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Abstract

Let p> 2be aprime, and G = Cpe1 @ - ®Cpex (1< €y < -+~ <)
a finite abelian p group. We prove that 1 + 2Ef=l(p°-' — 1) is the
smallest integer ¢ such that, every sequence of ¢ elements in G contains
a zero-sum subsequence of odd length. As a consequence, we derive
that, if p** > 14 Z =1 (p"' — 1) then every sequence of 4p°* — 3 +

22'= (p® — 1) elements in G contains a zero-sum subsequence of
length pc*.

1 Introduction

In 1961, Erdés, Ginzburg and Ziv proved that if aj,a2,--,a2n,-1 is a se-
quence of 2n — 1 elements in a finite abelian group of order n (written
additively) then 0 can be expressed as 0 = a;, +- - +a;, with1 <7 <--- <
in < 2n — 1. This result is known as the Erd6s-Ginzburg-Giv theorem and
has been generalized in several directions ( [1-7], [10-14], [18-21], [23]). Let
G be a finite abelian group with exponent m, by r(G) we denote the smallest
integer ¢ such that every sequence of ¢ elements in G contains a zero-sum
subsequence of length m. It is well known that G = C,,, @ --- ® C,,, with
1 < ny|---|ng, k is called the rank of G. Denote 1+ Y%, (n; — 1) by M(G).
Let Cy, denote the cyclic group of order m, and C¥ the product of & copies
of Cpn. r(C%) was first studied by Harborth [21]. Other than its own inter-
sting, r(G) has been used in the study on non-unique factonza.tlons [17]. So
far, we have the following results about r(G).

*This work has been supported partly by National Natural Science Foundation of China
and the Foundation of University of petroleum. Department of Computer Science and
Technology, University of Petroleum, Changping Shuiku Road, Beijing, 102200, China.
e-Mail: wdgao@public.fhnet.cn.net

ARS COMBINATORIA 61(2001), pp. 65-72



Proposition 1.1 Let p be a prime, and G ¢ finite abelian group of ezponent
m. Then,

1) v(C2) = 4m — 3 for m = 223°5°74. [22]

2) r(C%) = 4m — 3 if m = 2°3°5°7%n and n < (20+23b-15¢79)1/3, [11]

3) r(C:)<6m—5[1]

4) #(G) < (cklogk)sm, where k is the rank of G and ¢ is a absolute constant.
2]

5)r(G) L|G|+m—1. [18]

In this paper we prove that

Theorem 1.2 Let p be a prime, and G =Cper @ - @ Cpex (1< €1 <---<
ex) a finite abelian p-group. Suppose that p° > 14+ 57! (p% — 1). Then
r(G) < 4p™ -3+ 212} (2 - 1). '
Let G be a finite abelian group of exponent m. For every positive integer
k fm, by Ex(G) we denote the samllest integer ! such that every sequence
of | elements in G contains a zero-sum subsequence T with k }|T7.

We shall derive the following main result of which Theorem 1.2 is an easy
consequence.

Theorem 1.3 Let p > 2 be a prime, and G a finite abelian p-group. Then,
Ex(G)=2M(G) - 1.

2 Proof of Theorem 1.2 and Theorem 1.3

To prove Theorem 1.3 we need some preliminaries.

Let G be a finite abelian group and S = (ay, -, a;) a sequence of elements
in G. By ¢(S) we denote the sum Y°}_, a;. We say S a zero-sum sequence
if ¢(S) = 0. A subsequence is a sequence T' = (a;,,--+,a;,) with 1 < i) <
.-+ < 1y £ I, we denote the index set {#;,---,i,} by Ir. We say subsequences
St,--+, Sy of S disjoint means that Ig,,---, Is, disjoint. If subsequences
S1,---, Sy of S disjoint, then we define S; +---+ S, to be the subsequence
X of S with Ix = Is, U---U Is,, and define S — S —--- — S, to be
the sequence with index set Is — Is, — --- — Is,. Sometimes, we denote
Si+---+ S, also by S;---5,. Davenport’s constant D(G) is the smallest
integer d such that every sequence of d elements in G contains a nonempty
zero sum subsequence.



Lemma 2.1 Ifp is a prime and G is a finite abelian p-group then D(G) =
M(G). [23]

The following lemma is crucial.

Lemma 2.2 [11] Let p be a prime, H a finite abelian p-group, and G =
H @ Cynmm. Suppose that p® > M(H) and suppose that

S P(" = 2)|H|(r(Cor & H) — 2p™ — M(H) +2) - M(H) +3
2 2"

Then, r(G) < 2p"m + p"™ + M(H) - 3.

m

Lemma 2.3 Let p be a prime, H a finite abelian p-group, and G = H &
Conm. Then, 2p"m + Ey(H) — 2 < r(G).

Proof. Letl= Ey(H) -1, and let a;,---,a; be a sequence of ! elements in
H such that the sequence contains no zero-sum subsequence T with 2 NT|.
Put

[0 (E) () 2)

“~ RN

pim-1 p"m—1

with O is the identify element in H.
Clearly, S contains no zero-sum subsequence of length p®m. Therefore,
2p"m + Ey(H) — 3 =S| < r(G) — 1. Hence, 2p"m + E(H) — 2 < r(G). O

Lemma 2.4 Let p be an odd prime, H a finite abelian p-group with M (H) =
p" for some positive integer n. Then, Eo(H) = 2M (H) - 1.

Proof. Choose positive integer m so that

PH(p" = 2)|H|(r(Cpr @ H) — 2p" — M(H) +2) - M(H) +3
2pn

m >

Set G = H @ Cpnpn. By Lemma 22, #(G) < 2p"m + P+ M(H)-3. It
follows from Lemma 2.3 that 2p"m + Ez(H) - 2 < 2p"m +p"+ M(H) -3,
therefore, E»(H) < p" + M(H) — 1 = 2M(H) - 1.
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To prove the lower bound we consider the following example. Assume H =
Cpr @+ @ Cpex. Let

0
T; = 1 €H
0
with the ith coordinate is 1 and the other’s is 0.
Put
S= (xl,'")zlv_zl:"'a—zh'"azka"'axk)_zk:"')_zk)
pe1-1 pe1-1 Pk -1 pk—1

Clearly, S contains no zero-sum subsequence 7' with 2 A|T'|. This implies
Ey(H) > |S| = 2M(H) — 2. Hence, Ey(H) =2M(H) - 1. D
From the proof of Lemma 2.4 we see that

Lemma 2.5 If H is a finite abelian group of odd order. Then, E3(H) >
2M(H) - 1.

Lemma 2.6 Let p be a prime, n a positive integer, H a finite abelian p-
group, and G = H @ Cpn. Suppose that, E5(G) = 2M(G) — 1. Then,
E,(H)=2M(H) - 1.

Proof. Let!= E»(H) -1, and let ay,-- -, be a sequence of [ elements in
H such that the sequence contains no zero-sum subsequence T with 2 |T'|.
Consider the following sequence

[0 ) () ()

pn_l pn_l

with 0 is the zero element in H.

Clearly, S contains no zero-sum subsequence T with 2 A|T|. Therefore,
2p" + Ey(H) = 3 < E5(G) - 1=2M(G) —2=2(p" — 1 + M(H)) — 2. This
gives that FEy(H) < 2M(H) — 1 and the lemma follows from Lemma 2.5. O

68



Proof of Theorem 1.3. Assume G = Cpei @ - - @ Cpex. Note that

p28|€2"'¢k — 1+ (pelcz---ck + 1)(1’6132"‘% _ 1)

C1€2° €k __
= 14 (pelez---ck +1- k)( €182 ek __ + Z p l(pe. _ 1)
erenme (%12 "%k —1) (po1e2 "%k —1)
Set H=Clojooa V' ¥ @C,e ' @ ®Cpe, * . Then, M(H) =

prerezek, By Lemma 2.3, E;(H) = 2M(H) — 1. By using Lemma 2.6
repeatedly, one can get Fy(G) = 2M (G) — 1. This completes the proof.

Lemma 2.7 (f8]) Let p be a prime, H a finite abelian p group, and G =
Cpn @ H. Suppose that p® > M(H). Then, every sequence of 2p™+ M (H)—2
elements in G contains a zero-sum subsequence of length p™ or 2p™.

Proof of Theorem 1.2. Let S be asequence of 4p°k — 3+22 lpti-1)=t
elements in G. Set H = Cpes @ -+ ® Cpex—1. Suppopse S = (al, ©,a¢).

Define
1
“=(a)
fori=1,---,t.
Set T = (b1,--+,bs). By Theorem 1.3, E2(Cpex @ G) = 2M(Cpex ®G) ~ 1 =
[S| = |T|. Therefore, there is a zero-sum subsequence W of T such that

2 AIW|. By the making of T' we must have, p*|T. Since, p" > M(H),
[W| < |T| =|S| < 6p™. Therefore, |W|=p", 3p"or5p™. Assume

v=(a ) (4)

Put U = (ai,,---,a;). Then, [U| = p™,3p™ or 5p*, and U is a zero-sum
subsequence of S. We distinguish three cases.

Case 1. |U| = p™ and we are done.

Case 2. [U| = 3p". By Lemma 2.7, there exists a zero-sum subsequence V
of U with [V| = p" or 2p™. Therefore, V or U~V is a zero-sum subsequence
of length p™.

Case 3. [U| = 5p™. By Lemma 2.7, there exists a zero-sum subsequence V
of U with |V| = p™ or 2p™. Therefore, either V is a zero-sum subsequence of
length p”, or U — V is a zero-sum subsequence of length 3p™ and it reduces
to Case 2. ]
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3 Remaks and Open Problems

Quite recently, it was proved that r(C2) < 4p — 2 by Rényai [26] and that
r(C2 ) < 4p* — 2 by the author [16] , respectively. By using r(C2) < 4p - 2
one can prove by induction that r(C2) < 5n ~ 4 for any positive integer n.

Proposition 3.1 If n is odd then E5(C,) = 2n - 1.

Proof. By the Erdés-Ginzburg-Ziv theorem we know that E3(Cp) < 2n—1,
and by Lemma 2.5 we see that the equality holds.

Theorem 3.2 Let n,m be odd positive integer with m|n. Then, E3(Cry ®
Cn) = 2m +2n - 3.

Proof. We proceed by induction on m. If m = 1 then it follows from
Proposition 3.1.

Suppose this theorem is true for m < & we prove it is true also for m = k. Let
p be a prime divisor of m. Let ¢ be the natural homomorphsim from C,,,®C,
onto C'2 with ker(¢) = C’m G)Cn Let S = (ay,---,@am+2n—3) be a sequence
of 2m + 2n — 3 elements i m Cm @C Set ¢(S) = (¢(a1),- ,¢(a2m+2n_3))
By applying r(C2) < 4p — 2 to ¢(S) repeatedly, one can find 2% 422 —
disjoint subsequences S, -- Sg':_l,.g —4 such that +(S;) € Cr: =) Cn and
such that |S;] = pfori=1,- 2"‘ +23 - 4. By Theorem 1.3 one can
find a subsequence Sg';‘+2 _3 (sa.y) of S-5—----- 32%4_2;_4 such that
L(SQ%“;_;,) € C% GBC; and |52;'+2p-3| is odd. Now by the assumpation
on the induction there is a subset I of {1,---,2% + 22 — 3} such that
Yiert(Si) = 0 and |/| is odd. Hence, Y, Siis a zero—sum subsequence of

S and ;¢S] is odd. Therefore, E2(Crm @ Cr) < 2m +2n — 3. Now the
theorem follows from Lemma 2.5. (]

One can use Theorem 1.3 to get some graphic results in a similiar way to
(3.
Problem To determine Ei(G).

It seems not easy to determine Ey(C,) for all n , k with k¥ < n and k jn.
The readers can find several intersting but difficult open problems in [1] and

[2).
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