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ABSTRACT. A path in a digraph is antidirected if the two adja-
cent edges of the path have opposing orientations. In this paper
we give a necessary and sufficient condition for the edges of the
complete symmetric graph to be decomposed into isomorphic
antidirected paths.

1 Introduction

A vo — v, walk of length r in a graph G is a sequence of vertices of the form
vo, U1, - - -, Uy where v;_1v; € E(G) fori = 1,2, .-, r; this walk is denoted by
vouy - - - vy. A trailis a walk in which all edges are distinct. A trail is closed
if its staring vertex and ending vertex are the same. An Fulerian trailof a
graph G is a closed trail containing all edges of G. A path is a trail in which
all vertices are distinct, and a path of length [ is denoted by P;. A path in
a digraph is antidirected if two adjacent edges of the path have opposing
orientations. To describe the edge oriented from the vertex u to the vertex
¢ we shall write u — v or v < u. The antidirected path will be designated
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by listing their vertices and orienting the edges between them. When ! is
odd, there is a unique nonisomorphic antidirected path of length {, denoted

by P, When { > 2 is even, there are two nonisomorphic antidirected paths
of length . (See Fig.1 for two nonisomorphic antidirected paths of length

2.) We use P[ to denote the antidirected path with the edges incident to
the end vertices of the path oriented away from the end vertices.

*e—> e —eo ei— o0 — e

Fig. 1

In a digraph G, an antidirected Hamiltonian path is an antidirected
path that passes every vertex of G; an antidirected Hamiltonian circuit is
an antidirected cycle(i.e., a cycle with adjacent edges having opposing di-
rections) that passes every vertex of G. In [1], [2], (3], [4], [6]. the existences
of antidirected Hamiltonian paths and antidirected Hamiltonian circuits in
tournaments were investigated.

For a simple graph G, we use D(G) to denote the digraph obtained from
G by replacing each edge ¢ of (v by two oppositely oriented edges with the
same ends of €. Let i, be the complete graph on vertex set {1,2,---,n}.
The directed graph D(K,) is abbreviated to DK,. We call DR, the
complete symmetric graph on n vertices. Suppose (G and H are graphs (
digraphs, respectively). If the edges of graph G can be decomposed into
subgraphs isomorphic to H, then we say that G has an H -decomposition.

In [5], the following result concerning the isomorphic path decomposi-
tion of complete graphs was proved.

Theorem 1 K, has a P,-decomposition if and only if | < n -1 and
n(n—1) =0 (mod 21). (|

In this paper we deal with the isomorphic antidirected path decompo-
sition of complete symmetric graphs, and obtain the following,.

Lnd
Theorem. DR, has a Pi-decomposition if and only if the following con-
ditions ave salisfied:

A.n orl is odd.
B.l<n-1
C.n(n—-1)=0 (mod!).

2 Main Result

<
In this section we deal with the P,~decomposition of DA’,,. We begin with
the case where [ is odd.
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Lemma 2 Suppose that !l is an odd integer. If a graph G has a P;- decom-
Exd
position. Then D(G) has a P,-decomposition.

Proof. This follows from the fact that if / is an odd integer, then D(P,)
can be decomposed into two antidirected paths of length . O

Corollary 3 If! is an odd integer, | < n—1 and n(n — 1) = 0 (mod l),
L d
then DK, has a P;-decomposition.

Proof. Since!lis odd, the condition n(n—1) = 0 (mod !) implies n(n—1) =
0 (mod 2l). Thus, by Theorem 1, K, has a Pi~decomposition. Then, by

L d
Lemma 2, DK,, has a P—~decomposition. O

Now we treat the case where ! is even. We introduce some definitions.
For integers n > k > 1, The crown Cy « is defined to be the graph with ver-
tex set {a1,az, -+, a,b1,b2,---,b,} and edge set {a;h;: 1<i<n, j=
i+ 1,i+2,---,i4+ %k (modn)}. Crowns Cyj are bipartite graphs with
regular degree k. In this paper we consider the crown (), , -, which is

‘Just the graph obtained from the complete bipartite graph with biparti-
tion ({a1,a2, -+, an}, {b1,ba,---,b,}) by taking away the perfect matching
{aiby,asbs,- -+, a,b,}. A path P in the crown C, ,_ is said to be subscript
distinct, if SN'T = ¢ where S = {i: ajisavertexof P}and T = {i: b;isa
vertex of P}. For example, in Cg 5 the path asbaazbsas is subscript distinct,
but the path a;bsasbsazby is not. If a subscript distinct path in Cj, ,,—1 has
end vertices in {ay,as,---,a,}, we call it an S.E. path; here, S stands for
subscript, E stands for end vertex. Note that an S.E. path has even length.
A P—decomposition of Cp, | is called an S.E. P,-decomposition, if each
member in the decomposition is an S.E. path.

Lemma 4 Suppose that | is an even integer, and that the crown Cy n—1
has an S.E. Pi-decomposition. Then DK, has a ]S:—decomposition.

Proof. Suppose [ = 2¢{. Let R be an S.E. P~decomposition of Cp n—1.
For each S.E. path P : a; b;i,a; b, - - -bi,ai,,,, in R, we associate an an-
tidirected path P: iy — iy ¢ i3 = iq -+ = iag ¢ ing1 of DKy. It is
easy to see that {;: PeR}isa Bl— decomposition of DK,,. a

t
We use < akjblj >j=l

@k, b, @y bry - -~ ak,br,, which is a walk in Cpno1. And < aggjba_j >3_, <

to denote the following sequence of vertices:

a,,_jbj >?=] < ag > is the walk agb, —1a4b, —aa,_1b1a,_2baa, _3baas.
Suppose W) is the walk 2j2a---2¢, Wa is the walk y1ya---y. in a
graph such that x; = y;. Then we use W; + W, to denote the walk
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ZTixg---XeY2ys - - - Ys. For walks Wy, Wa, - - W, in a graph, W, + Wo+- - -+
W, issimilarly defined. For anintegertand a walk W : a;,b;,ai,b;, - - - aiy,
in the crown Cy, ,,_1, we use W4t to denote the walk @i, 40,40 @iyt ebi 40 - -
@iy, 41+t 3 here and in the sequel, the subscripts of a;'s and b;'s are taken
modulo n. Suppose G is a subgraph of C, ,—1 and H is a subgraph of G
such that the edges of G can be decomposed into subgraphs H, H + 1, H +
2,---,H + k for some integer k. Then H is called a base graph of this
decomposition.

Let @ be a trail in a graph. Suppose z, y are two vertices on Q. We
use dg(z,y) to denote the number of edges on @ between z and y. Suppose
Q : zy2223- -2, is a trail in a graph. Then the trail T : zp2ppi12p40 - - - 24
(1 <k <s<n)iscalled a subtrail of Q. For two vertices z, y on T, we
have dp(z,y) = dg(z,y). In the following, for an integer 7, 3 < i < n, we
use @; to denote the trail a1b;azbiy1a3bisz - - anbip(n-1)a1 in Cppn-y.

Let Q' = arbrasbry1a3beya - -anbiyp(n_1), i.e., we remove the last
vertex of @ from Q.

Lemma 5 Suppose n is odd. In the crown Cy, n—1, let Q be the trail Q4 +
Q13+Q8+ "'+Qn-l‘

(1) Suppose 4 <k<n-2 Fort=1,2,---,n,let 2 = a, be on Qj, and
let y = a; be on Q). Then dg(z,y) = 2n.

(2) Suppose 4 < k< n-—2. Let z = b, be on Q}, and let y = b, be on
dn—4, t=kk+1
' — b y
k42 ThendQ(fL‘,.’/)—{Qn_,l‘ t=k+2,k+3,,k+n—l

(3) Suppose 4 < k< n-—1. Let = a, be on Q) and let y=b, be on Q
such that y is after z and closest to . Then fort =1,2,---, k-1,
we have y € Qf, and dg(z,y) = 2n—2k +3, fort = k,k+1, we have
Y€ Qpys and dg(z,y) =4n -2k -1, fort =k +2,k+3,---,n, we
have y € Q). ,», and dg(z,y) =2n — 2k - 1.

(4) Suppose 4 < k < n—1. Let x = b, be on Q. and let y = a, be on
Q such that y is after © and closest to x. Then dg(z,y) = 2k — 3 for
t=12..,n

Proof. (1) Trivial.

(2)First consider ¢ = k. Since & = by is the second vertex on @y, and
y = by is the (2n — 3)-th vertex on Qi42, it is easy to see that there are
4n — 4 edges on @ which are between x = b; and y = bx. The proof for
{ =k + 1 is similar. Now consider ¢ = k + 2. Since & = by 42 is the sixth
vertex on Qg, and y = by+2 is the second vertex on Qy 42, it is easy to see
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that there are 2n — 4 edges between = = by42 and y = bgy2. The proof for
t=k+3,k+4,---,n+ k-1 are similar.

(3) Note that fort = 1,2,---,k — 1, a, is before b, on Q}. Thus y =
b; € Qj.. Now consider ¢ = 1. Since b, is the last 2(k — 1) vertices on Qx,
there are 2n + 1 — 2(k — 1) + 1 = 2n — 2k + 4 vertices on @@ which are
between x = a; and y = b, (inclusively). Thus dg(z,y) = 2n -2k +3. The
results fort = 2,3, ---, k — 1 follow easily. Next consider t = &k, k+ 1. First
consider { = k. Note that by is before ax on Q. Thus the bs, which is
after z = a; and closest to z, is on Qx+2. We see that ay is the (2k — 1)-th
vertices on @, and the last four vertices on Q42 are by, an, bx4+1,a;1. Thus
there 4n 4+ 1 — (2k — 2 4 3) = 4n — 2k vertices on @ between r = a; and
y = by. Hence dg(z,y) = 4n — 2k — 1. The result for t = k + 1 follows
easily.

Now consider t = k+2,k+3,---,n. Now ¢ = k+2. Since b 42 is before
ag42 on Qg, the byis, which is after £ = ary42 and closest to ar42, is on
Qr4+2. Wesee that z = ay4o is the (2k+3)-th vertex on Qx, and y = b 42 is
the second vertex on Qg42. Thus there are 2n—(2k+2)+2 = 2n—2k vertices
between z = ap42 and y = bgya(inclusively). Thus dg(z,y) = 2n -2k - 1.
The results fort =k + 3,k + 4, - -, n follow immediately.

(4) First consider t = k. Since by is the second vertex on Q, @y is the
(2k — 1)-th vertex on Qy, it follows that there are 2k — 3 edges on @ which
are between ¢ = b and y = ax. Thus dg(z,y) = 2k — 3. The results for
t=k+1,k+2,---,n follow immediately. Now consider ¢ = 1. Since b
is the second vertex on @, and b; is after b, on Q, we see that b, is the
2(n-k+2)-th vertex on Q. The vertex y = a; is the first vertex on Qg42.
Thus there are 2k — 3 edges on @ which are between z = b; € @} and
¥y = a1 € Qs Thus dg(x,y) =2k — 3. The results fort =2,3,---, k-1
follow immediately. |

Suppose that T is a trail in Cp n-1, we use d(T’) to denote the least
number of edges between two vertices of T with the same subscript.

Lemma 6 Suppose that I is an even integer > 2, and n is an odd integer
such thatl < n—1, and n(n — 1) = 0 (modl). Then Cy -1 has an S.E.
P;-decomposition.

Proof. The edges of C, . are labeled as follows. Each edge can be
assumed to be ajbr with 1 < j < n, j <k < j+n We refer to this
edge as an s-edge where s = k — j. Let G; be the spanning subgraph
of C, n—1 such that G, consists of all the edges with labels 1,2,:.-, —.‘5,
n— %,n - %+ 1,---,n—1. And let G2 = C,, 5,1 — E(G;). We will prove
the existence of S.E. Pi-decomposition of Cy, ,—; by showing that both G,
and G- have S.E. P—~decompositions. Note that in case | = n—1, G2 is an
empty graph.
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The S.E. P,~decomposition of Gy will be achieved by using a base
graph @ defined as follows. When | = 4m (m € N), let @ be the

path < ajbny1_; >] 1< anﬂba:_,_z >‘I < apg >y i.e., @ is the path

ar1bpaqzb, _1a3b,_q- a;_bn,,_l La:Hba:_,_la:_,_,,bu . a:b:_+.,ac+l When

1 =2, let Q be the path arbpan—1. When! = 4m+2 (m € N), Iet Q@ be the
_‘I‘_ -2

path < ajbnyy—; >J..1 <a, _-,._+an___] > 1 <ap.t>, i.e., @ is the

path a b, a2b,_1a3b,_2 - a_+_b 1-2a, al:zb —al, at—zbn -2

an___lbn L410n-L- It is easy to see that Qis an S E. path havmg length l
and consisting of edges with labels in order of n—1,n~2,---,n = £ + 1,n — %,
’g %— 1,---,2,1. We also see that G; can be decomposed into @, Q+1 Q+
2,---,Q@+ (n—1), and each of them is an S.E. path of length {. Thus G,
has an S.E. P-decomposition.

Next we consider the decomposition of G'a. As mentioned before, G'9 is
an empty graph if { = n — 1. Thus assume ! < n — 2. We will define an
Eulerian trail of G2, and then cut the trail into paths which are needed for
the decomposmon

For i = ., +3,% 3+ 5 ,n— .,, as defined in the paragraphs
preceding Lemma 5 let Q, be the trall ab; asbit1a3biys - apbip(n-1)a;.
We see that each @; is in fact a Hamiltonian cycle of C, 'n,n—1 and consists

of all the edges with labels i —1 and i —2. Thus E(G2) = | E(Q:), where
i€A

A= {;+3, ;+5 n——} Let T be the trail Q:+3+Q:+5+ +Q,._;_
Obviously T is an Eulerian trail of G;. To determine d(T) we need to
evaluate the minimum number of edges between two vertices z, y on T
with the same subscript. Suppose z is before y on T. We consider four
cases: (l)z=ar, y=a, 2z =b,, y=b;, )z =ay, y = b, (4)x = b,,
y = a;. In each case we will show dr(z,y) >+ 1.

As defined in Lemma 5, let Q be the trail Q4+ Qs + Qs + - -+ + Qn—y
in Cy 1. Obviously T is a subtrail of @ in C,, ,,—;. For any two vertices
u, v on T, we have dr(u,v) = dg(u,v).

Casel. 2 =@, y = a;
By Lemma 5(1), dg(z,y) = 2n. Thus dr(z,y) =2n > 1+ 1.

Case 2. 1.'=b¢, y=bg
By Lemma 5(2), dg(x,y) = 4n — 4 or 2n — 4, which implies d7(x, y) =
do(z,y) > 1+ 1.

Cased. z=a;,y= 0,

We use the result of Lemma 5(3), First consider t =1,2,---, kA—1,k, k+
1. We have dg(z, y) =2n—2k+3 or 4n—2k -1, which lmplles do(z, y) >
{+1,since k<n-— — . Now consider t =k +2,k+3,---,n. Since z € ka
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Y € Q) o Wehave k+2 < n—%. Thusdg(z,y) = 2n—2k—1 > [+3 > I+1.
Hence dr(z,y) > 1+ 1.

Cased. 2=b;, y=a;

By Lemma 5(4), dg(z,y) = 2k — 3. Thus dp(z,y) = do(z,y) > 1 +3 >
I+1,since k> § +3.

From above, we conclude that d(T") > I+1. Now from the starting vertex
we cut the trail 7" into subtrails with ! edges. From the facts that d(T") >

l + 1, the starting vertex of T is in {a1,a2,---,a,}, and ! is even, we see
that each subtrail is an S.E. path. Thus G» has an S.E. Pi~decomposition.
This completes the proof. O

The following corollary follows immediately from Lemma 4 and 6.

Corollary 7 Suppose that | is an even integer, and n is an odd integer

such thatl < n—1, and n(n — 1) = 0 (modl). Then DK, has a ]‘3,—
decomposition. a

Proof of Theorem. (Necessity) Conditions B and C are obvious. We
prove Condition A. Suppose that ! is even. We will show that n is odd. Let

Rbea }‘-’:—decomposition of DR,,. Each antidirected path in & contributes
0 or 2 to the indegree of every vertex of DK,,. Thus every vertex of DK,
has even indegree, which implies that n is odd.

(Sufficiency) Consider two cases.

Case 1. [ is odd. o
By Corollary 3, DK, has a P,—-decomposition.

Case 2. [ is even. n
By Condition A, n is odd. Then, by Corollary 7, DK, has a P,-
decomposition. 0
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