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Abstract

In this paper we show that a graph G with e > 6 edges contains
at most h(h — 1)(h — 2)(h — 3)/2 paths of length three, where h > 0
satisfies h(h — 1)/2 = e. It follows immediately that G contains at
most h(h — 1)(h — 2)(h — 3)/8 cycles of length four. For e > 6, the
bounds will be attained if and only if h is an integer and G is the
union of K, and isolated vertices. The bounds improve those found
recently by Bollobds and Sarkar.

1 Introduction

All graphs considered are finite, undirected, and simple. Given such a graph
G = (V, E), ps(G) represents the number of subgraphs of G isomorphic to
a path of length s, and ps(e) = max{ps(G) : |E(G)| = e}. For vertices
v,z € V, we let d(v,z) represent the distance between v and z, and if v
and z are adjacent, we denote the edge by vz. Finally, degg(v) = deg(v)
gives the degree of v, Nbh(v) is the neighborhood of v, and for S C V,
G(S] represents the subgraph of G induced by the vertices in S.

In this paper we show that if e > 6, then ps(e) < h(h — 1)(h — 2)(h — 3)/2,
where h = lﬂ@ satisfies h(h — 1)/2 = e. Equality will be attained for
e > 6 if and only if G contains the clique of size h as its only nontrivial
component.

We first mention some related works. Clearly a graph of size ¢ has at
most (;) paths of length two, as any two edges form a 2-path, and the
star graph K . is the unique extremal graph. Ahlswede and Katona [5]
maximize pz(G) over graphs of fixed size and order, and in [4] the present
author follows up by classifying the six types of extremal graphs.
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In (2], Bollobds and Sarkar give the following result:

Theorem 1 Let G be a graph of size e containing no isolated vertices, with
6 < (5) <e< (*I'). Then ps(G) < 2e(e — k)(k — 2)/k. Equality holds
if and only if either e = (g) and G ~ Ky or e = 6 and G is the graph
obtained by joining a new vertezx to two opposite vertices of a 4-cycle.

In the same paper, Bollobas and Sarkar also give asymptotic (lower
and upper) bounds for ps(e) when e = ('2‘) and s > 4, noting that the
apparent extremal graphs are different depending on whether s is even or
odd. In particular, when s is odd, ps(e) is roughly on the order of k°+1/2,
which indicates that the extremal graphs resemble the graph Ki. When
s = 2t is even, py(e) is on the order of Cie'*! (C; is defined explicitly,

with ']_l'lglo C, = W), and the extremal graphs appear to be bipartite.

In [3], they show that K./9 5 (or a slight variation if e is odd) is the unique
extremal graph for s = 4 and e sufficiently large. Our bound on p3(e) can
be used to remove the requirement that e is a binomial coefficient in their
upper bound for ps(e) when s is odd, and we will discuss this more at the
end of the paper.

Finally, in [1], Alon gives more general asymptotic results for the max-
imum number N (e, H) of subgraphs isomorphic to a fixed graph H in a
graph of size e. His bounds are asymptotically best possible when H has
a spanning subgraph consisting of cycles and disjoint edges, and therefore
match those found in [2] when H is a path of odd length.

2 Main Results

We now seek to improve the upper bound on ps(e) given in [2]. The main
difference between our approach and theirs is that we first show that, except
in certain instances, an extremal graph of size e can be found that does not
contain vertices of degree one or two. This allows us to estimate p3(G) in a
slightly different manner, and obtain a tighter bound. We begin with two
lemmas showing how one can sometimes eliminate vertices of degree one or
two without decreasing the number of paths of length three.

Lemma 2 Let G = (V, E) be a connected graph of order n and size e > 4,
and suppose G has vertices v and x such that Nbh(v) = {z}. If deg(z) <
n — 2, then there exists a graph H = (V, E’) of size e such that p3(G) <
ps(H) and degg(v) = 0.

Proof: Choose vertex w € V' of maximum distance from v. Then d(z,w) >

2. Let H = (V, E’), where E' = EU {wz}\{vz}. If d(z,w) > 3, then each
path of the form vzbp in G is replaced by the path wxbp in H, so we see

74



p3(H) > p3(G). Now if d(z,w) = 2, then G has k > 1 additional 3-paths
of the form vza;w, i = 1,...,k, that are not 3-paths in H. However, in
this case H has k(k — 1) new 3-paths of the form a;wza;j, t # j, so we see
that p3(H) > p3(G) if k > 2. If k = 1, then vza;w is the only 3-path in
G for which we still need to find a replacement in H. To this end, note
that when k& = 1, since e > 4 and w is a vertex of maximum distance from
z, we necessarily have deg(z) > 3 or deg(a;) > 3 (G cannot consist of the
path vzayw). If deg(z) > 3, then {v,a1,b} C Nbh(z) for some b € V,
so H contains the new 3-path ajwzb. Similarly, if deg(a;) > 3, then H
will contain the new 3-path zwa;t for some ¢t € Nbh(a,). In each case, we
have exhibited an injection from the 3-paths of G into the 3-paths of H, so
Ps(G) < po(H). .

Lemma 3 Let G = (V, E) be a connected graph of order n and size e > 4,
and suppose there erist vertices v, x, andy in V such that N bh(v) = {z,y}.
Then

a) if there exists w € V such that d(z,w) > 2 and d(y,w) > 2, then there
erists a graph H = (V, E') of size e such that p3(G) < p3(H) and
degu(v) =0, and

b) if Nbh(z) N Nbh(y) # V\{z,y}, then either G = Cs or there ezists
graph H = (V, E’) of size e such that p3(G) < p3(H), where H has a
vertez v' of degree at most one.

Proof: To prove a, Let H = (V, E’), where E' = E U {wz, wy}\{vr, vy}
Note that each 3-path in G is either also a 3-path in H, or, as shown in
Table 1, uniquely determines a new 3-path in H. This shows that p3(G) <
p3(H), and since v is an isolated vertex in H, proves part a.

3-paths in G 3-paths in H
vzap, (p # w) wrap
vyap, (p # w) wyap
yvza ywza
TVYQ Twya

vrya; vyza, if 2y € E | wrya; wyza
vzaw, if d(z,w) =2 | ywaz
vyaw, if d(y,w) =2 | zway

Table 1: 3-path repacements in part a
To prove b, we note that by part a, we need only consider the case where

there is a vertex w € Nbh(y), w ¢ Nbh(z) (the same argument will work if
w € Nbh(z), w ¢ Nbh(y)). Let H = (V, E'), where E' = E U {wz}\{vz}.
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Table 2 shows most of the paths of length three in G that are not 3-paths
in H.

3-pathsin G 3-paths in H
vzap, (p #w) |wzrap
zoyt Twyt
yuzTa ywra
TVYQ TWY
vryw, if xy € E | vyzw
TUYyw VYWT

Table 2: 3-path repacements in part b

The only remaining 3-paths in G that need “replacements” in H are
those of the form vza;w, i = 1,...,k. We have several cases to consider.
If degg (w) > 3, then for cach i, H contains the new 3-paths a;zwb;, where
b; € Nbhg(w)\{y,a:}. Thereforc, we arc done unless Nbhg(w) = {a1,y},
which we now assume. If deg(a;) > 3, the path vza,w in G can be replaced
by the path zwa,t, where ¢ € Nbh(a1)\{x,w}. If deg(a1) = 2, we simply
switch the roles of v and w and = and y in our current proof (i.c., w is the
vertex of degree 2 with neighborhood {a,y}). Arguing as before, since =
and a; have changed roles, we will be finished unless deg(z) = 2. Alas, in
the final case, we are left with the graph G where vertices v, z, a1, and w
each have degree 2, and G[{v,z,a,w,y}] is a 5-cycle. If deg(y) = 2, then
G =~ Cs. If deg(y) > 3, then by part a (letting = take the role of v, and
realizing that any vertex in Nbh(y)\{»,w} is at distance at lcast two from
each of v and a) there is a graph H’ of size e with vertex set V, where
degu(z) = 0 and p3(G) < ps(H'). We have checked all cases, and this
finishes the proof of the lemma. ]

Theorem 4 Let G be a graph of size e, e > 6. Then p3(G) < h(h—1)(h—
2)(h — 3)/2, where h > 0 satisfies h(h —1)/2 = e. For e > 6, equality will
be attained if and only G contains Ky, as its only nontrivial component.

Proof: One can easily check that any graph of size 6 contains at most 12
paths of length three. Assume then that the result holds for all graphs of
size e’, 6 < e’ < e, and let G be a graph of size e. It clearly suffices to assume
G is connected. Consider first the case where G has a vertex v of degree
one, say Nbh(v) = 2. By Lemma 2, we may assume Nbh(z)U {z} = V.
In this case, each edge ab in G[Nbh(z)] lies on two 3-paths containing v
(namely vzab and vzba). Therefore, p3(G) < 2|E(G — )| +p3(G —v), and
applying the inductive hypothesis to G — v, we get
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p3(G) < 2(e—dega(z)) + h'(R - 1)(h' - 2)(h' - 3)/2
< 2e— )+ R = 1) - 2)(H - 3)/2, 1)

where 0 < b’ < |V(G—w)| satisfies h'(h' —1)/2 = e—1. One can then verify
algebraically that the right-hand side of (1) is bounded (strictly) above by
h(h —1)(h = 2)(h — 3)/2 by converting both expressions to functions of e.
Suppose next that G has a vertex v of degree two, and Nbh(v) = {z,y}.
By Lemma 3, it suffices to consider the case where Nbh(z) N Nbh(y) =
V\{z,y}. Suppose that G has order n and G[V\{z,y}| has size ¢’. Then G
contains at most 4e’ +2(n—3) 3-paths beginning with v (2¢’ each beginning
with vz and vy but not containing zy, and potentially 2(n — 3) more if
zy € E). In addition, G contains n — 3 paths of length 3 of the form zvya
and n — 3 of the form yvra. Therefore, when |E(G — v)| > 6 (a check of
both graphs of size 7 with vertices v, z, and ¥ as described shows that the
result holds when |E(G — v)| = 5), by the inductive hypothesis we have,

r3(G) 4(e—2(n—2))+2(n—-3)+2(n—3)+p3(G —v)

<
< de— 4K 4+ H(K — 1)K - 2)(K —3)/2, (2)

where 0 < b/ < n — 1 satisfies A'(h' — 1) = e — 2. As before, one
can verify that the right hand side of (2) is bounded (strictly) above by
h(h = 1)(h — 2)(h — 3)/2, as desired.

Finally, suppose each vertex of G has degree at least three. Using the

idea found in [2], let V = {z1,%2,...,Zx}, and for each i set
d,' = deg(:z:i)
¢ = |E(G[Nbh(z;)))|
e; = |{ab :a € Nbh(z;), d(b,x;) = 2}|.

In [2], the authors then summed over all 3-paths with middle edge in-
cident with ;. This sum appears in the first linc below, except theirs ran
over only those vertices of degree at least two. They then needed to con-
sider various parts of the sum separately, depending on the actual value of
d;. However, since we have d; > 3 for each ¢, we can proceed as follows:

p3(G) = ((di — De; + 2(di — 2)cs)

N =
(-

~
Il
-

((di — 1)e; + 2(d; — 2)(e — e; — d;))

IA
D]
NE

i
L
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D (e +2)d: — 2€)) = > (d? + (d; — 3)es/2)
i=1

i=1

IA

(e +2)(2¢e) — 2en — Zaz (d is the average vertex degree)
i=1

2¢? + 4e — 2en — n(2e/n)?

2¢2 + 4e — 2eh — 4e2 /h

h(h —1)(h - 2)(h - 3)/2.

IA

Note that equality will occur if and only if d; = d = 2e/n for each i if
and only if G = Kj (h =d + 1 =n will be an integer). =

3 Discussion of Results

The upper bound for ps(e) given in the theorem is tight when h is an
integer, and lowers the bound given in [2]. Elementary calculus shows that

the differences in the two bounds are unimodal as e varies between (%)

and ("';' !} for any integer h’ > 4. In fact, the two bounds are equal at the

endpoints, and have a maximum difference of —\/82? when e is written as

h(h + vVh? +1)/4. Of course the number of edges and number of 3-paths
must be integers, so we see that the actual maximum difference in bounds
is about l\/e/—SJ when e = h%/2. Another benefit of our bound is that it
is more descriptive of the structure of the extremal graphs: the expression
h(h — 1)(h — 2)(h — 3)/2 is the natural one to use to count the number of
paths of length three in the graph Kj with h(h — 1)/2 edges, and we have
shown that this expression also serves as an upper bound when h is not
an integer. Apparently, the extremal graphs will be close in structure to a
clique.

By “gluing together” an appropriate number of paths of length three
and perhaps an additional edge, Bollobds and Sarkar showed in [2] that if
7 is a positive integer and m = k(k —1)/2 for some integer k > 47 + 4, then

1 1
SB)irsz < parsa(m) < Tmlps(m), = gk~ ((K)a)e and
1 1
E(k)4r+4 < pars3(m) < 27(p3(m))rs1 = 5((k)4)r+1-
We simply note here that our bound on ps(m) allows the removal of the

requirement that k is an integer in their upper bounds for psr+1(m) and
Par43(m).
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We conclude with an immediate corollary of the bound on p3(e) and give
a related conjecture. Since a 4-cycle contains four paths of length three, we
have:

Corollary 5 A graph of size e > 6 contains at most h(h — 1)(h — 2)(h — 3)/8
4-cycles, where h > 0 satisfies h(h — 1)/2 =e.

Conjecture: Let G be a graph of size e > 8, and write e = (£) +1¢,

1 <t < k. Then G contains at most 3(5) + (k - 2) (%) cycles of length
four, with equality when G is the graph obtained by joining a new vertez to
t vertices of K.

The graph K, 2 necessitates that e > 8 in the conjecture. Also, the
(conjectured) extremal graphs are not unique. In particular, if e = (5)+3s
for some integer s, then the graph obtained by deleting a triangle from
K,+3 contains the same number of 4-cycles as the graph described in the
conjecture.
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