Isomorphic Antidirected Path Decompositions of Complete Symmetric Graphs

Tay-Woei Shyu*
Department of Banking and Finance
Kai Nan University
Lu-Chu, Tao-Yuan, Taiwan 338, R.O.C.
e-mail: twhsu@mail.knu.edu.tw

Chiang Lin
Department of Mathematics
National Central University
Chung-Li, Taiwan 320, R.O.C.

ABSTRACT. A path in a digraph is antidirected if the two adjacent edges of the path have opposing orientations. In this paper we give a necessary and sufficient condition for the edges of the complete symmetric graph to be decomposed into isomorphic antidirected paths.

1 Introduction

A $v_0 - v_r$ walk of length r in a graph G is a sequence of vertices of the form v_0, v_1, \dots, v_r where $v_{i-1}v_i \in E(G)$ for $i=1,2,\dots,r$; this walk is denoted by $v_0v_1 \cdots v_r$. A trail is a walk in which all edges are distinct. A trail is closed if its staring vertex and ending vertex are the same. An Eulerian trail of a graph G is a closed trail containing all edges of G. A path is a trail in which all vertices are distinct, and a path of length l is denoted by P_l . A path in a digraph is antidirected if two adjacent edges of the path have opposing orientations. To describe the edge oriented from the vertex u to the vertex v we shall write $u \to v$ or $v \leftarrow u$. The antidirected path will be designated

^{*}Research supported in part by the National Science Council under grand NSC90-2115-M-424-002.

by listing their vertices and orienting the edges between them. When l is odd, there is a unique nonisomorphic antidirected path of length l, denoted by P_l . When $l \ge 2$ is even, there are two nonisomorphic antidirected paths of length l. (See Fig.1 for two nonisomorphic antidirected paths of length 2.) We use P_l to denote the antidirected path with the edges incident to the end vertices of the path oriented away from the end vertices.

$$\bullet \longrightarrow \bullet \longleftarrow \bullet \qquad \bullet \longleftarrow \bullet \longrightarrow \bullet$$
 Fig. 1

In a digraph G, an antidirected Hamiltonian path is an antidirected path that passes every vertex of G; an antidirected Hamiltonian circuit is an antidirected cycle(i.e., a cycle with adjacent edges having opposing directions) that passes every vertex of G. In [1], [2], [3], [4], [6], the existences of antidirected Hamiltonian paths and antidirected Hamiltonian circuits in tournaments were investigated.

For a simple graph G, we use D(G) to denote the digraph obtained from G by replacing each edge e of G by two oppositely oriented edges with the same ends of e. Let K_n be the complete graph on vertex set $\{1, 2, \dots, n\}$. The directed graph $D(K_n)$ is abbreviated to DK_n . We call DK_n the complete symmetric graph on n vertices. Suppose G and H are graphs (digraphs, respectively). If the edges of graph G can be decomposed into subgraphs isomorphic to H, then we say that G has an H-decomposition.

In [5], the following result concerning the isomorphic path decomposition of complete graphs was proved.

Theorem 1
$$K_n$$
 has a P_l -decomposition if and only if $l \leq n-1$ and $n(n-1) \equiv 0 \pmod{2l}$.

In this paper we deal with the isomorphic antidirected path decomposition of complete symmetric graphs, and obtain the following.

Theorem. DK_n has a $\stackrel{\leftrightarrow}{P_l}$ -decomposition if and only if the following conditions are satisfied:

A. n or l is odd. B. $l \le n - 1$. C. $n(n-1) \equiv 0 \pmod{l}$.

2 Main Result

In this section we deal with the P_l -decomposition of DK_n . We begin with the case where l is odd.

Lemma 2 Suppose that l is an odd integer. If a graph G has a P_l -decomposition. Then D(G) has a P_l -decomposition.

Proof. This follows from the fact that if l is an odd integer, then $D(P_l)$ can be decomposed into two antidirected paths of length l.

Corollary 3 If l is an odd integer, $l \leq n-1$ and $n(n-1) \equiv 0 \pmod{l}$, then DK_n has a P_l -decomposition.

Proof. Since l is odd, the condition $n(n-1) \equiv 0 \pmod{l}$ implies $n(n-1) \equiv 0 \pmod{2l}$. Thus, by Theorem 1, K_n has a P_l -decomposition. Then, by Lemma 2, DK_n has a P_l -decomposition.

Now we treat the case where l is even. We introduce some definitions. For integers $n \geq k \geq 1$, The $crown\ C_{n,k}$ is defined to be the graph with vertex set $\{a_1,a_2,\cdots,a_n,b_1,b_2,\cdots,b_n\}$ and edge set $\{a_ib_j:1\leq i\leq n,\ j=i+1,i+2,\cdots,i+k\pmod n\}$. Crowns $C_{n,k}$ are bipartite graphs with regular degree k. In this paper we consider the crown $C_{n,n-1}$, which is just the graph obtained from the complete bipartite graph with bipartition $(\{a_1,a_2,\cdots,a_n\},\{b_1,b_2,\cdots,b_n\})$ by taking away the perfect matching $\{a_1b_1,a_2b_2,\cdots,a_nb_n\}$. A path P in the crown $C_{n,n-1}$ is said to be subscript distinct, if $S\cap T=\phi$ where $S=\{i:a_i$ is a vertex of $P\}$ and $T=\{i:b_i$ is a vertex of $P\}$. For example, in $C_{6,5}$ the path $a_5b_2a_3b_4a_6$ is subscript distinct, but the path $a_1b_2a_6b_5a_2b_4$ is not. If a subscript distinct path in $C_{n,n-1}$ has end vertices in $\{a_1,a_2,\cdots,a_n\}$, we call it an S.E. path; here, S stands for subscript, E stands for end vertex. Note that an S.E. path has even length. A P_l -decomposition of $C_{n,n-1}$ is called an S.E. P_l -decomposition, if each member in the decomposition is an S.E. path.

Lemma 4 Suppose that l is an even integer, and that the crown $C_{n,n-1}$ has an S.E. P_l -decomposition. Then DK_n has a P_l -decomposition.

Proof. Suppose l=2t. Let \Re be an S.E. P_l -decomposition of $C_{n,n-1}$. For each S.E. path $P: a_{i_1}b_{i_2}a_{i_3}b_{i_4}\cdots b_{i_{2t}}a_{i_{2t+1}}$ in \Re , we associate an antidirected path $P: i_1 \to i_2 \leftarrow i_3 \to i_4 \leftarrow \cdots \to i_{2t} \leftarrow i_{2t+1}$ of DK_n . It is easy to see that $\{P: P \in \Re\}$ is a P_l -decomposition of DK_n .

We use $< a_{k_j} b_{l_j} >_{j=1}^t$ to denote the following sequence of vertices: $a_{k_1} b_{l_1} a_{k_2} b_{l_2} \cdots a_{k_l} b_{l_l}$, which is a walk in $C_{n,n-1}$. And $< a_{2+j} b_{n-j} >_{j=1}^2 < a_{n-j} b_j >_{j=1}^3 < a_5 >$ is the walk $a_3 b_{n-1} a_4 b_{n-2} a_{n-1} b_1 a_{n-2} b_2 a_{n-3} b_3 a_5$.

Suppose W_1 is the walk $x_1x_2\cdots x_t$, W_2 is the walk $y_1y_2\cdots y_s$ in a graph such that $x_t=y_1$. Then we use W_1+W_2 to denote the walk

 $x_1x_2\cdots x_ty_2y_3\cdots y_s$. For walks W_1,W_2,\cdots,W_v in a graph, $W_1+W_2+\cdots+W_v$ is similarly defined. For an integer t and a walk $W: a_{i_1}b_{i_2}a_{i_3}b_{i_4}\cdots a_{i_{2s+1}}$ in the crown $C_{n,n-1}$, we use W+t to denote the walk $a_{i_1+t}b_{i_2+t}a_{i_3+t}b_{i_4+t}\cdots a_{i_{2s+1}+t}$; here and in the sequel, the subscripts of a_i 's and b_i 's are taken modulo n. Suppose G is a subgraph of $C_{n,n-1}$ and H is a subgraph of G such that the edges of G can be decomposed into subgraphs $H, H+1, H+2,\cdots,H+k$ for some integer k. Then H is called a base graph of this decomposition.

Let Q be a trail in a graph. Suppose x, y are two vertices on Q. We use $d_Q(x,y)$ to denote the number of edges on Q between x and y. Suppose $Q: x_1x_2x_3\cdots x_n$ is a trail in a graph. Then the trail $T: x_kx_{k+1}x_{k+2}\cdots x_s$ $(1 \le k \le s \le n)$ is called a *subtrail* of Q. For two vertices x, y on T, we have $d_T(x,y) = d_Q(x,y)$. In the following, for an integer i, $3 \le i \le n$, we use Q_i to denote the trail $a_1b_ia_2b_{i+1}a_3b_{i+2}\cdots a_nb_{i+(n-1)}a_1$ in $C_{n,n-1}$.

Let $Q_{k}' = a_1b_ka_2b_{k+1}a_3b_{k+2}\cdots a_nb_{k+(n-1)}$, i.e., we remove the last vertex of Q_k from Q_k .

Lemma 5 Suppose n is odd. In the crown $C_{n,n-1}$, let Q be the trail $Q_4 + Q_6 + Q_8 + \cdots + Q_{n-1}$.

- (1) Suppose $4 \le k \le n-2$. For $t=1,2,\dots,n$, let $x=a_t$ be on Q'_k , and let $y=a_t$ be on Q'_{k+2} . Then $d_Q(x,y)=2n$.
- (2) Suppose $4 \le k \le n-2$. Let $x = b_t$ be on Q'_k , and let $y = b_t$ be on Q'_{k+2} . Then $d_Q(x,y) = \begin{cases} 4n-4, & t = k, k+1 \\ 2n-4, & t = k+2, k+3, \dots, k+n-1. \end{cases}$
- (3) Suppose $4 \le k \le n-1$. Let $x=a_t$ be on Q'_k , and let $y=b_t$ be on Q such that y is after x and closest to x. Then for $t=1,2,\cdots,k-1$, we have $y \in Q'_k$, and $d_Q(x,y)=2n-2k+3$, for t=k,k+1, we have $y \in Q'_{k+2}$, and $d_Q(x,y)=4n-2k-1$, for $t=k+2,k+3,\cdots,n$, we have $y \in Q'_{k+2}$, and $d_Q(x,y)=2n-2k-1$.
- (4) Suppose $4 \le k \le n-1$. Let $x = b_t$ be on Q'_k , and let $y = a_t$ be on Q such that y is after x and closest to x. Then $d_Q(x, y) = 2k 3$ for $t = 1, 2, \dots, n$.

Proof. (1) Trivial.

(2) First consider t = k. Since $x = b_k$ is the second vertex on Q_k , and $y = b_k$ is the (2n - 3)-th vertex on Q_{k+2} , it is easy to see that there are 4n - 4 edges on Q which are between $x = b_k$ and $y = b_k$. The proof for t = k + 1 is similar. Now consider t = k + 2. Since $x = b_{k+2}$ is the sixth vertex on Q_k , and $y = b_{k+2}$ is the second vertex on Q_{k+2} , it is easy to see

that there are 2n-4 edges between $x=b_{k+2}$ and $y=b_{k+2}$. The proof for $t=k+3,k+4,\cdots,n+k-1$ are similar.

(3) Note that for $t=1,2,\cdots,k-1$, a_t is before b_t on Q_k' . Thus $y=b_t\in Q_k'$. Now consider t=1. Since b_1 is the last 2(k-1) vertices on Q_k , there are 2n+1-2(k-1)+1=2n-2k+4 vertices on Q which are between $x=a_1$ and $y=b_1$ (inclusively). Thus $d_Q(x,y)=2n-2k+3$. The results for $t=2,3,\cdots,k-1$ follow easily. Next consider t=k,k+1. First consider t=k. Note that b_k is before a_k on Q_k . Thus the b_k , which is after $x=a_k$ and closest to x, is on Q_{k+2} . We see that a_k is the (2k-1)-th vertices on Q_k , and the last four vertices on Q_{k+2} are b_k, a_n, b_{k+1}, a_1 . Thus there 4n+1-(2k-2+3)=4n-2k vertices on Q between $x=a_k$ and $y=b_k$. Hence $d_Q(x,y)=4n-2k-1$. The result for t=k+1 follows easily.

Now consider $t=k+2, k+3, \dots, n$. Now t=k+2. Since b_{k+2} is before a_{k+2} on Q_k , the b_{k+2} , which is after $x=a_{k+2}$ and closest to a_{k+2} , is on Q_{k+2} . We see that $x=a_{k+2}$ is the (2k+3)-th vertex on Q_k , and $y=b_{k+2}$ is the second vertex on Q_{k+2} . Thus there are 2n-(2k+2)+2=2n-2k vertices between $x=a_{k+2}$ and $y=b_{k+2}$ (inclusively). Thus $d_Q(x,y)=2n-2k-1$. The results for $t=k+3, k+4, \dots, n$ follow immediately.

(4) First consider t=k. Since b_k is the second vertex on Q_k , a_k is the (2k-1)-th vertex on Q_k , it follows that there are 2k-3 edges on Q which are between $x=b_k$ and $y=a_k$. Thus $d_Q(x,y)=2k-3$. The results for $t=k+1,k+2,\cdots,n$ follow immediately. Now consider t=1. Since b_k is the second vertex on Q_k , and b_1 is after b_n on Q_k , we see that b_1 is the 2(n-k+2)-th vertex on Q_k . The vertex $y=a_1$ is the first vertex on Q_{k+2} . Thus there are 2k-3 edges on Q which are between $x=b_1\in Q_k'$ and $y=a_1\in Q_{k+2}'$. Thus $d_Q(x,y)=2k-3$. The results for $t=2,3,\cdots,k-1$ follow immediately.

Suppose that T is a trail in $C_{n,n-1}$, we use d(T) to denote the least number of edges between two vertices of T with the same subscript.

Lemma 6 Suppose that l is an even integer ≥ 2 , and n is an odd integer such that $l \leq n-1$, and $n(n-1) \equiv 0 \pmod{l}$. Then $C_{n,n-1}$ has an S.E. P_l -decomposition.

Proof. The edges of $C_{n,n-1}$ are labeled as follows. Each edge can be assumed to be a_jb_k with $1 \leq j \leq n, \ j < k < j+n$. We refer to this edge as an s-edge where s=k-j. Let G_1 be the spanning subgraph of $C_{n,n-1}$ such that G_1 consists of all the edges with labels $1,2,\cdots,\frac{l}{2},n-\frac{l}{2},n-\frac{l}{2}+1,\cdots,n-1$. And let $G_2=C_{n,n-1}-E(G_1)$. We will prove the existence of S.E. P_l -decomposition of $C_{n,n-1}$ by showing that both G_1 and G_2 have S.E. P_l -decompositions. Note that in case l=n-1, G_2 is an empty graph.

The S.E. P_l -decomposition of G_1 will be achieved by using a base graph Q defined as follows. When l=4m ($m\in N$), let Q be the path $< a_jb_{n+1-j}>_{j=1}^{\frac{1}{4}}< a_{\frac{1}{4}+j}b_{\frac{3i}{4}+2-j}>_{j=1}^{\frac{1}{4}}< a_{1+\frac{1}{2}}>$, i.e., Q is the path $a_1b_na_2b_{n-1}a_3b_{n-2}\cdots a_{\frac{1}{4}}b_{n+1-\frac{1}{4}}a_{\frac{1}{4}+1}b_{\frac{3i}{4}+1}a_{\frac{1}{4}+2}b_{\frac{3i}{4}}\cdots a_{\frac{1}{2}}b_{\frac{1}{2}+2}a_{\frac{1}{2}+1}$. When l=2, let Q be the path $a_1b_na_{n-1}$. When l=4m+2 ($m\in N$), let Q be the path $< a_jb_{n+1-j}>_{j=1}^{\frac{1+2}{2}}< a_{n-\frac{3i+2}{4}+j}b_{n-\frac{i-2}{4}-j}>_{j=1}^{\frac{i-2}{4}}< a_{n-\frac{1}{2}}>$, i.e., Q is the path $a_1b_na_2b_{n-1}a_3b_{n-2}\cdots a_{\frac{1+2}{4}}b_{n-\frac{i-2}{4}}a_{n-\frac{3i-2}{4}}b_{n-\frac{i+2}{4}}a_{n+1-\frac{3i-2}{4}}b_{n-1-\frac{i+2}{4}}\cdots a_{n-\frac{1}{2}-1}b_{n-\frac{i}{2}+1}a_{n-\frac{i}{2}}$. It is easy to see that Q is an S.E. path having length l and consisting of edges with labels in order of $n-1, n-2, \cdots, n-\frac{1}{2}+1, n-\frac{1}{2}$, $\frac{l}{2}, \frac{l}{2}-1, \cdots, 2, 1$. We also see that G_1 can be decomposed into $Q, Q+1, Q+1, Q+2, \cdots, Q+(n-1)$, and each of them is an S.E. path of length l. Thus G_1 has an S.E. P_l -decomposition.

Next we consider the decomposition of G_2 . As mentioned before, G_2 is an empty graph if l = n - 1. Thus assume $l \leq n - 2$. We will define an Eulerian trail of G_2 , and then cut the trail into paths which are needed for the decomposition.

For $i=\frac{l}{2}+3,\frac{l}{2}+5,\frac{l}{2}+7,\cdots,n-\frac{l}{2}$, as defined in the paragraphs preceding Lemma 5, let Q_i be the trail $a_1b_ia_2b_{i+1}a_3b_{i+2}\cdots a_nb_{i+(n-1)}a_1$. We see that each Q_i is in fact a Hamiltonian cycle of $C_{n,n-1}$ and consists of all the edges with labels i-1 and i-2. Thus $E(G_2)=\bigcup_{i\in A}E(Q_i)$, where

 $A = \{\frac{l}{2} + 3, \frac{l}{2} + 5, \cdots, n - \frac{l}{2}\}$. Let T be the trail $Q_{\frac{l}{2} + 3} + Q_{\frac{l}{2} + 5} + \cdots + Q_{n - \frac{l}{2}}$. Obviously T is an Eulerian trail of G_2 . To determine d(T), we need to evaluate the minimum number of edges between two vertices x, y on T with the same subscript. Suppose x is before y on T. We consider four cases: $(1)x = a_t$, $y = a_t$, $(2)x = b_t$, $y = b_t$, $(3)x = a_t$, $y = b_t$, $(4)x = b_t$, $y = a_t$. In each case we will show $d_T(x, y) > l + 1$.

As defined in Lemma 5, let Q be the trail $Q_4 + Q_6 + Q_8 + \cdots + Q_{n-1}$ in $C_{n,n-1}$. Obviously T is a subtrail of Q in $C_{n,n-1}$. For any two vertices u, v on T, we have $d_T(u, v) = d_Q(u, v)$.

Case 1. $x = a_t$, $y = a_t$ By Lemma 5(1), $d_Q(x, y) = 2n$. Thus $d_T(x, y) = 2n \ge l + 1$.

Case 2. $x = b_t$, $y = b_t$

By Lemma 5(2), $d_Q(x, y) = 4n - 4$ or 2n - 4, which implies $d_T(x, y) = d_Q(x, y) \ge l + 1$.

Case 3. $x = a_t$, $y = b_t$

We use the result of Lemma 5(3), First consider $t=1,2,\cdots,k-1,k,k+1$. We have $d_Q(x,y)=2n-2k+3$ or 4n-2k-1, which implies $d_Q(x,y)\geq l+1$, since $k\leq n-\frac{l}{2}$. Now consider $t=k+2,k+3,\cdots,n$. Since $x\in Q_k'$,

 $y \in Q'_{k+2}$, we have $k+2 \le n-\frac{l}{2}$. Thus $d_Q(x,y)=2n-2k-1 \ge l+3 \ge l+1$. Hence $d_T(x,y)>l+1$.

Case 4. $x = b_t$, $y = a_t$

By Lemma 5(4), $d_Q(x, y) = 2k - 3$. Thus $d_T(x, y) = d_Q(x, y) \ge l + 3 \ge l + 1$, since $k \ge \frac{l}{2} + 3$.

From above, we conclude that $d(T) \ge l+1$. Now from the starting vertex we cut the trail T into subtrails with l edges. From the facts that $d(T) \ge l+1$, the starting vertex of T is in $\{a_1, a_2, \dots, a_n\}$, and l is even, we see that each subtrail is an S.E. path. Thus G_2 has an S.E. P_l -decomposition. This completes the proof.

The following corollary follows immediately from Lemma 4 and 6.

Corollary 7 Suppose that l is an even integer, and n is an odd integer such that $l \leq n-1$, and $n(n-1) \equiv 0 \pmod{l}$. Then DK_n has a P_l -decomposition.

Proof of Theorem. (Necessity) Conditions B and C are obvious. We prove Condition A. Suppose that l is even. We will show that n is odd. Let \Re be a P_l -decomposition of DK_n . Each antidirected path in \Re contributes 0 or 2 to the indegree of every vertex of DK_n . Thus every vertex of DK_n has even indegree, which implies that n is odd. (Sufficiency) Consider two cases.

Case 1. l is odd.

By Corollary 3, DK_n has a $\stackrel{\leftrightarrow}{P_l}$ -decomposition.

Case 2. *l* is even.

By Condition A, n is odd. Then, by Corollary 7, DK_n has a $\stackrel{\leftrightarrow}{P_l}$ -decomposition.

Acknowledgement

The authors would like to thank the referees for their helpful suggestions.

References

- [1] B. Grünbaum, Antidirected Hamiltonian paths in tournaments, J. Combin. Theory Ser. B. 11 (1971), 249-257.
- [2] V. Petrovic, Antidirected Hamiltonian circuits and paths in tournaments, In Proc. 4th Yugoslavian Seminar of Graph Theory, Novi Sad, 1984, 259-269.

- [3] M. Rosenfeld, Antidirected Hamiltonian circuits in tournaments, J. Combin. Theory Ser. B. 16 (1974), 234-242.
- [4] M. Rosenfeld, Antidirected Hamiltonian paths in tournaments, J. Combin. Theory Ser. B. 12 (1972), 93-99.
- [5] M. Tarsi, Decomoposition of complete multigraph into simple paths: nonbalanced handcuffied designs, *J. Combin. Theory Ser. A.* **34** (1983), no.1, 60-70.
- [6] C. Thomassen, Antidirected Hamiltonian circuits and paths in tournaments, *Math. Ann.* 201 (1973), 231-238.