduced by Hale [7]. Suppose several transmitters
or stations, and a forbidden set T (called T-set) of non-negative integers
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(with 0 € T') are given. We need to assign to each transmitter or station a
non-negative integral channel under the constraint that if two transmitters
interfere, then the difference of their channels does not fall within the T-set.
Two transmitters may interfere due to various reasons such as geographic
proximity and meteorological factors. To formulate this problem, we con-
struct a graph G such that each vertex represents one transmitter, and two
vertices are adjacent if their corresponding transmitters interfere.

Thus, we have the following definition. Given a T-set and a graph G, a
T-coloring of G is a function f : V(G) — Zt U {0} such that

[f(z) - fW) €T if =zyeE(@QG)

A no-hole T-coloring of G is a T-coloring f such that f(V) is a consecutive
set.
The span of a T-coloring f is the difference of the largest and the smallest
colors used in f(V). The T-spen of a graph G, spp(G), is the minimum
span among all possible T-colorings of G. The variable T-span for different
graphs and different 7-sets has been studied extensively by several authors
(see [2, 3, 4, 6, 11, 12, 13, 15, 16, 20]).

It is known [3] that for any given T-set and graph G, a T-coloring
always exists. However, a no-hole T-coloring does not have this property.
For instance, take 7 = {0,1} and G = K». Hence, we define the consecutive
T-span of a graph G, denoted by csp7(G), by the minimum span of a no-
hole T-coloring if there exists such a coloring; and define cspp(G) = oo
otherwise.

For the case that T = {0,1} and T = {0,1,2,...,7}, a no-hole 7-
coloring is also called an N-coloring (in [18]) and an N,-coloring (in [19]),
respectively. That is, an N,-coloring of a graph G is a function f : V(G) —
Z* U {0} such that f(V) is consecutive and it satisfies the condition

|f(z) - f@)l=r+1, if zyeE(@G).

Roberts [18] and Sakai and Wang [19] studied the N-coloring and the
N,-coloring, respectively. Among the findings in (18, 19] are the results
about the existence of an N-coloring and an N, -coloring, respectively, for
special graphs such as paths, cycles, bipartite graphs and 1-unit sphere
graphs. Moreover, if it is the case that such a coloring exists, the authors
also gave upper and lower bounds of the span.

The exact values of cspp(G) for some families of graphs and T-sets were
studied by Liu and Yeh [14] in which the authors proved: If T is r-initial
(ie. T ={0,1,2,...,7}U A, where A contains no multiple of (r + 1)) or
T = {0,e,a + 1,8 +2,---, b}, then for any large n, there exists a graph G
on n vertices such that cspr(G) = n — 1. The exact values of csp,.(G) for
bipartite graphs were investigated by Chang, Juan and Liu [1]. In [1], the
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authors determined the values of csp,.(G) for all bipartite graphs with at
least r—2 isolated vertices, and completely determined csp,(G) for bipartite
graphs.

A graph G = (V,E) is a k-unit sphere graph if there is a function g
from V(G) into the Euclidean k-space R* such that for all z # y in V,
zye E if and only if d(g(z)—g(y)) <1, where d denotes the Euclidean
distance between two points in B*. The 1-unit sphere graphs are also known
as unit interval graphs or indifference graphs in the literature (see [5]).

IfT ={0,1,2,...,7}, denote cspy(G) by csp,.(G). In this article, we
focus on the exact values of csp,(G) for unit interval graphs. In Section
2, we cite some known results in T-colorings and no-hole T-colorings that
will be used later in our proofs. Section 3 is focused on the computation
of the exact values of csp,(G) for unit interval graphs G. In particular,
csp, (G) is obtained for some families of unit interval graphs, and csp, (G)
is completely determined for unit interval graphs with x(G) = 3, where
X(G) denotes the chromatic number of G.

2 Preliminaries
It is well-known [3, 10] that if T is r-initial, then the following holds:
spr(G) = (x(G) — 1)(r + 1) for all graphs G. (*)

By the definition of a no-hole T-coloring, if cspp(G) is finite, a trivial upper
bound for cspp(G) is n—1, where n = |V(G)|. Since any no-hole T-coloring
is also a T-coloring, by (*), we have:

Proposition 1 For any positive integer r and any graph G on n vertices.
If csp,.(G) < oo, then (x(G) —1)(r+1) < csp, (G) <n-1.

It is well-known that unit interval graphs are perfect (see [5]), hence
for any unit interval graphs G, x(G) = w(G), where w(G) is the size of a
maximum clique in G. Another well-known result that will be used in this
article is due to Roberts [17]): A graph G = (V, E) is a unit interval graph if
and only if it has a compatible vertez ordering, i.e. an ordering vy,v2,...,Un
of vertices of G so that if ¢ < j < k and v;vx € E, then v;v;,vjvx € E.

Using the compatible vertex ordering of a unit interval graph, Roberts
[18] proved implicitly, without mentioning the variable csp, (G), the follow-
ing:

Theorem 2 ([18]) If G is a unit interval graph on n vertices, then

<2x(@) -1, fn>2x(G)-1,
0891(0'){ =o§,( ) :f:<2§§0§-1.
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The theorem above was extended by Sakai and Wang [19] who showed
the following:

Theorem 3 ([19]) If G is a unit interval graph on n vertices, then

S +1)x(G) -1, ifn2(r+1)x(G);
csp,(a){ T+ AT N

Figure 1 shows an example of Theorem 3.

)

Y,
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Figure 1: A unit interval graph with x(G) = 4 and csp,(G) = 11.

Although from the theorem above the problem of determining the exis-
tence of an N,-coloring is not completely settled for general values of r, for
r = 1, referring to Theorem 2, Sakai and Wang [19] completed the answer
by confirming the case n = 2x(G) — 1:

Theorem 4 ([19]) If G is a unit interval graph on n = 2x(G) —1 vertices,
then
_ [ 2x(G) -2, ifG has e unique mazimum clique;
cspy(G) = { 00, otherwise.

3 Main results

In this section, we investigate the exact values of csp, (G) for unit interval
graphs G. According to Theorems 2 and 4, we consider unit interval graphs
with more than 2x(G) — 1 vertices. By Proposition 1 and Theorem 2, the
only possible values of csp, (G) for such graphs are 2x(G)—2 and 2x(G)-1.
We show both values are attainable, and give complete solutions of csp, (G)
for unit interval graphs with x(G) = 3.

Without loss of generality, all the graphs considered in this section are
simple and connected. Throughout the section, unless indicated, we sup-
pose G = (V, E) is a unit interval graph with a compatible vertex ordering
P = vy,vs,...,U, where n = |V(G)| > 2x(G) — 1. The distance of two
vertices v; and v; on P, denoted by dp(u,v), is defined as |i — j|. And we
let

A:={v: v is in some maximum clique of G}; B:=V(G) — A.
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Theorem 5 Suppose G = (V,E) is e unit interval graph on n vertices,
n > 2x(GQ) - 1. If |B| < x(G) — 1, then csp;(G) =2x(G) - 1.

Proof. Suppose to the contrary that csp; (G) = 2x(G)—2, and let f be an
N-coloring of G, f: V(G) — {0,1,2,...,2x(G) — 2}. Since x(G) = w(G),
we have |f(u) — f(v)| > 2 for any maximum clique W and u,v € W. This
implies that f(z) € {0,2,4,...,2x(G)—2} for all z € A. Hence there must
exist at least x(G) — 1 vertices in B that are labeled by {1,3,...,2x(G) —
3}, contradicting the assumption |B| < x(G) — 1. Therefore, csp,(G) =
2x(G) -1. o

Theorem 6 Suppose G = (V, E) is a unit interval graph onn > 2x(G) -1
vertices and P = vy, v, ..., Un 8 a compatible vertex ordering of G. If
X(G) = m > 3 and there exists a subset {Vs41,Vs42,...,Vs4+m—-1} C B for
some 0 <s<n—m+1, then csp;(G) =2m — 2.

Proof. It suffices to find an N-coloring for G with span 2m — 2. We define
a coloring f by first labeling the vertices vs41,¥s42,...,Vs4m—1 € B by
fluosys) = 20 -1,1 <i <m-1, that is f(B) = {1,3,5,...,2m — 3}.
Secondly, label the vertices preceding vs+; (if there is any), backwards,
by repeating the pattern of colors « 2m — 2, 2m — 4, ...,4,2,0 > (ie.,
flvs) = 2m = 2, f(vs—1) = 2m — 4, f(vs—2) = 2m — 6, etc., until v, is
colored). Finally, repeat the pattern of colors « 0,2,4, ...,2m-4,2m-2 >
to the remaining vertices (i.e., f(¥s4+m) =0, f(Vs4m+1) = 2, etc., until the
last vertex v, is colored). See Figure 2 as an example.

Because n > 2m — 1, the even colors 0,2, ...,2m — 2 are all used by f.
Combining this with the fact that f(B) = {1,3,5,...,2m — 3}, f is onto
with span 2m — 2. It is not hard to verify that f is indeed an N-coloring.
We leave the details to the reader. ]

Figure 2: A unit interval graph with x(G) = 4 and csp, (G) = 6.

237



Theorem 7 Suppose G is a unit interval graph on n vertices with x(G) =
m and n > 2m — 1. If there exists a compatible vertex ordering P =
V1,v2y...,Un Such that A C {vi,vit1,...,v;}, wherei > 1, j—i+1=km
for some positive integer k, and n > (k+1)m — 1, then csp,(G) =2m — 2.

Proof. It suffices to find an N-coloring for G with span 2m — 2. Define
the coloring function f by first labeling vertices v;, vi41, ..., v; by using the
pattern < 0,2,4,...,2m —2>. (ie. f(v%) =0, f(vit1) =2, etc.) Then
J(v;) = 2m — 2, since j — i+ 1 = km for some positive integer k.

Next, label the vertices prior to v; (if there is any) by the pattern «
2m - 3,2m - 5,...,5,3,1 >, backwards, until the first vertex on P is
labeled. Finally, label the vertices after v; (if there is any) by the pattern
< 1,3,5,...,2m — 5,2m — 3 >> until the last vertex is labeled. By the
assumptions that m > 3, A C {v;,vi41,...,v;},and > (k+1)m -1, it is

easy to verify that f is an N-coloring. ]
Corollary 8 If G is a unit interval graph with ¢ unique mezimum clique,
then
_ [ 2x(G) -2, ifn22(G)-1;
cspy (G) = { 00, otherwise.
Proof. The result follows from Theorems 2, 4, and Theorem 7. o

Theorem 6 gives a result for the case that B contains a subset of consecu-
tive x(G) —1 vertices on a compatible vertex ordering. In the next theorem,
we prove that, under some conditions, the same result also holds when B
has vertices that are scattered along the compatible vertex ordering. This
result is also a generalization of Theorem 7.

Theorem 9 Suppose G is a connected unit interval graph on n vertices,
x(G) =m > 3, n > 2m -1, G has a compatible vertex ordering P =
¥1,02,...,Vn, and there ezists {vi,,Viy,...,0i,,_,} C B, where1 <4, <
ip < ... <im—1 <n. Thencsp,(G) =2m—2 if there exist1 < a,b<m-—1
such that p = (m — 1 —a — b)/2 is a non-negative integer, and

Giag = i; + kym + 1 for some positive integer k;, ?f ] €C;
7+ ij + 1’ zf] ¢ C’

where C = {1,...,p,p+a,p+a+bp+a+b+1,....m-2} (ifp=0,
then C = {a}).

Proof. It suffices to find an N-coloring of G with span 2m — 2. We define
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the coloring f : V(G) — {0,1,2...,2m — 2} by:

45+ 2b -3, f1<j<p k=0
2(j—-p—-a)-3, ifp+1<j<p+a, k=0;
_ ) 2(j-p-a)-1, ifpt+ta+1<j<p+a+d k=0
Fik) =\ 4(j—p—a)—2b—1, ifpratbri<j<m—1, k=0;
flv;)+1+ 2k, ifjeCu{m-1},and

1<k<ijp1—4-1 (fm=n+1).

then color the vertices preceding v;, (if there is any) by repeating the pat-
tern < 2b—2,2b—4,...,2b >, backwards, until the first vertex is colored.
All the colors by f above are taken under modular 2m. See Figure 3 for an
example.

We call the set of vertices {'u,-,..‘.l, Vi;+2y - - 3 V4, —1} block Bj foreach j €
C, the vertices preceding v;, (if there is any) block By, and the vertices after
vi,,_, (if there is any) block By, 1. Note that V(G) = {v;;, i, .. ,Yi,_, }U
By Ujec Bi; U Bp—1.

The last case in the function f defined above gives labels for vertices
in those B blocks except the ones in By. Indeed, if j € CU {m — 1}, by
definition of f, we have

FUyan) = fui) + 1426 = fu,) 342 (mod 2m),  (wn)

except the second equality holds only for j € C. Note that since f(v;) =
2b+ 1, the pattern < 2b—2,2b—4,...,2b>> used, backwards, for vertices
in By (if v; > 1) is a formula similar to the last part in (**), that is,
f(v,-,._Hk) = f(v,-,) -34+2k (mod 2m) for all k, —(il -2)<kXL0.

2581002469024681013¢648100247100 2

B B B B B

Figure 3: An example witha =1,b=2, p=1, x(G) =6 and csp, (G) = 10.
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From the coloring f, one can observe that the vertices v;,,v4;,...,%,._,
receive distinct odd colors {1,3,5,...,2m — 3}, and other vertices receive
even colors {0,2,4,...,2m —2}. Since C # @ and for any j € C, ¢j41 —1; —
1= kjm 2 m, so {f(vij-i-l)’ f(vij+2)a ot af('”i_ﬁ-:—l)} ={0,2,4,---,2m —
2}. Hence, f is onto.

Now it remains to show that f is an N-coloring. It suffices to claim that
for any uv € E(G), neither one of the following two is possible:

(A) flu)=f(v) =2t forsome 0 Lt <m -1,

(B) f(u) =2t —1and f(v) € {2t,2t — 2} forsome 1 <t <m —1.

To show that (A) is impossible, suppose f(u) = f(v) = 2t for some
0 <t <m-1. Since u and v are adjacent, u and v together with all the
vertices between them on P form a clique K. If u and v belong to the same
block or if they belong to two non-consecutive blocks, then it is clear that
|K| > m + 1, a contradiction.

Now we assume that « and v belong to consecutive blocks. Without
loss of generality, assume the ordering of u and v on P is u before v, and
suppose dp(u,v) is the smallest. Let u € Bj;, then there are the following
two cases:

Case A.l. j e {0,1,...,p-L,p+a+bp+a+b+1,..,m-2}
Then v € B;,,,. Since dp(u,v) is the smallest, without loss of generality,
we may assume % = Vi, 4im+s for some I so that 0 <s <m —1 (if j =0,
let ¥ = v;,_14(s—m) for some s, 0 < s < m), and v = v;,, 44 for some
1 < g £ m —1. Hence, by definition of f, we have

2t = f(vi;rimts) = f(Vi4s) = fvigy,) — 3+ 25 (mod 2m)
(Wi, 014q) = Fvij,) + 1+ 2g (mod 2m).

This implies that ¢ = s—2 (mod m) and |K| > (m—s+1)+1+(s-2) =m.
(Note that this also holds if j = 0, since f(v;,—14(s—m)) = f(vi;;) =3+
2(s —m) = f(vi,) —3+2s (mod 2m).) Hence K is a maximum clique,
contradicting v;,,, € KN B.

Case A.2. j € {p,p+ a}: Here we give the proof for j = p, the proof
for j = p+ a can be obtained by a similar approach. Suppose u € B,, then
v € Bpyq. Since dp(u,v) is the smallest, without loss of generality, we may
assume u = v;, +im+s for some [, 0 < s <m -1, and v = v;,, 4 for some
1 < ¢ £m—1. Then we have:

2t = f(Wipttmts) = F@ip4s) = f(vi,) +1+2s
(26+4p—-3)+1+2s (mod 2m)

25 —2a—4 (mod 2m) (since 4p=2(m —1-a—b))
f(vir+a+9) = f(v"v+a) + 1 + 2q

(-3)+1+2¢=2¢—-2 (mod2m).
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Therefore, we have g=s—-a—-1 (modm),so |[K|>(m—-s+1)+a+
(s —a —1) = m, contradicting v,4+, € K N B.

To show that (B) is impossible, suppose there exists uv € E(G) such
that f(u) = 2t — 1 and f(v) € {2t — 2,2t} for some 1 <t < 2m — 1.
Then u = v;; for some 1 < j <m —1. On P, the vertices between u and v
together with u, v form a clique K. Because u = v;; € B, dp(u,v) <m-1.
We claim the following two possible cases:

Case B.1. j € {1,2,...,p,p+a+b+1,p+a+b+2,...,m—1}: Since
dp(u,v) <m -1, one has v € B; U Bj—). If v € Bj, then v = v;;4, for
some 1 < s < m —2. By definition of f, f(v) = f(v;;) +1+ 25 =2t + 2s
(mod 2m) € {2t —2,2t}. This implies s € {0,m — 1}, a contradiction. The
proof for v € B;_ is similar and we should omit it.

Case B.2. j € {p+1,p+2,...,p+a}orje€ {p+ta+1,p+a+2,...,p+
a + b}: We give a proof here for the case j € {p+1,p+2,...,p+a}, the
proof for the case j € {p+a+1,p+a+2,...,p+a+ b} can be obtained
by a similar process. Suppose u = vp4i for some 1 < k' <a<m-1.
Then v € B, U Bpya. By definition of f, 2t -1 = f(u) = 2(k' —a) -3
(mod 2m), so f(v) € {2(k' —a) —4,2(K' —a) —2} (mod 2m).

If v € By, then v = v;,{im+s for some 1 < s < m —1. Hence f(v) =
F(vi,)+1428 = 4p+2b—3+1+28 = 25—2a—4 € {2(k'—a)—4,2(k'-a) -2}
(mod 2m). Therefore, s € {k’, k' + 1}. Because ipq; = i, + kym + 1 for
some positive integer k,, we have dy(u,v) 2m— (K +1)+ kK =m—-1,a
contradiction.

If v € Bptq, then v = v;,, 45 for some 1 < s < m — 2. Hence, by
definition of f, f(v) = f(vi,,,) +1+28 =25 -2=2(k —a) -4 or
2(k' —a) — 2 (mod 2m). Therefore, we have s = k' —a—1lor k' —a
(mod m) = m+ (¥ —a — 1) or m + (K’ — a). This implies dp(u,v) >
a—-k+s=a—-k +m+ (k' —a—-1)=m—1, acontradiction. m|

In the next three theorems, we give complete solutions for unit interval
graphs with x(G) = 3.

Theorem 10 Suppose G is a unit interval graph on n vertices, n > 5, and
x(G) = 3. Then csp,(G) = 4, if there exist u,v € B, u # v, such that
uv € E(G) or dp(u,v) # 2 (mod 3) on some compatible vertex ordering
P =vy,v9,...,0,.

Proof. If there exist u,v € B such that uv € E(G), then dp(u,v) =1 for
any compatible vertex ordering P, for otherwise u and v are contained in
some maximum clique. Therefore, by Theorem 6, csp, (G) = 2x(G)-2 = 4.

Suppose there exist u,v € B such that uv ¢ E(G) and dp(u,v) # 2
(mod 3). If dp(u,v) =1 (mod 3), by Theorem 9 with a = b = 1, we have
cspy (G) =4.
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Suppose dp(u,v) =0 (mod 3). Let u = v; and v = v;, then i = j (mod
3). Define the coloring f by:

1, ifk=0;
3, ifk=j-1;

foige) =¢ 4, fk=1(mod 3),1<k<j—-i—-1;
0, fk=2(mod3),1<k<j—i—-1;
2, ifk=0(mod3),1<k<j—-i-1;

for the vertices preceding v; (if there is any), use the pattern < 4,2,0 >,
backwards, and for the remaining vertices (if there is any), use the pattern
< 0,2,4>. It is easy to verify that f is an N-coloring for G, so csp,(G) =
4, O
To complete the family of unit interval graphs with x(G) = 3, it re-
mains to consider the case that [V(G)| > 5 and B has exactly two vertices
(for which we have the result below). If |B] = 1, by Theorems 4 and 5,
csp; (G) = 5, if = > 5; and csp,(G) = oo, otherwise. If B contains three
vertices v, < vp < vc on P, then at least one of the pairs (vg, vp), (s, vc) or
(va,vc) has distance %22 (mod 3) on P, so csp, (G) = 4 by Theorem 10.

Theorem 11 Suppose G is a connected unit interval graph with x(G) = 3,
[V(G)|=n>5, and P = v, vs,- -+, v, is a compatible vertex ordering. If
B = {v;,v;}, where j > i and j —i =2 (mod 3). Then csp,(G) =5 if and
only if viyxvVitk+2 € E(G) for allk #0 (mod 3) and 2<k<j—i—4.

Proof. (=) Assume csp;(G) = 5. Suppose to the contrary, v;4xVitkt2 ¢
E(G) forsome k #0 (mod 3) and 2<k <j—i—4.

If £ =1 (mod 3), then define the coloring f by f(v:) = 1, f(v;) = 3;
for vertices vi41, Vit2, ..., Vitk+1, repeat the pattern < 4,2,0 > (i.e.,
fit1) = 4, -+, f(viyx) = 4, and J(Witk41) = 2); for vertices Vitk+2,
Vitk+3, - -~ Uj-1, repeat the pattern < 4,0,2 > (then f(v;-;) = 0); for
vertices preceding v;, repeat the patter < 4,2,0 > backwards; and for
the vertices after v;, repeat the pattern < 0,2,4 >> until the last ver-
tex is colored. This gives an N-coloring for G with span 4, contradicting
csp, (G) = 5.

If K = 2 (mod 3), then define the coloring f by f(v) = 1, f(v;) =
3; for vertices viy1,vi42,...,Vitk41, Tepeat the pattern < 4,0,2 > (i.e.,
f(Ui+k) =0 and f(v4k+1) = 2); and for vertices Vitk+2s Vitk48s -y Vj—1,
repeat the pattern <« 0,4,2 > (then f(v;—;) = 0); for vertices preceding
v;, repeat the pattern < 4,2,0 > backwards; and for the vertices after v;,
repeat the pattern <« 0,2,4 > until the last vertex is colored. This gives
an N-coloring for G with span 4, a contradiction.

(«=) Suppose viykVitki2 € E(G) for all k # 0 (mod 3) and 2 < k <
j—1i—4. Suppose csp;(G) =4 and let f: G — {0,1,2,3,4} be an N-
coloring for G. Then f(uv;), f(v;) € {1,3} and f(z) € {0,2,4} for any
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x # v;,vj, since B = {v;,v;}. Assume f(v;) =1 and f(v;) = 3 (the proof
for the case that f(v;) = 3 and f(v;) = 1 is similar), then f(vi4;) = 4.
Because G is connected, vjvi41 € E(G) for all 1 <1 < n — 1. Combining
this with the assumption that vi1xvi4x42 € E(G) for all k # 0 (mod 3)
and 1 < k < j—1i—3 (Since vi41,v;-1 € A and v;,v; € B, we have
Vi+1Vi43,Vj-3Vj—1 € E(G)). One must have f(vigg) = 4 forall z = 1
(mod 3), 1 < z < j—i -1, implying that f(v;—1) = 4, contradicting
f(vj)=3. o
In conclusion, we have

Theorem 12 Suppose G is a connected unit interval graph on n vertices
and x(G) = 3. Let P = vy, vs,- -, v, be a compatible verter ordering of G.
Then

>, ifn<b, orn=>5and|Bl=1;
5 ifn>5and|B|=1, orn>5,B={v;,v;}, where
csp; (G) = J>1, j—1=2 (mod 3), and vipxvitkt2 € B(G)
Jorallk=0(mod 3) end2<k<j—i—4;
4, otherwise.
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