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Abstract
A linear [n,k,d]; code C is called NMDS if d(C) = n — k and
d(C*) = k. In this paper the classification of the [r,3,n — k|, NMDS
codes is given for ¢ = 7,8,9. It has been found using the correspon-
dence between [n,3,n — k}; NMDS codes and (n, 3)—arcs of PG(2,9).

1 Introduction

Let Fy be the n—dimensional vector space over the Galois field GF(q).
The Hamming distance between two vectors of F* is defined as the num-
ber of coordinates in which they differ. A g-ary linear [n,k,d]q—code is a
k—dimensional linear subspace of Fy' with minimum distance d. The Sin-
gleton bound [15] states a relationship among n,k and d: d < n—k+ 1.
Codes meeting the Singleton bound are called MDS (Maximum distance
separable). Bounds on the minimum distance of linear codes can be found
in (3).

The projective space of dimension r obtained from G F(g) will be denoted
by PG(r,q). A set of m points of PG(r,q) are called in general position if
they are not contained in a subspace of dimension m — 2. A set of n points
in PG(r,q) such that every r + 1 of them are in general position is called
n—arc. A detailed description of the most important properties of these
geometric structures can be found in [8], while [10] contains general bounds
and particular values for the sizes of particular sets of points of PG(r,q).
The following theorem [2] states a relationship between linear codes and sets
of points in PG(r, q):
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Theorem 1 C is an [n,k,d] linear code if and only if the columns of the
parity check matriz of C are n points in PG(n — k — 1,q), each d — 1 of
which are in general position.

In particular MDS codes and n-arcs are equivalent objects. A conjecture
affirms that the maximum length of a non-trivial MDS code is less than or
equal to g+ 2 if q is even and k = 3 or kK = ¢ — 1 and it is less than or
equal to ¢ + 1 otherwise. The conjecture has been proved when q < 19 and
when k£ < 5 ([4], [9], [11]). To have longer codes, the value of d has to be
less than n — k + 1. The Singleton defect of a [n,k,d] code C, defined as
8(C) = n—k+1-d, measures how far C is away from being MDS. Codes with
s(C) = 1 are called AMDS (almost MDS) and codes with s(C) = s(Ct) =1
are called NMDS (near MDS). Such codes have been considered in [1}, [5],
(6], [7]. Not all the AMDS codes are NMDS [6], but the following theorem
holds([5]): :

Theorem 2 Ifn > k + g, every [n,k,n — k] code is NMDS.
In [6] it is stated also that the following holds:

Theorem 3 A linear [n,k,d] code C is NMDS if and only if a generator
matriz of C, say G¢, (and consequently each generator matriz) satisfies the
following conditions:

(N1) any k — 1 columns of G¢ are linearly independent;

(N2) there exist k linearly dependent columns in Gg;

(N38) any k + 1 columns of G¢ are of full rank.

Let C be a NMDS code with & > 3 and generator matrix G¢ = [g1 82
... Bn), where g; € FZ. Since k > 3,the columns of G¢ can be viewed as
different points in the projective geometry PG(k—1, ¢). Hence the existence
of an [n,k,n — k] NMDS code C is equivalent to the existence of a set S of
points in PG(k — 1,q) having the following properties ([6]):
(NY’) any k — 1 points from S generate a hyperplane in PG(k — 1,q);
(N2’) there exist k points lying on a hyperplane;
(N3") every k + 1 points from S generate PG(k — 1,q).
When k = 3 these properties reduce to the following:
(N2”) there exist three collinear points in S;
(N3”) no four points from S lie on a line.
A set S of points of PG(2,q) satisfying the properties (N2”) and (N3")
is called (n,3)—arc. Every [n,3,n — 3] NMDS code is therefore equivalent
to an (n,3)—arc in PG(2,q).
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In [6] the classification of the [n, k,n—k] NMDS codes of maximal length
is given for ¢ < 4. The classification of the (n,3)—arcs in PG(2, 5) that gives
also the classification of the [n,k,n — k]s NMDS codes can be found in [16].
This paper presents the classification of the [n,3,n — 3], NMDS codes over
GF(7), GF(8) and GF(9). In particular it has been demonstrated that
there are 19 non-equivalent NMDS codes of maximal length over GF(8)
and that there are 4 non-equivalent NMDS codes of maximal length over
GF(9). The classification of the NMDS codes has been obtained computing
the number of non-equivalent (n,3)—arcs in PG(2,q), ¢ = 7,8,9 using a
computer based exhaustive search. The classification given in this paper
has been the starting point of an ongoing work concerning NMDS codes of
dimension greater than three. Preliminary results concerning the existence
and the classification of NMDS codes over GF(5) and GF(7) have been
presented in [14].

The algorithm used is described in the next section. The third, the
fourth and the fifth sections contain the classification of the [r,3,n — 3|,
NMDS codes over GF(7), GF(8) and GF(9), respectively.

2 The algorithm for the classification of the (n, 3)-
arcs

In this section the algorithm used for. the classification of the (n,3)—arcs
in PG(2,q) is described. It is a modification of the algorithm presented in
[12]. It allows to find exactly one representative of each equivalence class of
the (n, 3)-arcs of a given size s. The following theorem [12], stating a lower
bound on the size of the arcs that an (n, 3)-arc contains, has been used to
reduce the number of cases to examine:

Theorem 4 An (n,3)-arc K in PG(2,q), n > a + (3), contains an arc of
size a+ 1.

The first step of the algorithm is therefore the classification up to pro-
jective equivalence of the arcs in PG(2,q) of size less than or equal to a.
Start with R = {(0,0,1), (0,1,0), (1,0,0), (1,1,1)} and define Cand to be
the set of the points of the plane lying on no 2-secant of R. In Cand the
following equivalence relation is introduced: P «~ @Q if and only if RU {P}
is projectively equivalent to RU {@}. Let {C;}; be the set of the equiva-
lence classes. Then not only can we limit the choice of the next point to
one representative P; from each class, but after having constructed all arcs
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containing R U {P;}, when considering the arcs containing RU {P;} with
i < j, we may avoid to choose points in the classes Ck, with k < j: an arc
containing such a point would in fact be projectively equivalent to an arc
that was obtained previously. Iterate the process and obtain a tree structure
of equivalence classes:
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The depth of the tree is @ —4. If RU{P,}U...U{P}"™'}U{P}is
projectively equivalent to RU{P;, }U...U{P.2*"'}U{Q}, where P;1* €
Chr--iir l:henPQeC"l “im '

The algorithm contmuw looking for (n,3)-arcs containing one of the
non-equivalent a-arcs. To extend each a-arc into an (s, 3)-arc, a procedure
similar to the previous is adopted. In this case Cand will be the set of the
points of the plane lying on no 3-secant of the current (n, 3)-arc. In Cand an
equivalence relation similar to the above is introduced: P « @ if and only if
RU{P,}u...U {P’l “m-11J {P} is projectively equivalent to RU {P;, } U

LU{R “im=11{Q}. Let {C;}: be the set of the equivalence classes. Then
the choice of the next point will be limited to one representative P; from
each class.

3 The [n,3,n — 3] NMDS code over GF(7)

The classification of the [n,3,n—3]7; NMDS codes is reported in the following
table:
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5,3, 2]7 NMDS codes 3
6,3, 3]7 NMDS codes 14
7,3,4]7 NMDS codes 53
8,3, 5|7 NMDS codes 180
9,3,6]7 NMDS codes | 526
10, 3, 7]; NMDS codes | 907
11, 3,8]; NMDS codes | 923
12,3,9]7 NMDS codes | 395
13, 3,10]7 NMDS codes | 65
14,3, 11]; NMDS codes | 4
15,3,12]7 NMDS codes | 1
The classification of NMDS codes over GF(7)

It was obtained classifying the (n,3)-arcs in PG(2,7) using the algo-
rithm described above, as every [n,3,n — 3] NMDS code is equivalent to an
(n,3)—arc in PG(2,g). The description of the geometrical properties of the
(m, 8)-arcs in PG(2,7) can be found in [13].

4 The [n,3,n— 3] NMDS code over GF(8)

The following table contains the classification of the [n,3,n — 3]s NMDS
codes:

5,3,2]s NMDS codes 2
6,3, 3]s NMDS codes 7
7,3,4]s NMDS codes 38
8,3,5|s NMDS codes 175
9,3, 6]s NMDS codes 764
10,3, 7]s NMDS codes | 2244
11,3,8]s NMDS codes | 4236
12,3,9]s NMDS codes | 4281
13,3,10]s NMDS codes | 1956
14,3,11]s NMDS codes | 297
15,3, 12]s NMDS codes | 19
The classification of NMDS codes over GF(8)

It was obtained classifying the (n,3)-arcs in PG(2,8). The study of the
geometrical properties of the (n, 3)-arcs in PG(2, 8) has not been completed

yet.
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5 The [n,3,n — 3] NMDS code over GF(9)

The following table contains the classification of the [n,3,n — 3] NMDS
codes:

5,3,2]p NMDS codes | 3
6,3, 3] NMDS codes 19
7,3,4]s NMDS codes 119
8,3, 59 NMDS codes 734
9,3,6]o NMDS codes 4273
10, 3,7]g NMDS codes | 18592
11,3,8]9 NMDS codes | 56426
12,3,9]o NMDS codes | 105193
13,3, 10]o NMDS codes | 106479
14,3, 11]g NMDS codes | 48833
15,3, 12]g NMDS codes | 8314
16, 3,13]g NMDS codes | 382
17,3,14]g NMDS codes | 4

The classification of NMDS codes over GF(9)

It was obtained classifying the (n, 3)-arcs in PG(2,9). The study of the
geometrical properties of the (n, 3)-arcs in PG(2,9) has not been completed
yet.
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