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Abstract. We give necessary and sufficient conditions for the existence of a
decomposition of the complete graph into stars which admits either a cyclic or a
rotational automorphism.

1 Introduction

We denote the complete graph on n vertices by K, and the star with m
edges by S,,. Let my > m2 > ... > my be nonnegative integers. Then
8 Smy»Smas - - - s Smy—decomposition of Ky, (or a star decomposition of Knp,
for short) is a collection of stars such that

i
E(Sm.) [ \E(Sm;) =0 if i # j, and | E(Sm,) = E(Kn).

i=1

It was recently shown in [2] that such a decomposition exists if and only if

k k !
Z;misZ(n—i)forh1,2,...,n_1, and .Zlmi= ( n )
= =

i=1

An automorphism of a star decomposition is a permutation of V(K,)
which fixes the set {Sm,, Sms,- - -+ Sm,}. The orbit of a star under an au-
tomorphism = is the collection of images of the star under the powers of
m. A permutation of V(K,) which consists of a single cycle of length n is
said to be cyclic. A permutation of V(K,,) consisting of a fixed point and
a cycle of length n — 1 is said to be rotational. Several graph and digraph
decompositions have been studied which admit either a cyclic or rotational
automorphism. See, for example, [1, 3, 4, 5]. The purpose of this paper is
to give necessary and sufficient conditions for the existence of star decom-
positions of K, which admit either a cyclic automorphism or a rotational
automorphism.

2 Cyclic Star Decompositions of K,

Throughout this section, we assume the vertex set of K, is {0,1,...,n—1}
and we will construct star decompositions of K, admitting = = (0,1,...,n—
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1) as an automorphism.

Lemma 2.1 If there exists @ Sm,, Sm,, - - - y Sm, —decomposition of K,, which
admits a cyclic automorphism and if n is even, then |{i | m; = 1}| = n/2
(mod n).

Proof. The edge (0,n/2) must lie in some star, say S, Then

7n™2((0,n/2)) = (0,n/2) and since each edge occurs in exactly one star
of the decomposition, it must be that 7™%(Spm.) = S, . Therefore m, = 1.
Let A = {n*(Sm.) | i € Z}. Then |A| = n/2 and if Sy, ¢ A then the length
of the orbit of Sy, is n. Therefore |{i | m; = 1}| =n/2 (mod n). [ ]

As argued in Lemma 2.1, the length of the orbit of every star in a cyclic
star decomposition of K, is n except for the special “short obit” stars in
set A. We therefore have:

Lemma 2.2 If there ezists a Sm,, Smy, - -« » Smy —decomposition of K,, which
admits a cyclic automorphism, then fork =1,2,...,n—1, |{i |m; = k}| =
0 (mod n), except for the case k = 1 when n is even.

We show the necessary conditions of Lemmas 2.1 and 2.2, along with the
necessary conditions for the existence of a star decomposition of K,,, are
sufficient for the existence of a cyclic star decomposition of K,,.

Theorem 2.1 Let m; > my > --- > my; be nonnegative integers. Then
there is a cyclic Sy, Smy, . . ., Sm, —decomposition of K,, if and only if

k k l
;misZ;(n—i)fork=1,2,...,n—1, ;mi=( ; )
and
() {i|mi =k} =0 (mod n) for allk =1,2,...,n~1 if n is odd, or

(b) |{é | m1 = 1}| = n/2 (mod n) and |{i | m; = k}| = 0 (mod n) for all
k=2,3,...,n—1 ifn is even.

Proof. We need only establish sufficiency. Without loss of generality, we
may assume m; > 1. If n is odd, consider the collection of stars with edge
sets

k
E(Sml—ku—-‘) = {(2: i+7r+ Zml—(j—l)n) | r=12,... ,ml-kn}

Jj=1
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fori=0,1,...,n—1and k =0,1,...,I/n — 1. If n is even, consider the
collection of stars with edge sets

E(Sml—i) = {(i’i +n/2)}
fori=0,1,...,m/2 -1, and

k

E(Sml-n/'z—kn-i) = {(’L, i+r+zml—"/2—(j—l)n) I r=12,... 7ml—'n/2—kn}
j=1

for i =0,1,...,n—1and k=0,1,...,(l —n/2)/n — 1. In each case, the

given collection of stars forms a cyclic star decomposition of K. |

3 Rotational Star Decompositions of K,

Throughout this section, we assume the vertex set of K, is {00,0,1,...,
n —2} and we will construct star decompositions of K, admitting 7 = (o)
(0,1,...,m — 2) as an automorphism.

As in Lemma 2.1, if n — 1 is even, then the edge (0,(n — 1)/2) must
occur in some S,,,, where m; = 1. We analogously have:

Lemma 3.1 If there exists a Spm,, Smy) - - - , Sm, — decomposition of K, which
admits a rotational automorphism and if n is odd, then |{i | m; = 1}| =
(n-1)/2 (mod n —1).

The orbit of each star of a rotational star decomposition of K, is of length
n — 1, with two possible types of exceptions: (1) if n is odd, then the
stars S; with edge sets {(i,% + (n — 1)/2)} for some ¢ have orbits of length
(n—1)/2, and (2) if m | (n — 1), m # 1, say (n — 1)/m = p then the stars
S, with edge sets {(c0,1), (00,%+p),...,(00,i+n—1—p)} for some i have
orbits of length p.

Theorem 3.2 Let my > mg > --- > my be nonnegative integers. Then
there is a rotational Sy, Smy, . . . y Sm, —decomposition of K,, if and only if

k k 3
Y mi<Y n—i)fork=1,2...,n-1, Zmi=( ;‘)
i=1 i=1 i=1

and

(@) {i|m:i=k} =0 (modn—1) for allk =1,2,...,n~1 if n is even,
or
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(b) {i | m; =1} = (n-1)/2 (mod n — 1) and |{3 | m; = k}| = 0 (mod
n—1) forallk=2,3,...,n—1ifn is odd, or

(¢) if m | (n—1), say (n—1)/m = p, for some m € {m1,ma,...,m},
m#1, then |{i |m; =m}| =p (modn—1) and |{i | m; =k}| =0
(modn—1) forallk=1,2,.... m—1,m+1,...,n—1if n is even,
or

(d) fm | (n-1), say (n —1)/m = p, for some m € {mi,ma,...,m},
m# L then |[{i | mi =m} =p(modn—-1), |{i | m =1} =
(n—1)/2 (mod n — 1) and |{i | m; = k}| = 0 (mod n — 1) for all
k=23,....m=1m+1,...,n—1 ifn is odd.

Proof. We need only establish sufficiency. Without Loss of generality, we
may assume m; > 1. We consider the four cases separately.

(a) Consider the collection of stars with edge sets

E(Smii) = {(c0,H J{GGri+7) | r=1,2,...,m — 1}
fori=0,1,...,n -2 and
k
E(Sml—k(u—l)—i) = {(isi +r—-1+ Zml—(j—l)(n—l))
Jj=1

|'f' = l) 21---vml—k(n—l)}
fori=0,1,...,n-2and k=1,2,...,l/(n—1) - 1.

(b) Consider the collection of stars with edge sets
E(Sml-i) = {(iai"' (n— 1)/2)}
fori=0,1,...,(n-1)/2 -1,
E(Smi-(n-nysa=s) = {00, )} J{(Gi + 1)

|7=1,2,...,m_(n_1)/2-k(n-1) — 1}
fori=0,1,...,n—2, and

k
E(Sml—(n—l)/z—k(u—l)—-‘) = {(z, t+r—-1+ Zml—(n—l)ﬂ—(j—l)(n—l))
Jj=1

|7 =1,2,...,mi_(ao1)/2-k(n—1)}
fori=0,1,...,n-2and k=1,2,...,( - (n-1)/2)/(n - 1) - 1.
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(c) Let t be the largest index such that m; = m. Consider the collection
of stars with edge sets

k
E(Sml—k(n—l)—i) = {(i?i +r+ Zml—(j—l)(n—l))
=1

|T= 1,2,...,m1_k(n_1)} )
fori=0,1,...,n—-2and k=0,1,...,({-¢t)/(n-1) -1,
E(Smt—i):' {(00,Z+Tp) I r=0v1a'--smt‘1}
fori=0,1,...,p—1,

(I=t)/(n-1)

E(Smeporineny—s) ={Gi+r+ D m_(_1ym-1)
=1

k
+D Myp(-1)m-1)) | T =12, M pk(a)}
=1

fori=0,1,...,n—2and k=0,1,...,(t—p)/(n—1)- 1.

(d) Let ¢ be the largest index such that m; = m. Consider the collection
of stars with edge sets

E(Smn_i) = {(7"7‘ + (n - 1)/2)}
fori=0,1,...,(n-1)/2-1,
k

E(Smi_uonyyrosinonss) = {3 +7+ Y Mu_(n_1y/2-(j=1)(n—1))
=1

|r=1,2,...,m_(n-1)/2-k(n—1)}
fori=0,1,...,n—2and k=0,1,...,({—-¢8)/(n-1) -1,

E(Smi—i) = {(OO,i +Tp) I r= Oa 11 crey Mt — 1}
fori=0,1,...,p—1,
E(Sme_,,_(..-1)/2-k(u-1)-.~) = {(i’i‘l' T

{-t)/(n-1) k
+ Z My—(n—1)/2—(i-1)(n—1) T Z M4 —p—(n-1)/2—(j-1)(n—1))
jel Jj=1

|1" =1,2,. “’mt—p—(n—l)/Z—k(n—l)}
fori=0,1,...,n—2and k=0,1,...,(t—p—(n-1)/2)/(n—-1)—-1.

In each case, the given stars form a rotational decomposition of K,,. [ |
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