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Abstract

In tﬁis article the intersection problem for twin bowtie and near bowtie
systems is completely solved.

1 Introduction

A Steiner triple system of order v (briefly STS(v)) is a pair (S, 7T) where T is
a collection of edge disjoint triangles (called triples) which partitions the edge
set of the complete undirected graph K, with vertex set S.

It is well known that an STS(v) has t, = Lv(v — 1) triples and a necessary
and sufficient condition for existence is v =1,3 (mod 6).

A bouwtie in the complete graph K, is a pair of triangles having exactly one
vertex in common. A bowtie system of order v (briefly BS(v)) is a pair (S, B)
where B is a collection of edge disjoint bowties which partitions the edge set
of K,, with vertex set S. A near bowtie system of order v (briefly NBS(v)) is
a pair (S, B), where B is a collection of edge disjoint bowties and exactly one
- triangle which partitions the edge set of K, with vertex set S.

In what follows we will denote the triangle with vertices a, b, and ¢ by {a, b, c}
or abc, the bowtie consisting of the triangles {a,b,c} and {a,d,e} by ({a,b,¢},
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{a,d,e}) or abc juxtaposed with ade, and the set of bowties of a near bowtie
system (S, B) by B.

It is obvious that if we separate the bowties in a bowtie system or in a near
bowtie system into triangles we get a Steiner triple system. In [3] P. Hordk and
A. Rosa proved the following theorem.

Theorem 1. Every Steiner triple system can be partitioned into a bowtie sys-
tem or a near bowtie system (depending on whether or not the number of triples
is even or odd).

It can be shown easily that there is a BS(v) [NBS(v)] (S, B) if and only if
v=1,9 (mod12) [v=3,7 (mod12)] and |B| = % (|B — {abc}| = E5L].
Therefore in saying that a certain property concerning BS(v) [N BS (v)] is true
it is understood that v=1,9 (mod 12) [v=3,7 (mod 12)].

The bowtie systems (S, B;) and (S, Bz) [near bowtie systems with the same
triangle] are said to be twin provided the separation of the bowties in B; and
B, gives the same Steiner triple system.

Various papers have dealt with the investigation of possible numbers of blocks
that two designs, with the same parameters and based on the same v-set, may
have in common. C.C. Lindner and A. Rosa [4] considered this problem for
Steiner triple systems; M. Gionfriddo and C.C. Lindner (2}, G. Lo Faro [5] and
others, for Steiner quadruple systems; E.J. Billington and D.G. Hoffman [1] for
certain balanced ternary designs and G. Lo Faro [6] for extended triple systems.

The intersection problem for Steiner triple systems would easily yield appro-
priate results for bowtie and near bowtie systems . For this reason , in this
paper we consider the intersection problem for twin bowtie systems and twin
near bowtie systems.

Let Jg(v) [Jn(v)] denote the set of non-negative integers k such that there
exists a pair of twin bowtie systems [twin near bowtie systems] intersecting in
k bowties. Let Ig(v) = {0,1,...,%} — {& -1} [In(v) = {0,1,..., 551} -
{2~ 1)

The aim of this paper is to prove the following result:

Main Theorem. Jg(v) = Ig(v) and Jn(v) = In(v).

2 Auxiliary constructions

In this section we give some constructions which are the main tools in what
follows.

Let K,47 be the complete graph on Z,;7 vertices. The edges of K,.7 fall
into v + 7 disjoint classes Py, Pa, ..., Pyy7, where the edge {4, k} is in P; if and
onlyifi—k=j (mod v+7). In [7] R.G. Stanton and I.P. Goulden proved the
following result:
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(*) The graph K,.7 may be factored into a set of v + 7 triangles covering
Py, P, P; and a set of v one-factors covering the other P;.

Put S ={a;:i=1,2,...,v} and factor the complete graph K,.7 with vertex
set X ={i:i=12,...,u+7},5NX =0, by (+). Let T = {{#,i+1,i43}:i =
1,2,...,94+7} (mod v+7) be the set of triangles and F = {F; :i = 1,2,...,v}
be the set of 1-factors where F; = {{z:;,¥i;},i =1,2,..., %} with z;, =1,
for everyi=1,2,...,v.

Construction A: vto2v+7, v=1,9 (mod 12).

Let (S, B) be a BS(v).
Put §* =SUX and B* = BUD UL, where D = J__, D;,

D; = {({ai,zi,zj+1,yi,2j+1} 1{ei Tigje2, ¥i2542)) 15 =0,1,..., #} )
and
£={({2,2-1,2+2),{%,2 + L2 +3}):i=1,2,... 7l

(mod v 4 7).
Then (§",B') isa BS(2v+17).

Construction A*: vito 2v+7, v=3,7 (mod 12).

Let (S, B) be a NBS(v) with triangle ay—2a,_1a,.
Put S* = SUX, £ as in Construction A and

B*=BucL UDUHU {({av: 1, yu.l} ) {aus Qy—2,Qy—1 })} )
where D = J._, D;,
D; = {({di,zi.zj,yi.zj} e Tizjr, ¥i2im}) 15 =1,2,..., "%5} )
and
H= {({1:y2i+1.1:a2i+1} {1 y2i42,1,02i42}) : i =0, L---;ﬂ} .
Then (S*,B*) is a BS(2v + 7).
Put S ={a;:i=12,...,0}andlet F = {F;:i=12,...,u} beal-

factorization of Ky4y on X = {i:i=1,2,...,v4 1}, where SN X = 0.
Put F; = {{z;,4:;},i =1,2,...,%4} with z;; = 1, forevery i = 1,2,...,v.
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Construction B: v to 2v+1, v=1,9 (mod 12).
Let (S, B) be a BS(v).

Put $* =SUX and B* = BUDUHU {{av,1,yv,1}}, where D ={J,_, D;,
D; = {({aiaziﬂj:yi,zi} Ao Zigisnvian)) i =12, yz—l},
and
H= {({11y2i+1,1:¢12i+1} v {1, y2i42,1,82i42}) 14 =0,1,..., %} .
Then (S*,B*) is a NBS(2v + 1).

Construction B*: v to 2v+1, v=3,7 (mod 12).
Let (S,B) be a NBS(v).
Put §* = SUX and B* = BUD, where D = J,_, D;,
D; = {({ai:zi.2j+l»yi.2j+l} s {6, Ti2j42, Vizjr2}) 15 =0, 1,---,"4;3} .

Then (S*,B*) is a NBS(2v + 1).

3 Basic lemmas

Lemma 1. Jg(v) C Ig(v) and Jn(v) C In(v).

Proof. 1t is seen instantly that Jg(v) C Ig(v) and Jy(v) C In(v); in other
words it is impossible to have two twin bowtie systems and two twin near boetie
systems which have all but one bowtie the same. O

Lemma 2. For v = 1,9 (mod 12), {4,% + 1,...,"—;*1} - {-t’—‘;ﬂ -1} C
Ig(2v+ 7).

Proof. Let (S,B) be a BS(v) and X, D and £ as in Construction A.
Consider the following permutations on {1,2,..., &.5—7}

op = (29 + 1,2m+ 2., 5T

pi€{0,1,...,%,147},i=1,2,...,v. It is straightforward to see that
ID: N ap, (D;)| = pi, where

ap,(D;) = {({a;, Ti,ap, (25 + 1) Yisop, (35 + n} {ai, Ti,ap, (235 + 20 Yisap, (25 + o)

j=0,1,...,53}.
Put v
®p1pa...pu (D) = U ap: (Ds)

i=1
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and

= {({2i+1,2i,2i+3},{2i+‘1,2i+2,2i+4}):i=0,1,...,%}

(mod v + 7).

Certainly, if R(v) is the set of all non-negative intergers A such that h =
YimiPi, pi €{0,1,..., 428, 2T}, then R(v) = {0,1,..., %t o, 2(edNy g
is easy to see that for each h € R(v) there exists:

(i) apair of twin BS(2v+7) s, (SUX,BUDUL) and (SUX, BUap, p,...p, (D)U
L) with exactly & + % + h bowties in common;

(ii) a pair of twin BS(20+7)’s, (SUX,BUDUL) and (SUX, BUay,p,..p, (D)U
L') with exactly & + h bowties in common.

Thus we have {4, % +1,..., 2582} — {Ber _ 4} C [g(20+7). O

Lemma 3. Forv=1,9 (mod 12), Jg(v) C Jg(2v + 7).

Proof. Let k € Jp(v). ¥ (S,B,), (S, B;) is a pair of twin BS(2v + 7)’s with
[B1 N By| = k, X, D and £ as in Construction A4, then (SU X,B; UD U L),
(SUX,B, Uao(D)U[.’) (where ag(D)«= agq...o(D)) is a pair of twin BS(2v+7) s
with exactly k& bowties in common. O

Corollary 4. For v = 1,9 (mod 12), Jg(v) = Ig(v) implies Jg(2v + 7) =
Ig(2v+ 7).

Proof. By Lemmas 2 and 3 we have only to prove that (4 —1) € Jp(2v+7).
Obviously (4 —1) € R(v) and so if (S, B1), (S, B2) is a pair of twin BS(v)’s with
|B1NB;| = 0, then we can obtain a pair of twin BS(2v+7) s, (SUX,B,UDUL)

and (SU X, B; U ap,p,...p, (D) U L'), with exactly (£ — 1) bowties in common.
a

Lemma 5. Forv=3,7 (mod12), v>7, {futl tudd fawt1} _ ffaeds _
1} C Is(2v +7).

Proof. Let (S,B) be a NBS(v) with triangle a,_3a,_1a, and X, £,D and H
as in Construction A*.
Consider the following permutations:

ap = (27 + 2,20 +3,...,57),
pi €{0,1,...,v33, 248} i =1,2,...,v, on the set {1,2,...,%t7};
4 4 2

ﬁq =(29i+1,2¢1i+2:-~,‘v-1),
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g€{0,1,...,25°,2=1} on the set {1,2,...,v—1}. If

Be(H) = {({layﬁq(zi+x).lraﬁq(m‘+ oh A1, YBqe(ai + 22,15 @Bg2i + 1) })
i=0,1,...,%53},

then it is straightforward to see that |’D, Nayp, (D;)| = p; and [H N By(H)| = q.
The same argument used in Lemma 2 gives:

() (SUX,BULUDUHU{({av,1,401},{av,av-2,80-1})}), (SUX,BU
LU app,..p, (D) U By (H)U {({ava 1, yv 1} {av; ay-2,@y-1})}) is a pair of
twin BS(2v + 7)’s with exactly &L + 2T 4 g4+ 1+ 37, p; bowties in
common;

(i) (SUX,BULUDUHU{({av,1,¥01}, {@v:av—2,8,_1})}), (SUX,BUL'U
Qpyps...p. (D) U Bg(H) U {({av, L, %o 1}, {8v,80-2,8,-1})}) is a pair of twin
BS(2v + 7)’s with exactly &1 + ¢+ 1+ 37_, p; bowties in common.

Thus we have {&tl La43  fae47} _ flasr 1} 15204 7). O

Lemma 6. Forv=3,7 (mod 12), k € Jy(v) implies (k + 1) € Jg(2v + 7).
Proof. Let k € Jg(v). If (S, B.1), (S, Bz) is a pair of twin NBS(2v+7)’s (with
the same triangle a,-2ay-1a,) such that |B, N By — {ay_28,-1ay}| = k, X, D
and £ as in Construction A, then
(S U X’ Bl UuLuDu H U {({a“ln 1: !/u.l}» {G.o, %—Z’av—l})})a

(SUX,B,U L' Uag(D) U Bo(H) U {({av, 1, 9v.1} {8, Bv—2,8y_1})})

is a pair of twin BS(2v + 7)’s with exactly & + 1 bowties in common, where X,
L,D and H are as in Construction A*. O

Corollary 7. Forv=3,7 (mod 12), v > 7, Jn(v) = In(v) implies J5(2v +
7) = Ip(2v + 7).

Proof. By Lemmas 5 and 6 we have only to prove that {0, f271 — 1, %21} C
JB(2v+ 7). It is easy to see that {5t —1, %=1} C Jp(2v + 7) and so we will

prove that 0 € Jp(2v + 7). Let (S, By), (S, B2) be a pair of twin NBS(v)’s with
the same triangle ¢,—26,—10,. If

= {({Ly2i,0, 02}, {Lizirr, 020 }) 1 i = 1,2,..., 553} U
{{1, 311,01}, {1, 90,1,001)},

then

(SUX,BiULUDUHU{({av, 1,901}, {Gv, @Gv—2,a0-1})}),
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(SUX,BaU L' Uag(D) UH U {({av=1,1,¥s-1,1}, {8u-1,80-2,85})})

is a pair of twin BS(2v + 7)’s with zero bowties in common. This prove the
corollary. O

The same argument used in previous lemmas works to prove the following
corollary.

Corollary 8.
(i) Forv=1,9 (mod 12), Jg(v) = Ig(v) implies Jn(2v +1) = In(2v +1).
(ii) For v = 3,7 (mod 12), v > 7 JIn(v) = IN(v) implies In(2v + 1) =
In(2v +1).
4 Small cases

In this section we will deal with the cases v = 3,7,9 and 13.

v=3.
There is precisely one NBS(3): S = {1,2,3},B = {123}. So JN(3) =0 =
In(3).

v=7.
Let (S, T) be the following STS(7) on the set S = {1,2,3,4,5,6, 7}

T = {123, 145,167, 246, 257, 347, 356 }.
We can obtain the following pairwise twin NBS(7)’s (S,B;), i =1,2,3:
= {123145,617624, 725734, 356};

B, = {145167,246257,347312, 356};
B; = {123145,246257,734716,356}.
Then it is easy to check that

IBI ngzl =0, |Bl néal =1, IB-I 051| =3.
So Jn(7) = In(7).

v=9.
Let (S, T) be the following ST'S(9) on the set S = {1,2,3,4,5,6,7,8,9}:

T = {123,456, 789, 147,258, 369, 159, 267, 348, 357, 168, 249}.

251



We can obtain the following pairwise twin BS(9)’s (S, B;), i = 1,2,3,4,5:
B, = {123147, 546528, 978936, 519537, 627618, 438429},

B, = {231258, 645639, 789714, 159168, 267249, 348357};

B; = {123147,645639, 879825, 159168, 267249, 348357} ;

B, = {123147, 546528, 978915, 639618, 267249, 348357} ;

By = {123147, 546528, 978936, 159168, 267249, 348357};

Bg = {123147, 546528, 978936, 519537, 267249, 834816}.
Then it is easy to check that

|BiN Bz =0, |Bl NBs|=1, |1B1 NBy =2,

|BLNBs| =3, 1B nBel =4, |[B,NB| =6.
So JB(9) = Ip(9).
v=13.
By an argument similar to Lemma 5 it is easy to see that I5(13)—{0,1,3,5,10} C
J3(13).J Let (S, 7) be the following ST'S(13) on the set S = {1,2,...,13}:
T = {{1,2,5},{2,3,6},{3,4,7}, {4,5,8}, {5,6,9},
{6,7,10}, {7,8,11},{8,9,12},{9, 10,13}, {10, 11,1},
{11,12,2},{12,13,3}, (13,1,4}, {1,3,8}, {2, 4,9},
{3,5,10}, {4,6,11}, {5,7,12}, {6, 8, 13},{7,9,1},
{8,10,2},{9,11,3}, {10,12,4},{11,13,5},{12,1,6},
{13,2,7}}.
We can obtain the following pairwise twin BS(13)’s (S,B;), i = 1,2,3,4, 5, 6:
B, = {({2,1,5},{2,3, 6})’ ({41 3,7}, {4,5,8}), ({6, 5,9},16,7,10}),
({8,7,11},{8,9,12}), ({10,9,13},{10,11,1}), ({12,11,2}, {12,13,3}),
({1,13,4},{1,3,8}), ({4,2,9},{4,6,11}), ({5,3,10},{5,7,12}),
({8,6,13},{8,10,2}), ({9,7,1},{9,11,3}), ({12,10,4}, {12,1,6}),
({13,11,5},{13,2,7})}.
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B2 = {({1,2,5},{1,12,6}), ({3,2,6},{3,4,7}), ({5,4,8},{5,6,9}),
({7,6,10}, {7,8,11}), ({9,8, 12}, {9, 10, 13}), ({11, 10,1}, {11,12, 2}),
({13,12,3},{13,1,4)), ({3,1,8}, {3,5,10}), ({6, 4, 11}, {6, 8, 13}),
({7,5,12},{7,9,1}), ({10,8,2}, {10, 12,4}), ({11,9,3}, {11,13,5}),
({2,4,9}, {2,13,7))).

Bs ={({2,1,5},{2,3,6}), ({7,3,4},{7,8,11}), ({8,4,5},{8,9,12}),
({9, 5,6}, {9,10,13}), ({10, 6,7}, {10, 11, 1}),({2,11,12}, {2,4,9}),
({3,12,13}, {3,5,10}), ({4, 13,1}, {4,6, 11}),({8,1,3},48,6,13}),
({7,5,12},{7,13,2}), ({1,7,9}, {1, 12,6}), ({10,8,2}, {10,12,4}),
({11,9,3},{11,13,5})}.

By = {({2,1,5},{2,3,6)), ({4,3,7), {4, 5,8}), ({6,5.9), {6, 7, 10}),
({11,7,8},{11,10,1}), ({8,9,12}, {8,1,3}), ({13,9, 10}, {13,6, 8}),
({2, 11, 12}, {2, 4, 9}), ({3, 12, 13}, {3, 5, 10}), ({4, 13, 1}, {4, 6, 11}),
({7,5,12},{7,13,2}), ({1,7,9}, {1,12,6}), ({10,8, 2}, {10, 12, 4}),
({11,9,3},{11,13,5})).

Bs = {({2,1,5},{2,3,6}), ({4,3,7},{4,5,8)), ({6,5,9}, {6, 7, 10}),
({8,7,11},{8,9,12}), ({10,9,13}, {10,11,1}), ({12, 11,2}, {12, 1, 6}),
({18,12, 3}, {13, 1, 4}), ({3, 1,8}, {3, 5, 10}), ({2, 4, 9}, {2, 7, 13}),

({6, 4,11}, {6, 8, 13}), {7,5, 12}, {7, 9, 1}), ({10, 8, 2}, {10, 12, 4}),
({11,9,3}, {11,13, 5}}.
Bs = {({2,1,5},{2,3,6}), ({4,3,7}, {4, 5,8}), ({6,5,9}, (6,7, 10}),
({8, 7,11}, {8, 9, 12}), ({10,9, 13}, {10, 11, 1}), ({12, 11,2}, {12, 13,3}),
({1,13,4},{1,3, 8}), ({4,2,9}, {4,6, 11}), ({8, 6, 13}, {8,10,2}),
({12, 10,4}, {12, 1,6}), (7,9, l}, {7,13, 2}), ({3,5, 10}, {3,9, 11}),
({5,7,12}, {5,11,13})}.
Then it is easy to check that
IB.ABy| =0, |By N Bs| =1, |B,NBy| =3,
1B, N Bs| = 5, |B; N Bs| = 10.
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So Jp(13) = I5(13).

5 Conclusion

We now have our required result.
Main Theorem. Jg(v) = Ig(v) and Jn(v) = In(v).

Proof. For v = 3,7,9,13 our statement follows from Section 4.
Assume therefore v > 15, and assume that for all w < v, Jy(w) = In(w) if
w = 3,7 (mod 12) and Jg(w) = Ig(w) if w = 1,9 (mod 12). Kv = 1,9
(mod 12), by Corollaries 4 and 7 Jg(v) = Ig(v). If v = 3,7 (mod 12), by
Corollary 8 Jy(v) = In(v). This completes the proof of the theorem. O
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