The Edge-Isoperimetric Problem
for Regular Planar Tesselations

L.H. Harper

Mathematics Department
University of California
Riverside, CA 92521
email: harper@math.ucr.edu

ABSTRACT. Solutions for the edge-isoperimetric problem on the
graphs of the triangular and hexagonal tesselations of the Eu-
clidean plane are given. The proofs are based on the fact that
their symmetry group is Coxeter. In each case there is certain
nice quotient of the stability order of the graph (which is it-
self a quotient of the Bruhat order of the Coxeter group by a
parabolic subgroup).

1 Introduction
1.1 The Edge-Isoperimetric Problem

Given a graph G = ‘gV, E, 3) having vertex-set V, edge-set E and boundary-
function 8: E — (3,) which identifies the pair of vertices incident to each
edge, we let

O(S)={e€c E: 8(e) = {v,w}ve S & w & S}.

Then given k € Z*, the edge-isoperimetric problem (EIP) is to minimize
|©(S)| over all S C V such that |S| = k. This author’s first paper, [4],
written over thirty years ago, presented a solution of the EIP for Qd, the
graph of the d-dimensional cube. Many extensions and variations of it
have appeared in the literature (see [8]) and the problem still continues
to fascinate. One such variant, which was intriguing but until recently
lacked the incentive for serious effort, was the possibility of having G be
infinite. The original application, solving a kind of layout problem if G is
regarded as representing an electronic circuit, does not seem to make sense
if G is infinite. However there is a way to make sense of it: Steiglitz and
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Bernstein [5] had noted that in laying out Qg4 on a linear chassis, the original
problem, which was to minimize the total length of the wires necessary to
make the connections, could be generalized to arbitrary spacings between
sites, 1 < Ta < + -+ < Tn. The same holds for any graph, G, and then the
wirelength for a layout function ¢: V — {1,2,...,n}, assigning v to Ty(),
would just be

n
wilp) = 3 (@rs1 - zR) OS],
k=0

where Sk(p) = {v € V: p(v) < k}. Note that [Sk(p)| = k and Sk(p) C
Sk4+1(¢p). Conversely, if the EIP on G has a nested family of solutions,
one for each value of k between 0 and n, which it does for Q4 and many
other interesting graphs, then the corresponding layout function is optimal
for any choice of the sites, {zx}. Even if n = oo there is then a possibility
that the wirelength could be finite if {zx} is bounded above. And if G does
have nested solutions for the EIP, the finiteness of its wirelength would
just depend on the rate of growth of min|sj=« |©(S)| as k — oo and the
rate at which zg41 —zx — 0.

Another, deeper, motivation for considering the EIP for infinite graphs
is that there are some very large, i.e. finite but for all practical purposes
infinite, graphs for which we would like to solve the EIP. The graph of
the 120-cell, an exceptional regular solid in four dimensions, is one such.
It has 600 vertices. Another, also 4-dimensional, is the graph of the 5
permutohedron, which has 5! = 120 vertices. Solving those problems will
require developing better methods than we have now. The exceptional
regular tesselations of the Euclidean plane are relatively easy to work with
but present some of the same kinds of technical problems as the higher
dimensional semiregular and exceptional regular solids.

1.2 Some Variants of the EIP
For SCV, let
I(S)={e€ E: 0(e) = {v,w},ve S & we S}.

The members of 1(S) are called internal edges of S. If G is regular of degree
8, then
10(S)| = 8|S| — 2|1(S),
S0 )
11(8)| = 58151 - [e(S)),
and for |S| = k, fixed, minimizing |©(S)| is equivalent to maximizing [I(S)].

Also, if
E(S)={e€ E: 0(e) = {v,w},v € Sor w e S},
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then 1
|E(S)] = [1(5)] +16(5)] = 5 (315 + 16(S))),

so minimizing |E(S)| for |S| = k gives another equivalent version of the
EIP (on regular graphs).

2 The Triangular tesselation
The tiling of the Euclidean plane by regular triangles is a familiar one. Its

Schlifli symbol is {3, 6} (see [1]), reflecting the fact that every face (tile) is
bounded by 3 edges and every vertex is incident to 6 edges.
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Figure 1. The triangular tesselation

2.1 What is the Solution?

In order to gain some idea of what the solution sets for the edge-isoperimetric
problem on the graph, T, of this tesselation are, we begin in the usual fash-
ion, determining them for small values of k.

e k= 0: This is trivial since only the null set, 0, is of size 0, so it is the
unique solution and min;g—o |©(S)| = 0.

e k = 1: There are countably many 1-sets of vertices but they are all
equivalent under symmetry so they are all solutions. min g [O(S)] =
6.

® k = 2: There are countably many equivalence classes of 2-sets under
symmetries of the triangular tesselation. The problem is solvable
though, since every pair of vertices is either connected by an edge
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or not. If they are, |©(S)| = 10, otherwise |©(S)| = 12. Therefore
mil'l|s|._—_.2 |9(S)| =10.

e k = 3: There is only one type of set with |S| = 3 and |I(S)| > 3, the
vertices of a triangle. Therefore min|g—3|0(S)[=6-3-2-3 =12
by the remarks of Section 1.1.1.

The challenge of the problem for k£ > 3 is apparent. There are countably
many equivalence classes of k-sets, of increasing complexity. Even if we
could characterize them all, we would still need something stronger than
symmetry, something which would systematically take the connectivity of
k-sets into account. Fortunately we have just such a tool available, the
theory of stabilization (See [2] or [3]) which utilizes Coxeter theory. This is
not by accident however, the problem was chosen just because T is one of the
simplest graphs to which the theory of stabilization applies and whose EIP
remains unsolved. It is not difficult to come up with a persuasive conjecture
about the solution of the EIP on T, but proving it is a different matter.
Isoperimetric theorems are notoriously slippery to prove anyway and the
similarity between regular planar tesselations and regular 4-dimensional
solids such as the 600-cell, whose EIP does not have nested solutions,
indicates, I believe, that proving an isoperimetric theorem for T requires
some subtlety.

2.2 The Stability Order of Vr

(See Appendix)
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Figure 2. T with the fixed lines of basic reflections darkened
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Figure 3. Hasse diagram of SO(T), the stability order, with |¢|

From this we determine the solutions for k <19:
k6 1 2 3 4 5 6 7 8 9
maxig—xIS)[ [ 0 0 1 3 5 7 0 12 14 1§
10 11 12 13 14 15 16 17 18 19
|| 19 21 24 26 29 31 34 36 39 42

Table 1

2.3 Solutions for all k&

Theorem 1. T has nested solutions for the Edge-Isoperimetric Problem,
i.e. there exists a total order T on Vi such that for all k € 7+ the initial
k-set of TO minimizes |©(S)| over all S C Vi with |S| = k.

For any v,w € Vr let d (v,w) denote the minimum length of any path
from v to w in T and for any r € Z* let

B, = {v € Vr: d(w,v) <1},
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the ball of radius r centered at vg, vp being the unique vertex of 7' which
is in the fundamental chamber (labeled a in Figure 2). The sides of B, for
r > 0 lie in 6 straight lines, i.e. B, has the shape of a regular hexagon.
From this it is easy to see that |B,| =1+ 3r(r + 1).

SNONINININS N,

N N N

Figure 4. T with By, B; and B, darkened

All the edges of T lie on 3 families of parallel lines, which we denote
altogether as £, and each vertex lies on 3 of these lines, one from each family.
Va, the group of symmetries of T (see Table IV of [1}), acts transitively on
L. The theory of stabilization summarized in the Appendix is for vertices
(points in R?) but applies equally well to geometric objects, such as lines,
which are closed under the action of a Coxeter group, such as V3. If Ris a
reflection in V3 we let

SO(L;R;p) = {(L, R(L)): IL —p| <[IR(L) —pl}-

Then the stability order of £ with respect to V3 and p is the transitive closure
of
U S0 R;p).
REVa

Compare this to Definition 5 of the Appendix. We denote this stability
order on £ by L£O for short. The symmetries of B, constitute a dihedral
group, Dg, a subgroup of V3, which act transitively on the 6 lines bounding
B,. The stability order of any D, acting on the sides of a regular n-gon is
total (see [2]) so the relative order (in £O) of the 6 lines bounding B, is
total. Thus we may denote them as L,;, 0 < i < 5 with L,; <co Ly, if
1<].
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Lemma 1. Lines L,; and L, ; are incomparaole in LO iff s=7+41,i=5
and j =0.

Proof: L,js intersects L,. and the lines which bisect the angles be-
tween them are lines of symmetry for T, so L5 <co Lr; 1,1- Similarly,
Lrs <c Lyy1,0. However, L, s and L,41,0 are parallel and the bisector of
any perpendicular which connects them is not a line of symmetry for 7. If
we could show that L,s <zo Ly41,0 it would have to be because there is
a line L such that L,-,s <ro L <o Lr+1,0 butVLeLl - {L,-'s, L,..H'o},
L <o Lrs or Lyy10 <co L, so we are done. O

We have s
Vr = {w}U U U(VT N L. ;)

r=1i=0

Each vertex, except vy, is contained in multiple L. 's but if we let
5 o0 5
Li=VenLy—| |J enLyu J L)
Jj=i+1 s=r+1i=0

then {vo} and the L; s partition V. Also, B, = {wo} UJI_, UL, Ly ;
and

r—-1 ifi=0,
|Lesl=<r if0<i<s5,
r+1 ifi=5.

Note that V7 N L, ; is totally ordered by SO, the vertex nearest p being
its least element of course and this lies at or near the midpoint of B, N L, ;.
The others follow in increasing order of their distance from p so that they
alternate from side to side. Lj; is an initial segment in this order. Note
also that for v € L/

i

if v = vy,

4 /

ifo=v €L,

if v # vp, v1 & minimal in Ly,
otherwise.

()l =

W N = O

(See Appendix for the definition of &).

Proof (of Theorem 1): We define a total order, 70, on Vi by v <70 wif
veELi,wel;jwithr<sorr=s&i<jorr=s&i=j&v<sow.
Note that v <so w implies v <70 w, i.e. TO is an extension of SO. By
the theory of stabilization, we need only show that if S C Vo, is stable, i.e.
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a lower set in the stability order, SO, |S| = k and S is the initial segment
of TO of the same cardinality, then

11(Sk)] = [1(S)I.

If S # Sk, then 3 a minimal element, a, with respect to T0O,in S — S
and a maximal element, b, in S — Si. Note that a <70 b but they must be
incomparable with respect to SO. Having already proved the theorem for
k =0,1,2 we may assume k > 2 so |¢(a)|, |¢(b)| = 2 or 3. If |s(a)| > |o(b)]
then |S+{a} —{b}| = k and |I(S+{a} — {b})| > |I(S)| and a finite series of
such switches will achieve our goal. The only way |u(a)] < |¢(b)| is if a is the
minimal element of L 5, for some r, and b € L}, o but not minimal. Then
switching all of SNL;., ; ¢ for the initial segent of L] 5 of the same size will do
the job. This is possible because | L}, ; o| = (r+1)—i=r <r+1= |Ly.sl. O

Corollary 1. If k =1+ 3r(r + 1) then the only stable solution is B,

Corollary 2. TO is the only total extension of SO whose initial segments
are solutions of the EIP.

There is another, in some ways more natural, total ordering of Vi whose
initial segments are solutions of the EIP: Begin with vp < v; and hav-
ing chosen vy < v; < --- < v, choose v, to be the furthest clockwise
neighbor of v, which has not been chosen yet. The initial segments of this
total order are not stable but the sequence of marginal contributions of the
vertices is the same as the sequence of weights with respect to 7¢. The
counterclockwise spiral works equally well, of course.

VAVAVAVA
AVAN

Figure 5. T with an optimal spiral numbering



3 The Hexagonal Tesselation

The tesselation of the Euclidean plane by regular hexagons is also familiar.
Alias “the honeycomb”, it is the dual of the triangular tesselation and has
Schlafli symbol {6, 3} (see [1]) meaning that every face (tile) is bounded by
6 edges and every vertex is incident to 3 edges. Let H denote the graph of
this tesselation.

Figure 6. The hexagonal tesselation

The steps which we took to find and prove the solution for 7" also suffice
for H. There are some minor complications since the solution sets are no
longer balls in an intrinsic metric and their boundary vertices do not lie on
straight lines but zig-zag a bit, however, the same program does work and
we recommend it as an exercise for the reader. As a check and for later
reference, we list the solutions for k < 24:

k| 01 2 3 4 5 6 7 8 910 11 12
max|s|=k|I(S)|"0 0 1 2 3 4 6 7 8 9 11 12 13

13 14 15 16 17 18 19 20 21 22 23 24
15716 17 19 20 21 23 24 25 27 28 30

Table 2

Since our purpose here is to develop methods as well as to solve prob-
lems, we shall proceed a little differently. In the proof of Theorem 1 we
decomposed Vi into “lines”. In order for such a decomposition to work, the
blocks of the partition (the Ly ;’s in that case) must be highly connected.
With that requirement in mind, the first sets one would think of, would be
the vertices of faces (i.e. triangles in T or hexagons in H). They are the
sets of highest connectivity in some sense. And this decomposition by faces
does produce a proof for T’ and H , just not as simple a proof as we found
in Section 2. The additional difficulty is due to the reduced problem being
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more complicated than the one in Section 2. In fact the stability order of
the triangular faces in T is just the stability order of V4 (the centroid of
each face is a dual vertex). Also, the stability order of the hexagonal faces
of H is just that of V. As we know, these are both fairly complex, so the
value of these reductions is not at first evident. It is possible to make a
proof from them by inducting on the sizes of subsets of Vi and V. We
shall not present all the details of such a proof here, just those necessary
to get the solution for H from the one we already have for T

If G is any planar graph (which may be represented on the surface of a
sphere if finite) let G* be its dual. Then H* =T, T* = H and G* =G in
general. If S C Vg, let

S* = U {w € Vg.: w lies on the face of v}.
vES

Also, let S > be the inverse of this map, i.e. if S =U"* and U is maximal
with respect to this property, then S- = U.

Lemma 2. S C Vg is stable iff S* C Vg. is stable.
Proof: For any reflection, R, it follows from the definition of Stabg ,(S).

Being true for each of Rg,Ry,...,Rk—1, it holds for stabilization with
respect to the whole set. a

One would further expect that the optimality of S and S* would be
closely connected but the following examples show that neither implies the

JAVAVAVAVAVAN
NANININ/N/
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+

Figure 7. S (circled vertices) is not optimal but S* (the crosses) is
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S C Vr, |S] = 3, [I(S)] = 2, is not optimal, but S* C Vy, |S*| = 14,
|I(S*)] =16 so S* is optimal (see Table 2).

Figure 8. S (circled vertices) is optimal but S* (the crosses) is not

S C Vu, |S| = 5, [I(S)| = 4, is optimal, but S* C Vr, |S*| = 7,
[I(S*)] = 11 so S* is not optimal (see Table 1).
Definition 1. k € Z* is called a critical cardinal if

I(9)| - I 1.
max [[(S)| - max |I(S)| >

Note that if S is optimal and has a pendant vertex, then S—{v} must also
be optimal since |I(S)| = |I(S - {v})| + 1, the least that |I| can increase.
Thus such an S is not critically optimal. Therefore, if S is critically optimal
it can have no pendan.t vertices and must be a union of faces. So for a
critically optimal S, $- is defined.
Lemma 3. If S C Vi is optimal and |S| = k, a critical cardinal, then
87 C Vg. is optimal.
Proof: Euler’s relation, v+ J =e+2, holds for the subgraph of G induced
by S with v = |S|, f = |S-| and e = |I(S)| = |E(S-)|. If S~ is not
optimal then 3 U C V. such that [U| = [S-| and [(U)| < |E(S~). The
Euler relation then implies that |U*| < |S]. In fact |S| — [U*| = |E(S)| -
[EU)| = |I(S)| — |I(U*)|. Adding |S|— |U*| vertices to U* optimally will
give a set S’ such that [S’| = |S| and |I(S’)| > |I(S)|. This contradicts the
optimality of S if [I(S")| > [I(S)] or its criticality if |I(S")| = [I(S)]. O
Theorem 2. H has nested solutions for the Edge-Isoperimetric Problem,

ie. there exists a total order on Vi whose initial k-set minimizes |0(S)]
over all S C Vy with |S|=k for all k€ Z.
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Proof: If k is a critical cardinal for H, and S is a stable optimal set of
size k, then by Lemma 3 S~ is optimal in H* =T. By Lemma 2 it is also
stable in 7" so must be as described in the proof of Theorem 1. For

143r(r+1) <K <143r(r+1)+r+4(r+1)
this set is uniquely determined and S = (S: )* is also. If
143r(r+ 1)+ r+40+1) <k <1430+ 1)(r+2)

then there are two possibilities but since |I| is the same for both, they are

both optimal. In particular, Sf, is optimal for ¥’ = 1,2,.... For the non-
critical cardinals we need only interpolate the vertices in (Sg41)* — S5, in
the order determined by stabilization, to prove the theorem. a

Corollary 3. If k= 6(r + 1)2 then the only stable solution is B:.

There are also optimal spiral (clockwise and counterclockwise) orderings
of VH.

3.1 Variations and Extensions

3.1.1. The Square Tesselation. A solution of the EIP on the graph of
the square tesselation was given by Harary & Harborth [7] and may easily
be reproved with the methods of this paper. Solution sets for k = (2r+1)?2
are 2r x 2r squares which are balls of radius r in the sup norm. The square
tesselation is not exceptional, being the beginning of the infinite family of
tesselations of R® by d-cubes, d = 2,3,.... The graphs of these tesselations
are products, Z%. The theory of compression applies to product graphs,
assuming that they have nested solutions, and makes it relatively easy to
solve their EIP. This was first carried out by Bollobas and Leader [9] and
later by Ahlswede and Bezrukov [10]. Up to now compression has been
the most powerful tool for solving isoperimetric problems. Our hope is
to develop something more powerful. Is it possible to give a proof of the
solution to the EIP for Z¢ with the methods of this paper?

3.1.2. Powers of T and H. Z is a tesselation of R and, as noted above,
the EIP on Z% has nested solutions, d = 1,2,.... What about T¢ for
d > 2, does it have nested solutions? The answer is, unfortunately, no.
For d = 2 and k = 3 an optimal set must be a triangle and therefore be
contained in T x {¢} or {i¢} x T for some 7. Adding a vertex in any other
copy of T thereafter would mean that its marginal contribution would be 1
whereas staying in that copy would give a marginal contribution of at least
2. However for k = 14, I(By x {vg,11}) = 2-124+7 = 31 > 29, since vy
and v, are connected by an edge. The answer is also no for H¢, d > 2.
The minimum cycles of H? are 4-cycles, and optimizing locally will build
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up squares of side s < 6 until a whole torus, Zg x Zg has been taken. For
k = 12 though, I(Zg x {vo,v:}) = 18 > 17, the number of internal edges in
a 3 x 4 rectangle.

3.1.3. Regular Tesselations of the Hyperbolic Plane. The connec-
tion between Euclidean geometry and combinatorics which seemed implicit
in the theory of stabilization has puzzled me since its inception. It now
appears possible to penetrate this mystery a bit: From hyperbolic geom-
etry we learn that the hyperbolic plane also has regular tesselations. The
symmetry groups of these tesselations are, in an abstract sense, Coxeter,
and correspond to solutions of the inequality,

1 1 1
—+=-<z,pq€Zt.
» T g P9

They occur in dual pairs whose Schlifli symbols are {p, q} and {q, p}. There
are infinitely many such in contrast to the Euclidean condition

1 1 1
_+_=—1 1qu+v
p g 27

which only has the solutions } + 3 =3+ 3 =1+ 1 = 1 giving the three

tesselations which we have already treated. I believe that the methods of
this paper will produce solutions for all of the regular tesselations of the
hyperbolic plane as well.

3.1.4. The EIP for Cayley-Coxeter Graphs. The theory of stabiliza-
tion applies to all Cayley graphs of Coxeter groups with respect to their
Coxeter generators. The stability order is just the Bruhat order. This does
simplify the EIP considerably but even for S5, the symmetric group on 5
letters, the number of lower sets in the Bruhat order is still too large for
the fastest computer. With the methods of this paper a solution of the
problem for S4 can be calculated by hand and it is hoped that they will
give a tractable calculation for Ss also. The catalog of Coxeter groups is
essentially “terra incognita” for these methods so one can hope that there
are beautiful insights awaiting discovery.

3.1.5. The Vertex-Isoperimetric Problem (VIP). If, in the definition
of the EIP (Section 1.1), we replace ©(S) by

<I>(S)={veV—S:336E,3(e)={v,w}&w€3}

and seek to minimize |®(S)| over all S C V' with |S| = k, then we have the
VIP. The analogy between the EIP and VIP is clear. There are many
similarities between their theories but there are also many contrasts (see
[3] ). The VIP for Z2 has already been solved by Wang & Wang [11). Can
the methods of this paper be used to solve the VIP for T and H?

3.1.6. What are “the methods of this paper”? The above refer-
ences to “the methods of this paper” are intentionally vague but we hope
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to make them precise soon. What I believe is implicit in the proofs of Theo-
rems 1 & 2 is a notion of morphism for the EIP extending that of “Steiner
operation” as defined in [3]. Steiner operations are characterized by cer-
tain one-to-one, order-preserving functions and it has been a long-standing
personal challenge to extend them to many-to-one functions. One can, of
course, define such a thing with ease but there is a responsibility to provide
good examples and to prove the utility of a new concept, especially one so
complex. The examples of this paper and others, positive and negative, will
show what the definition “should” be. The idea is that it will embody a
“divide and conquer” strategy for the EIP, but one must understand how
to divide in order to conquer.
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Appendix. A Summary of the Theory of Stabilization (See [3])
If G = (V, E, 9) is a finite graph embedded in R%, d-dimensional Euclidean
space, and R is a reflection which acts as a symmetry of G, then
Definition 2. R is called stabilizing if for all e € E, 8(e) = {v,w}, if v
and w are on opposite sides of the fixed hyperplane of R, then R(v) = w.
Definition 3. If R is stabilizing for G, p € R® is not fixed by Rand SC V

with
Y ={veS:|jv-pl > R() - pll & R(v) & S}

Stabr p(S) =S5 - +R (Z) .

Theorem 3. |Stabr,(S)| = S| and |©(Stabr ,(S))| < |O(S)|. Also if
S C S’ CV then Stabr ,(S) C Stabr p(S’).

The first equality follows directly from the definition of Stabg p. The
second is based upon the observation that for any edge in ©(Stabr ,(S))
but not in ©(S), there is a corresponding edge (its image under R) in ©(S)
but not in ©(Stabr ,(S)). There are two ways this can happen depending
on which side of the fixed hyperplane the edge lies. It cannot penetrate the
fixed hyperplane because of Definition 2 above.

Given G and stabilizing reflections Ro,Ry,...,Rx—; and p € R% not
fixed by any R;, define a transformation Tj: 2V — 2V, i =0,1,..., by

then

To = I, the identity, and
T.‘H-l = Stabn’. (med k)P © TJ

Theorem 4. There exists an integer jo such that for all j > jo, Tip1=Tj.
Definition 4. A set S C V such that Stabg, »(S) = S fori =0,1,...,k—1
is called stable.

Theorems 3 and 4 show that in minimizing |©| over 2V, we need only
consider stable sets. But how can we tell which sets are stable and which
are not?

Definition 5. Let
SO(ViRip) ={(v,w) eV xV:R(v)=w & ||v — p|| < |lw—p||}.

Then the stability order, SO(V;Ro, Ry, ..., Rk—1;p), is defined to be the
transitive closure of | S} SO(V; Ry; p).

Theorem 5. A set S C V isstable iffit is a lower set in SO(V;Ro,,Ry,...,
Rik-1;p).
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Note that every edge of T is perpendicularly bisected by the fixed hyper-
plane of a reflective symmetry. The ends of the edge are therefore compa-
rable in its stability order. Thus we may define

v)={weV:3ee E,de) = {v,w} & w <so v}
and then

1I(S) =" |uv).
vES
This same representation of |I(S)| for stable sets is valid in any graph where
every vertex is comparable to its neighbors. This holds for the graphs of
all regular solids and tesselations and many others.

The EIP has thus been transformed to maximizing a sum of weights |¢|
over all lower sets in the poses SO(V;Rg, Ry, ..., Rk—1;p) but this only
constitutes real progress if we can facilitate the calculation of SO. If all of
the reflective symmetries of G are stabilizing, as they are for T, then the
group they generate is a Coxeter group (see [1] or [6]). As Coxeter showed,
the fixed hyperplanes of the reflections in a Coxeter group partition R¢
into connected components, called chambers, which are simplices if the
group is irreducible. The chamber containing p is called the fundamental
chamber. Each connected component of SO will have exactly one vertex
in the fundamental chamber, its minimum element. In [6] the connected
stability orders of irreducible Coxeter groups are shown to be the same as
the quotients of the Bruhat order of that group by its parabolic subgroups.

A reflection whose fixed hyperplane bounds the fundamental chamber is
called a basic reflection. Coxeter showed that the basic reflections deserve
their name by forming a minimal generating set for the group. There
are d of them if the group is finite and d + 1 if it is infinite. The Hasse
diagram of the stability order of G with respect to the basic reflections,
called the weak stabilily order, is particularly easy to calculate since it
is just Sy SO(V;Ry;p) (with k = d or d + 1 as noted above). The
Matsumoto-Verma Exchange Property implies that the weak and strong
stability orders of G have a rank function, £, (called length) which is the
same for both. Altogether these observations give us a very simple 2-step
process for constructing the Hasse diagram of the stability order of G. (Let
SO,={veV:ev)=1¢}):

1. Generate the Hasse diagram of the weak stability order

(a) Begin with the unique vertex, v, in the fundamental chamber:
809 = {'00},

(b) Extend from SO, to SO,y by applying each basic reflection
to each member of SO;. The result will either be in SO,_, or
80,41 so we need only eliminate those we know to be in SO,_,
to get those in SO¢y;.
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2. Examine all pairs (v,w), v € 8@z and w € 80¢41, tosee if v <so w,
Le. if there exists a reflective symmetry, R, such that R(v) = w.
Those for which it does, complete the Hasse diagram of SO.
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