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ABSTRACT. This paper deals with combinatorial aspects of de-
signs for two-way elimination of heterogeneity for making all
possible paired comparisons of treatments belonging to two dis-
joint sets of treatments. Balanced bipartite row-column (BBPRC)
designs have been defined which estimate all the elementary
contrasts involving two treatments one from each of the two
disjoint sets with the same variance. General efficiency bal-
anced row-column designs (GEBRC) are also defined. Some
general methods of construction of BBPRC designs have been
given using the techniques of reinforcement, deletion (addition)
of column or row structures, merging of treatments, balanced
bipartite block (BBPB) designs, juxtaposition, etc. Some meth-
ods of construction give GEBRC designs also.

1 Introduction

Consider a two-way heterogeneity setting where 1,...,v; test treatments
(hereafter called tests) belonging to a set T of cardinality »; are to be
compared with v; +1,...,v; + v2 = v control treatments (hereafter called
controls) belonging to a set U of cardinality vp; TNU = ®, via n experi-
mental units arranged in R rows and C columns, n = RC. Suppose that
nijx denotes the number of times the ith treatment is applied in the jth
row and the kth column. Here we assume that n;;x =0or 1; 1 < ¢ < v,
1<j<R1<k<C.

Let Lyxr = [L}: L]’ = ((n:;.)) and Myxc = [M}: M}’ = ((nix)) be
the v x R treatments vs rows and » X C treatments vs columns incidence
matrices respectively, and n;; = Ef=1nijk;ni_k = ZJ-R=1nijk. L, (M,)
is tests vs rows (columns) incidence matrix and L, (M) is the controls
vs rows (columns) incidence matrix. Under the usual three-way classified,
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additive, linear, fixed effects, homoscedastic model and further assuming
that from each of the RC cells one observation is obtained, the coefficient
matm{) of reduced normal equations for estimating the treatment effects is
given by

po [Rr- AL - RMIMI T dLag- Mg+ 5 |
= 7 ’ .
SERRTIRRIVAVE- U Y R TR CVR V-
where rj = (r1,...,7y,) is the 1 x v; vector of replications of tests,

r5 = (Ty;41,..-,Tv) is the 1 x v vector of replications of controls, R; =
diag(ry,...,rv, ) and Ry = diag(ry,+1,...,7y). The matrix F is non neg-
ative definite with zero row (column) sums and for a connected design,
Rank(F) = v — 1. Henceforth, we shall consider only connected designs.
Further define

S = RApyr + Cherer — merer, Vi<t#t' <un
Stu=Sut = RAreu + Chctu —Tyru, V1<t<wui+1<u<v
Suw' = RApywt + Cheuy? — TuTu?s Voyu+l<u#u' <o

Here, Areer (Aruu), Acter (Acuwr) are respectively the number of concurrences
oft,t’ € T (u,u’ € U) in rows and columns of the design; Arey (Acrw) is
the number of concurrences of treatment ¢ € T and treatment v € U in
rows (columns) of the design, r; (ry) is the replication number of treatment
teT (uel).

The treatment contrasts of interest are of the form 7, — 7,,, where 7; and
Tu Tespectively represent the effect of the treatments ¢t € T and v € U.
These contrasts can be written in the form P’7, where

P = [101 ® Ivz P va ® l'vz] (1'2)

is a vy v3 X v matrix and 7 is a » component vector of the effects of tests and
controls given by 7 = (71, Ty, 41,-- +,7y)’. Here I, is an identity matrix
of order n, 1, is a n x 1 vector of ones, and ® denotes kronecker product.
The problem of obtaining suitable designs for making comparisons of the
type 7: — 7y in row-column setting has been considered by Freeman (1972,
1975). Freeman introduced type B (bipartite) row-column designs as an
extension of supplemented balanced (type S) block designs of Pearce (1960).
These designs estimate all elementary contrasts of treatments belonging to
pth set of treatments (p = 1,2) with same variance 02V}, (say), and all
elementary contrasts of treatments from two different sets with variance
0*Vis = 0%Vy = o%V; (say), where o2 is the common variance of the
observations.

In general block design set up, construction and analysis of such de-
signs has been studied by Nair and Rao (1942), Corsten (1962), Adhikary
(19652, 1965b), Federer and Raghavarao (1975) and Kageyama and Sinha
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(1988). Federer and Raghavarao (1975) have considered the row-column
settings as well, but the designs allow only single replication of tests. In
this investigation, we give the methods of construction of these designs for
the situations where we can afford more than one replication of the tests.
Keeping in conformity with the definition of balanced bipartite block de-
signs of Kageyama and Sinha (1988), we shall call such designs as balanced
bipartite row-column (BBPRC) designs. The BBPRC designs are defined
below:

Definition 1.1. An arrangement of v(= vy + vg) treatments in R rows
and C columns is said to be a BBPRC design if

a) sy = 81 (constant) Vi#Et =1,...,0,
b) Suw = s (constant) Vu#Fu =v+1,...,9, (1.3)
C) Sty =Sut =50 >0 (constant) Vi=1,...,v1, u=v1+1,...,v

The BBPRC design as defined above is also called a general efficiency
balanced row-column (GEBRC) design for comparing two disjoint sets of
treatments if s3 = s1s. This is an extension of GEB block designs of Das
and Ghosh (1985) and Kageyama and Mukerjee (1986).

The information matrix as in (1.1) for a BBPRC design is given by

1 [(vis1 +v2s0)Iy; — 5110, 15, —s0ly, 1/
F= RC ( ’30)1:0: 1; b (v2s2 +913D)Iv‘z = azlugli.,] (14)

I(-ilere o?Vy = o?{2RC/(v151 + v250)}, 02Va = 02{2RC/(v3s2 + v150)}
an

2 2 2 2 v280 + 51 v-—1
ocVi2=0“Vo1 = 0*Va =0 {RC[
12 ! 3 v250(v131 + v250) vz(szz + v130)
=¢72{RC[ v180 + 82 v —1 }
v1so(v2sz +v150) ~ vi(visi +v2s0) ) (35

Remark 1.1. For a variance balanced design in a two-way heterogeneity
setting we have sp = 3; = s = s (say) and F = ¢ (I, — 1,1, /v), where
6 = sv/RC is the unique positive eigenvalue of F with multiplicity » — 1.
For v = 1, all the BBPRC designs defined above reduce to balanced
treatment row-column designs given by Ture (1994) and generalized effi-
ciency balanced row-column (GEBRC) designs of Gupta and Prasad (1990).
Notz (1985) and Ture (1994) considered the A-optimality aspects of row-
column designs for making test treatments-control comparisons. Majum-
dar (1986) has considered the optimality aspects of row-column designs for
comparing two disjoint sets of treatments. Mandeli (1991) has shown that
A-optimal row-column designs suggested by Notz (1985) and Majumdar
(1986) are particular cases of F-squares. Although A-optimality aspects of
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these designs can be considered by minimization of trace (P’C~P) over a
class of competing designs, we give in the sequel only the methods of con-
struction of BBPRC designs which are the candidate designs for studying
the A-optimality aspects of row-column designs for comparing two disjoint
sets of treatments.

2 Construction of BBPRC designs

The purpose of this section is to give some general methods of construction
of BBPRC designs through the technique of deletion (addition) of column
structures in Youden Squares, reinforcement of balanced row-column de-
signs [like Generalized Youden Designs (GYD), Pseudo Youden Designs
(PYD), Latin Square Designs (LSD), Youden Square Designs (YSD), etc.],
merging of treatments in a balanced row-column design, mutually orthogo-
nal latin squares and juxtaposition. We shall use definition 1.1 and expres-
sion (1.4) to get BBPRC designs with parameters as vy, vo, R, C, 71, 73,
81, S0, S2, where 7y (r2) is the replication number of tests (controls).
Method 2.1: Consider a YSD D(v,R = k,C = b,r, ). Without any loss
of generality, assume that the last column has treatment labels 1,...,k.
The abridged YSD obtained by deleting one column from D is a BBPRC
design with parameters vy =k, vo=v—k, R* =k, C*=b—-1, 1 =1 -1,
ro =71, 81 = k(r—2)+(b=1)(A=1)=(r-1)2, 5o = k(r—1)+(b—=1)A—=r(r-1),
s2 =1k + (b — 1)A — 2, and information matrix as

F gD 5 D

where

A'levx = [k(b - 1)(T - 1) -k- (b - 1)(T - )‘)]Ivl
—[k(r-2)+ G -1)(A-1) - (r = 1)%1,,1;,
Byixv, = =[k(r —1)+ (b —1)A —r(r — 1)]1,, 1:,2
Dy, xu, = [rk(b — 1) — (b— 1)(r = ALy, — [br + (5 — 1)A — 7)1, 1, .

Method 2.2: Consider a YSD D(v,R = k,C = b,7,)\). Extend the
columns of the YSD by one column. Without any loss of generality assume
that the added column contains treatment labels v — k +1,...,v. The
extended YSD is a BBPRC design with parameters v; = v — k, vp = k&,
R =k C*'=b+l,ri=rro=r+1 8 =k + b+ 1)\ -r2
so=k(r+1)+(b+1)A—7(r+1) and s; = k(r+2)+ (b+1)(A+1) = (r+1)2,
and has information matrix as
o [A B]
" k(+1) |B” DJ’
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where

A=[k(b+1)r - (+1)(r— AL, — [kr+ (b+1)A - 1,1/,
B=—[k(r+1)+ b+ 1A -r(+ 1)1, 1],
D =[k(b+1)(r+1) =k — (b+1)(r = W)L,

= [k(r+2) + b+ 1)(A+ 1) = (r +1)*|1,,1;,.

The above procedure has been given by Jacroux (1982) in Theorem 3.2
for obtaining F-optimal row-column designs for making all possible paired
comparisons among v treatments. It is also type 9 design of Freeman (1975).

Method 2.3: Suppose that a variance balanced row-column design with
parameters v+ af, R, C, v’ = (r},13); r1 = (T1,...,7%); T3 = (Tus15-.+»
TutaB) 8 = vﬁi%, where ¢, B are any unique positive integers and 4 is
the unique non-zero eigenvalue of the information matrix of the variance
balanced row-column design, exists. Then by merging v + 1,...,v +
treatments as the (v + 1)th treatment, v + a + 1,...,v + 2a treatments
as the (v + 2)th treatment, and so on, and v+ a(8 —1) +1,...,v + af
treatments as the (v + B)th treatment, we get a BBPRC design with pa-
rameters vy =v, v =8, R* =R, C*=C, r} =ry, v5 = ((ro41+ -+ +
Tu+a): caey (Tu+a(ﬂ-l)+1 +---+ Tv+aﬁ))’a 8 = vtagr S0 = 51, S2 = @79,
Remark 2.3.1: Consider a Latin square design as a variance balanced
row-column design, with parameters v + af8 (v = pq), R, C, r, s, where
P, 9, a, B satisfy some conditions specified in corollary 4.1 of Majumdar
(1986). Merge the first pq treatments to g treatments as follows: 1,...,p
treatments to 1st treatment, p+1, ..., 2p treatments to 2nd treatment, and
so on, and p(¢ —1) +1,..., pq treatments to gth treatment. Further merge
aff treatments to B treatments as in Method 2.3. The resulting design
is an A-optimal design for comparing two disjoint sets of treatments over
D(q, B, pq+apB, pg+ap), the class of connected row-column designs in which
q test treatments and B control treatments are arranged in pq+af rows and
pg+ap columns. Further, for 8 = 1, and a latin square of order v+¢, in the
above method such that & = /v, and merging v+1, ..., v+ a treatments to
(v+1)th treatment, called control treatment, we get a Balanced Treatment
Row-Column Design (BTRC Design) which is A-optimal for comparing
several test treatments with a control treatment over D(c?, 1, o +a, o®+a),
the class of connected designs in which o? test treatments and a control
are arranged in o2 4 o rows and o? + o columns as a corollary 2.1 of Notz
(1985). :
Remark 2.3.2: The BBPRC designs obtained by method 2.3 are also
general efficiency balanced row column designs for comparing two disjoint
sets of treatments.

Remark 2.3.3: Consider a BBPRC design with parameters v; = pg and
vz = af, R=C, ry, ra, 81, so, s2.. Following the procedure of merging of
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treatments as in method 2.3, merge v, treatments to p treatments and v»
treatments to o treatments. The resulting design is a BBPRC design with
parameters v; = p, v3 = &, R, C, gri, frg, qs1, gaso, 0s;.
Method 2.4: Consider a row-column design which is balanced with re-
spect to row classification as well as column classification separately in v,
treatments arranged in p rows and ¢ columns such that each treatment is
replicated r times and number of concurrences of any two treatments in
rows (columns) is A, (A;) (e.g., a latin square design, a Youden Square
design and a Generalized Youden Design).

Reinforce the row-column design to get another row-column design in
p+ vg rows and g + v columns with vp control treatments as follows:

i) the symbols in the ith row and (¢ + j)th column for i =1,...,p and
7 =1,..., vy will have each of control treatments exactly once in each
of the p-rows in a systematic order viz. 1,2,...,vs,

ii) Similarly the symbols in the (p + #)th row and jth column for i =
1,...,v2; j =1,...,q will have each of v, control treatments exactly
once in each column in a systematic order viz. 1,2,...,vs.

(iii) The arrangement of vy controls in the (p + i)th row and (g + j)th
column for ¢, 5 = 1,...,v2 will form a latin square of order vy. For
the given row column design let

LL' = (a — A\ )Ly, + A1y, 1, MM = (b= AL, + Acly, 1

v1?

where a(b) = 2;2:1 nZ;, (Ef=ln§k) Vi=1,...,u,5=1,...,p
k=1,...,q.

The corresponding matrices for the resulting row-column design are

L*L*' _ LL’ ‘I'].,,1 1:,2
T 1,1, T4+ (20+p+2)1y,15,
_ [(a= )1+ 21,13, rly, 1,
L 7‘1-,,, 1:11 qZI + (2(] +p+ ”2) lvn 1‘:12
3V -(b - AJ)I+ Acly, 1:,1 rl,, 1:,2
MM =17 1,1, " Pl @t gt ul,l,
and )
R* = rly, 0 .
| 0 (p+q+u)ly,)’
r r,.' - [ r? 1,, 1:,1 , T(p +q9+ 'vzz 1, 1;,2
r(p+q+v2)1y,1,,  (P+g+v2)%1,,1;,
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The information matrix is
1
(p + v2)(g + v2)
[(P +v2)(g +v2)R* — (p + v2)L*L* — (g + v2)M*M* + r‘r"]

F*=

~GravT 5 B

where

= ((p+v2)(g + v2)r — (P+v2)(a = Ar) — (g +v2) (b — A)] I
— [P+ v2)r + (g +v2)Ae — 7)) Ly, 1,

= — [{(p+v2)r + (g+ vo)r —7(p+ g+ v2)} 1o, 15, ]

= —ruzly, 1,

= [(p+v2)(g +v2)(p+ g +v2) — (P +v2)g* — (g +22)P?] Ly,
— [(p+v2)(2g +p+u2) + (g +2) (2P + g +v2) — (P+ g +2)°] L, 15,

which is information matrix of a BBPRC design with parameters v, v, R =
p+ve, C = g+uvz, 11 =71, 72 = (p+q+v2), 51 = (p+v2)Ar +(q+vz))\c—r )
S0 =TVg; S2 = (p+vz)(2q+p+vz) +(g+ )2+ q+v2) — (P+q+v2)’.
It may be noted that the designs constructed using this method may
not perform well from an efficiency perspective as these are not generalized
binary, neither with respect to rows nor with respect to columns.
Remark 2.4.1: When the design considered is a Latin square (Youden
square) design then the parameters of BBPRC design are vy, vz, R =
C=uv+4+wvy 1 =v, 72 =201+ vy, 81 = (v1 + 2v2)v1, S0 = V179,
sg = 2(v1 + v2)(3v1 + v2) — (2v1 + v2)%; [v1,v2,R = p+v2,C = v1 +
va,71 =P, T2 = p+v1 + 02,81 = p(p +v2) + (v1 + v2)Ac — P?; 50 = pra,
s2= (P +92)(201 +p+v2) + (1 + v2)(2p +v1 +02) — (P+v1 +v2)°
Remark 2.4.2: When the design considered is a latin square design of
order v; and we add vz x v, latin square in the diagonally opposite corner
and two (v; x v2) Youden squares on v; treatments, this method yields
designs of Type 17 of Freeman (1975).
Remark 2.4.3: In above method we have considered a row-column design
which is balanced with respect to rows as well as columns classifications,
but when such a design does not exist, then we can make use of a Pseudo
Youden Design in v; treatments arranged in p rows and p columns such that
each of the treatments is equally replicated and the sum of the concurrences
of the treatments in rows (),) and in columns (X;) i.e., Ar + A. is constant
say A. Then following the procedure of method 2.4, we get a BBPRC
deSIgn with parameters vy, v2, R=p+ve=C, 1 =71, 12 = (2p+ v2),
=(p+v)A~—r12 80 =rvzand s2=2(p+ 1)2)(3p-|-‘02)2 — (2p+v2)2.
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Remark 2.4.4: For v = 1 and row-column design to be YSD or GYD
design, the method reduces to the method 1 of construction of GEBRC
designs of Gupta and Prasad (1990) and for v = 1 and row-column design
to be PYD, it reduces to method 3 of Gupta and Prasad (1990).

Method 2.5: Consider a balanced bipartite block (BBPB) design with
parameters vy, vg, b, 71, 72, k, A1, Xo and Ag such that k | r; and k | ro,
where x | y means z divides y. Arrange the contents of each of the blocks of
BBPB design in the form of k x b array, such that each of the »; treatments
occur 71k~ times in each of the rows of the array and each of the vy control
treatments occur r2k~! times in each of the rows of the array. We get a
BBPRC design with parameters vy, vo, R = k, C = b, 71, 72, 51 = bk);,
80 = bk)\(), 82 = bk)\g.

Various methods of construction of BBPB designs are available in liter-
ature see e.g. Kageyama and Sinha (1988), Sinha and Kageyama (1990),
Jaggi, Gupta and Parsad (1996). A BBPB design obtainable from the
above methods satisfying the conditions of method 2.5 can be used to ob-
tain BBPBRC designs. For wp = 1, this method reduces to the method of
Gupta and Prasad (1990) for constructing GEBRC design.

It is interesting to note here that the above method is based on the result
of Agarwal (1966) of SDR’s in which it was proved that in an equireplicate,
binary design with v treatments, b blocks and constant block size k < »
such that b = mv i.e. r = mk for some interger m(> 1), the treatments
can be rearranged in the blocks in such a way that when blocks are written
as columns each row in the arrangement contains every treatment m times.
This result was generalised for unequireplicate nonbinary block designs by
Das (1989). One new method of construction of BBPB designs is given
below which can be used for the construction of BBPBRC designs.
Remark 2.5.1: Consider an extended group divisible (EGD) design with
parameters vy = mn, by, 71, k1, Aji = e, M2 =a+p, Aizs=a+q+p.
Considering the rows of the association scheme as blocks and taking (p +
q) copies of these blocks we get another EGD design with parameters as
v = mn, b2 = 'm(P'f‘Q), 2 = (p+Q): kz =n, )‘21 =p+gq, ’\22 = 0:
A2z = 0. Similarly considering columns of the association scheme as blocks
and taking q copies of these blocks we get the third EGD design with
parameters vy = mn, by =nq,r3=q, ks =m, A31 =0, Aap = q, Mgz = 0.

Suppose that for non-negative integers 41, 2, i3, vy and v, k1 + 1102 =
n+ivy = m+izvg = k, 1y +p+2q and 1, by +iam(p+ q) +1i3nq is divisible
by k. Take the union of all the blocks of the three EGD designs to get
b1 + m(p + ¢) + ng blocks. Add v, control treatments to each of the b,
blocks %, times, to each of the m(p + q) blocks iy times each and to each
of the ng blocks i3 times each. Now arrange the contents of these blocks
in the form of a k x {(b; + m(p + q) + nqg)} array such that each row of
the array contains each of the v; treatments (r; + p + 2¢)k™! times and
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each of the vp treatments [i,b; + iam(p + q) + iang]k™! times. We get a
BBPRC design with parameters v, = mn, vp, R = k, C = b;+m(p+q)+ngq,
1 = r1+p+2q, 13 = i1by +iom(p+q)+isng, sy = k(b1 +m(p+q)+ng) s,
80 = [i171 +12(p + q) + i3q|RC; s2 = [i1b1 + iam(p + q) + iang]RC.
Remark 2.5.2: If we consider a general efficiency balanced block design
for comparing two disjoint sets of treatments and follow the procedure of
method 2.5, we get a GEBRC design.

Note: Following the procedure of the above method, we can get partially
balanced row-column designs. Consider a partially balanced incomplete
block design with a-associate classes and parameters v, b, 7, k, A; (i =
1,...,a) (for notations, see Dey (1986)) such that r divides k. Arrange the
contents of blocks of m-associate class PBIB design in the form of a k x b
array such that each of v treatments occur rk~! times in each of the row
of the array. Then, we get a row-column design with parameters v, R = k,
C=br, X (i=1,...,a). For a =1, we get a variance balanced row-
column design. For a = 2, we get a two-associate class partially balanced
row-column design. For v = mn and « = 2, and PBIB design based on GD
association scheme we get a group divisible row-column design.

If in a GD row-column design, v = 2n, then it is also considered as a
BBPRC design with parameters v; =n,v2=n, R=k, C=br =r,
TP=T, 81 = A1, So = A, 52 = A1.

Method 2.6: Consider a YSD (v, p, v) such that the number of concur-
rences of any two treatments in v columns is A. Then append it by a
row regular GYD with p rows and aa columns based on the first o treat-
ments, where a is the number of times each of the o treatments occurs in
each of the p rows of the GYD. Then corresponding matrices are given by

. lv—a]-:;-a . __ Ml v—a)Xgq 0
L* = [(a+1)1a1;,]’ M* = [ M(2(ax3)) Ms]’ where M; and My are
bifurcation of treatments vs columns incidence matrix of the YSD and M3
is the corresponding matrix for the GYD design such that diagonal (off
diagonal) elements of MM} are §(7). Hence
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L*'LY = [ Ply—al;_, pla+1)1, 415
_P(a +1)1.1,_, pla+ 1)2101;
' 'MlMll MIM,2
M™™M® = IM,M; MM + MsM3
MM = [@B = NI+ ALy, 1,
= Maly,  (@B-A+8I+ (A +n)lall
e = | P11V pla+p)1Y
= [pla+p)11" (a+p)*11'|’
oo fhe O
0 (a+p)a
and
p__ 1 [AB
" p(v+aa) [B" D
where

A = [p*(v +aa) — (aB — A)(v + aa)] I — (v + aa)A11’
B = —[ap(p — 1) + (v + aa)A] 11’
D = [(a + p)p(v +a0) = (f — A+ 8)(o + aa)] T

= [P(a+1)* + (v + sa)(A + 1) - (a +p)°] 11/

which is the information matrix of a BBPRC design with parameters v; =

v—a,v2=0a R=p,C=v+aa,rn=p ra=pla+1), 51 =(v+aa)),

so = [ap(p+1) + (v +aa))], 52 = [p*(a+1)> + (v +aa)(A+7) — (a +p)?].
If in this method, we consider a LSD in place of YSD, it is similar to

type 2 of Freeman (1975).

Example: Consider a YSD {v =5,p =4(2 x 2),q =5, = 1}. Then, for

a =1, a =2, following method (2.6), we get the BBPRC design as

1234512
2345121
3451212
4512321

The parameters of the design are vy =3, v, =2, R=4,C =17, =4,
1'2=8, sl=7, 80=7, 82=63.
Acknowledgement: The authors are grateful to the referee for making

valuable suggestions which led to a considerable improvement in the pre-
sentation of the results.
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