DOUBLE ORDERINGS OF (0,1)-MATRICES
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ABSTRACT. There is a lexicographic ordering of (0, 1)-tuples. Thus
the rows of a (0, 1)-matrix can be ordered lexicographically decreas-
ing from the top by permutations, or analogously the columns from
the left. It is shown that (0,1)-matrices allow a simultaneous or-
dering of the rows and the columns. Those matrices are called
doubly ordered, and their structure is determined. An answer is
given to the question, whether a (0, 1)-matrix can be transformed
into a block diagonal matrix by permutations of the rows and the
columns; in fact, the double ordering of a (0, 1)-matrix already dis-
plays the finest block diagonal structure. Moreover, fast algorithms
are presented that double order a (0, 1)-matrix.

1. INTRODUCTION

This paper deals with (0, 1)-matrices, i. e., matrices whose entries
are either 0 or 1. Two algorithms will be established that transform
(0, 1)-matrices into a doubly ordered form which means that its rows,
considered as dyadic numbers, are in decreasing order from top to bot-
tom, and simultaneously its columns, also considered as dyadic num-
bers, are in decreasing order from left to right. It is shown that a
doubly ordered matrix displays its block diagonal structure. As an ap-
plication the block structure of an arbitrary matrix can be found since
for this purpose it only matters whether an entry of a given matrix
is zero or not, and this reduces the question to (0,1)-matrices. Our
approach is an alternative to the graph theoretic method that inter-
prets the (0, 1)-matrix as an encoding of a bipartite graph whose con-
nected components correspond to the blocks of the matrix. There are
well-known algorithms in graph theory that determine the connected
components of a bipartite graph (see, for example, [2]). The double
ordering may be applied to systems of linear equations. But there are
several areas that might profit from this method. In particular, this
topic is relevant for combinatorial matrix theory where (0, 1)-matrices
are also considered, cf. [1] and [4].
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2. DoOUBLE ORDERING

All occurring matrices are (0, 1)-matrices. A line of a matrix denotes
_either a row or a column. The set of (0, 1)-rows allows a lexicographic
ordering induced by 1 > 0 from the left. Analogously (0, 1)-columns
allow a lexicographic ordering induced by 1 > 0 from the top. This is
equivalent to considering each of the rows of a (0, 1)-matrix as dyadic
representation. Then the lexicographic order of rows is just the usual
linear order on natural numbers and an analogous statement is true
for the lexicographic order of the columns. With this in mind we can
talk about larger and smaller lines. A matrix is said to be doubly
ordered if the set of the rows from top to bottom and the set of the
columns from left to right simultaneously form descending sequences.
Note that the transposed of a doubly ordered matrix is also doubly
ordered. Two matrices A, B are called permutation equivalent if there
are permutation matrices P, @ such that B = PAQ.

Every (0, 1)-matrix allows line permutations such that a double or-
dering is obtained. The proof of this fact is given in the form of an
explicit algorithm. For this we need some preparation. We define the
degree of order dgo(M) of a (0, 1)-matrix M = [m;;] of size m by n by
setting

dgo(M) = ij2m+n—i—j = i gm—i (i mijZ"‘j)
(i.4) i=1 =1

= Xn:?‘—j (i mij2’"'i) .
i=1

j=1

We will verify in the following that exchanging a later row with an
earlier row that is smaller results in an increase of the degree of order
by at least one, and the same is true for columns.

Lemma 1. The degree of order of a (0, 1)-matriz increases under trans-
positions of lines if either a bigger row is permuted towards the top or
a bigger column is permuted towards the left.

Proof. Let M be a (0,1)-matrix of size m by n. Let r; denote the
number whose dyadic expansion isrow i of M, i.e., r; = Z?:x m; 2",
Suppose that i, > i, and r;, > r;,. Let M’ be the matrix obtained by
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exchanging row i, and 7, in M. Then
dgo(M’) —dgo(M) = omip, yom-iey, _ (2™, + 2™ %ry,)
= 1, (277 27T gy, (2mT  2mi)
= 277 [ry, (1 - 227%) 4y, (29271 — 1))
= 2™ (ry, — 1) (2270 — 1) > 1.
By symmetry the same is true for columns. O

We show next that every (0, 1)-matrix can be doubly ordered. The
process is algorithmic and the algorithm has been programmed in C++.

Theorem 2. Every (0, 1)-matriz is permutation equivalent to a doubly
ordered matriz. The doubly ordered matriz is obtained by interchange-
ably sorting rows and columns.

Proof. By interchangeably sorting rows and columns the degree of order
increases by Lemma 1 until the matrix is doubly ordered. This must
happen in finitely many steps since the degree of order is bounded. [J

Remark. The degrees of order of two permutation equivalent doubly
ordered matrices need not be the same. The following is an example.
Let

1001101
0111011
M=11101100
0101011
By first sorting the columns of M and then the rows of the resulting
matrix we arrive at
1111000
1100111
M=11100110
1011100

which is doubly ordered and has dgo(M,) = 1668. By first sorting the
rows of M and then sorting the columns of the resulting matrix we
obtain

1111000
1110100
My = 1001111}
1001110

which is again doubly ordered and dgo(M,) = 1660 < dgo(M;). Both
matrices show that the first row of a doubly ordered matrix need not
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have the maximal rowsum. Another matrix that is permutation equiv-
alent with M is

1111100
1111000
Mi=11 100011
1010011

It was obtained by maximizing row and column sums and has degree of
order 1753 that may be the largest possible in the periodic equivalence
class.

We now investigate the structure of doubly ordered matrices using
self-explanatory interval notation for intervals of integers.

Theorem 3. Let M be a (0,1)-matriz of size m by n. Then M is
doubly ordered if and only if there are two sequences of partitions

1) Je= (450 GhIEU- - Ui =[], 1<€<m,
where 0= < ¢ <---<jt<jf, < - <ju=n, and
(2 L= (zg’zﬂu(z’l;’?'g] U---u (ilzl"—l’ig"] =(1,m], 1<h<n,

where 0 =ih <ih < ... < i <df | <o <y =m such that

(3) =it and =i
. 1 if (3k) j € (G el
4 Me, — - a .2k 2k:l~1
(4) [£,] { 0 if (3K) j € (Fkrrr Fosal
and
. 1 if (3k) i€ (B, ih ]
( ) [l ] { 0 i (3 k) 1€ (""zlk+1:"'2k+2]

Note that j¢ = jf,, and i} = i}, are allowed so that parts of the
partitions may be empty.

Proof. Let M be a doubly ordered (0, 1)-matrix of size m by n. Thus ¢
ranges from 1 to m. We induct on £. Let £ = 1. The lexicographic
order of the columns requires that in row 1 the entries equal to 1 (if
any) must come before the entries equal to 0 (if any). Let j} = 0,
j3 = n and let j{ be such that
G [ 1 jg<i<i
M“”‘{Oifﬁ<jsﬁ'

In this case the relevant part of the requirement (3) is void and (1)
and (4) are satisfied.



Now suppose that a partition (1) has been found such that the rel-
evant part of (3) and (4) hold for 1 < £ < L < m. Let JL'“ = jk
so that the relevant part of (3) holds for £ = L + 1. If j& = jf,,
then set joi"' = jzf\ = jyti, W JF < gk and j,5' € (G, 3E,]
for some k, then Mz, 5] = M[i,j'] for ¢ < L. In this case the lexico-
graphic order of columns requires that the entries of M[L + 1,j] for
J € (4&, 3k, are in decreasing order, i.e., the ones precede the zeros.
Set jith € [is, j5tL) equal to the column index for which

1 if jL+l =jf < ] < ]21;;_11

M[L+1,j]= ;
[ il { 0 if Jahh <J<dfn —Jz(kil)

Having done this for £ = 0, ... ,2¢ we have a partition (1) for £ = L+1
satisfying the relevant part of (3) and (4). The same procedure, mutatis
mutandis, will produce I, satisfying (3) and (5), and one direction of
the claim is established.

Conversely, assume that M is a matrix and J,, I} are sequences of
partitions as in (1) and (2) such that (3), (4) and (5) hold. If M is of
size m by n, then J,, and I,, are the finest of the partitions (1), (2). It
suffices to show that an arbitrary row M[L, «] is lexicographically larger
than the adjacent row M[L + 1, %, and similarly for columns. Let j €
{1,...,n}, and consider that entries M[L, j] and M[L + 1, j]. If there
is a value k such that L,L+1 € (zk,zk_,_l] then M[L, j] = M[L +1, 7]
If there is no such value k, then there is a least integer ~ > 1 ‘and
some value k such that L € (i, 7’2k+l] while L + 1 € (i ,,,%5,.]. By
choice of h, we have L,L +1 € (it™!,if;1]. Hence M[L,j] = 1 and
M[L +1,5] = 0. Con31dermg the possibilities in toto we have that
M(L, %] precedes M[L + 1, ] in the lexicographic order. The column
order is established analogously. O

110
111

shows that both sequences J; and I, are needed and also in full length.
There is an alternative characterization of double ordering.

The matrix

Proposition 4. Let M be a (0,1)-matriz of size m by n. Then the
following are equivalent:
(1) M is doubly ordered.
(2) The set of the rows of M from top to bottom forms a descending
sequence, and (1), the relevant part of (3) and (4) of Theorem 3
hold.
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(3) The set of the columns of M from left to right forms a descending

sequence, and (2), the relevant part of (3) and (5) of Theorem 3
hold.

Proof. Theorem 3 shows that (1) implies (2). To prove that (2) im-
plies (1) it remains to show that the columns of M form a descending
sequence. Consider the columns j and j + 1 of M. If j and 7 + 1 be-
long to the same interval of the partition J,,, cf. Theorem 3 (1), then
M([i,j] = M[i,j +1] fori = 1,... ,m by Theorem 3 (3) and (4), and
M[*,j] = M[*,j + 1). Now assume that j and j + 1 are not in the
same interval of J,,. Let 4 be minimal relative to the property that j
and j + 1 belong to different intervals of the partition J,. Note that
1 < p < m Then j and j + 1 belong to the same interval of the
partition Jy,_;. Thus, by Theorem 3 (3) and (4), the columns M|, j]
and M([#, j+1] are equal up to row u— 1. By Theorem 3 (4) they differ
in the u™* row. Moreover, if in some step from line to line an interval
is decomposed into two sections, then in the first section all entries
are 1 and in the second section all entries are 0, hence M|y, j] = 1 and
My, j+1] =0, i. e., M[*,5] > M[+,j + 1}. This shows that M is
doubly ordered.

The equivalence of (1) and (3) is shown analogously. O

In view of Proposition 4 it is not surprising that there is another
algorithm that double orders a (0, 1)-matrix row by row or column by
column. In preparation it is convenient to establish notation. We need
to consider partitions

(6) J= (jO)jl] U---u (jt—l:jt] = [17'"']’
0=3<in<--<jia<ji=n,

of [1,n] = {1,... ,n} that allow empty intervals (jx_1, ji], jk-1 = Js-
A permutation Q of {1,...,n} is said to respect the partition J if
(4k-1,36]Q = (Jk—1,Jk] for each k, so that Q is in effect a product of
permutations Q. of the individual subintervals (jx-1, jx] with Q) omit-
ted if (jx—1, jx] is void. Let u = [u,,... ,uy] be a (0, 1)-row of length n.
We introduce the row section u(jx_1, ji] = [4j,_,+1,- .. ,u;,] and a per-
mutation of [1,7] in this context is understood to be a permutation
matrix so that the matrix product uQ) makes sense. Such a permu-
tation matrix respects the partition J if Q = diag(Q,,... ,Q;) where
each permutation matrix Qx acts on the piece u(jx-1, ji] and is absent
if (jk-1, Jx] is empty.

We also need the following concept. A row v of a matrix is said to
cover properly another row u if for every column permutation @ the
row vQ@ is larger than the row uQ. Note that, in this case, the row
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sum of v is necessarily larger than that of u, and that v has a 1 in each
column in which u has a 1. E.g., while the first row of

1110

0001
is lexicographically larger than the second, the first does not cover the
second since a permutation of the columns produces the matrix

0111
1000
in which the second row is lexicographically larger.
The following observation will be used later.

Lemma 5. Let u,v be (0,1)-rows and that v does not properly cover u.
Ifu=1[1,...,1,0,...,0] (all ones before all zeros), then u is leico-
graphically larger than or equal to vQ for any permutation matriz Q.

Proof. If vQ were greater than u = [1,...,1,0,... ,0], then vQ, and
hence v, would cover u contrary to hypothesis. O

Theorem 6. There is an algorithm doubly ordering a (0,1)-matriz
that works line by line.

Proof. We describe this algorithm and show that it leads to the desired
result. The algorithm starts with a certain row or column of the matrix.
Obviously we have to start with a row or a column that has no proper
cover. Here we start with a row. Let M be a (0, 1)-matrix of size m
by n. We associate with this matrix a recursively determined sequence
of pairs (My, Jr)o<e<m With the following properties.
(1) M, is permutation equivalent to M,
0=j§ < jf <--- < j% =n is a partition of [1,7] into (possibly
void) intervals,
(3) for 0 < L < ¢, jzit! = jE,
(4) for1<i<?

., 1 if (3k) j € (5, Fopsa)
M(['L, ]] = . . - - ’
0 if (3K) 7 € (Jopyrr Foxsal
(5) for L =1,... € the row M,[L, #] is lexicographically larger than

or equal to any permuted row M,[i,*]Q with ¢ > L provided
that @ respects Jp.

Let Mo = M, Jo = (0,n] and, given (Mg, J;) determine (M,,,, Jps1)
recursively as follows:
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(i) The rows 1,... ,¢ are unchanged. Choose any row, say u, from
the set {My[€+ 1,%],..., Mym, ]} of the last m — € rows of M,
such that the leading parts (0, j¢] have no proper cover among
the leading parts M,[i, (0, jf] for i = £+ 1,... ,m. Choose a
permutation matrix P such that PM, has the rows M,[1,%], ...,

Mg[e, *], Uyonnn
(ii) There is a column permutation @ = diag(Q,, ... ,Q2¢) respect-
ing Je, such that the new row uQ has entries [1,...,1,0,...,0]

(all ones before all zeros) in each interval of J,. Define (with the
permutation P in (i))

M,,, = PMQ.
(iii) By choice of @ an interval (jf, j£,,] of the partition J, is occupied

in row u@ by a list (wQ)[jf +1,...,3t)=11,...,1,0,...,0}
Let j&' = ¢, and let j&t1, € [i5, 541, be such that

S vt e (st
(uQ)[J] - N . 241 241
0 if j € (Joryr Jorso
. . ., . .t
it =gt .75:-41-1 -715+1 = .722;::-1)
{ }
(11 11](00 0]

Done for all intervals of J; this leads to a refinement Jyy; of the
interval partition J,.

The pair (M1, Jet1) clearly satisfies condition (1) through (4) by
construction. Condition (5) is true by construction and Lemma 5.

After m steps this algorithm leads to a matrix My, and an interval
partition J,,. The rows of M,, are lexicographically non-increasing
by (5).

By Conditions (2), (3) and (4) above the hypothesis of Proposi-
tion 4 (2) is satisfied, hence M, is doubly ordered. ]

Remark. By (i) the algorithm of Theorem 6 can be started with any
row of the matrix that has no proper cover.

A row with maximal row sum never has a proper cover, so we may
always replace the relation “cover” by “maximal row sum” in the above
algorithm.
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3. BLock DIAGONAL FORM

The purpose of this section is to prove that a doubly ordered (0, 1)-
matrix M displays the block diagonal structure of M, i.e., if M is
permutation equivalent to a block diagonal matrix A with indecom-
posable diagonal blocks, then M itself has block diagonal structure
with indecomposable blocks of the same size as A.

Let M = [m;]icicm, 1<j<n D€ @ matrix of size m by n. A submairiz
of M is a matrix obtained be deleting lines of M. A submatrix of M
of the form

M[ml..mz, n1..n2] = [mij]mlSisz’ n1<j<ng

is called a block of M. If m = m; = my, then we write M[m,n;..np]. A
block of the form M(1..r, 1..s] is called a main block. Note that a main
block of a doubly ordered matrix is also doubly ordered.

A matrix M is said to be in block diagonal form or a block diagonal
matriz if M = diag (M,, ... , M) where the blocks M; are rectangular
and all entries outside of the blocks are 0. A matrix M, not of size 1
by 1, without 0-lines, is said to be indecomposed if it has only the trivial
block diagonal form, i. e., M = diag (M). A matrix of size 1 by 1 is
indecomposed. Matrices with 0-lines are decomposed.

A matrix is called indecomposable if it is not permutation equivalent
to a decomposed matrix. The support M* of the matrix M is the
submatrix obtained by deleting all 0-lines of M. A matrix M is called
totally decomposed if its support M* = diag (M,,..., M;) is a block
diagonal matrix with all blocks M; indecomposable.

There are total decompositions of matrices relative to periodic equiv-
alence, i. e., block diagonal forms of the support such that the diagonal
blocks are indecomposable. We will show that the size of the indecom-
posable diagonal blocks of those total decompositions is unique up to
rearrangements of the diagonal blocks.

Note that a block diagonal matrix A = diag(A,,..., Ax) is doubly
ordered if and only if all its diagonal blocks A; are doubly ordered.

The following technical lemma settles a special situation that occurs
in the proof of the next theorem.

Lemma 7. Let M and A be doubly ordered (0,1)-matrices of size m
by n, thet are permutation equivalent, i. e., PMQ = A. Let A =
diag (A, .. .) be in block diagonal form and let A, # A be indecomposed
of size l by k. Let P = diag (P, P"),Q = diag(Q', Q") where P', Q'
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are of sizem' < I, n' < k respectively, and m' +n' < !+ k. Then

P-M[l.m,1.n']-Q All.m, 1.7},
P-M[l.m',1.n]-Q = A[l.m/,1.n],

and if M[1.m',1..n'] has no 0-line, then there exist permutation ma-
trices Py, Q1 of size m; and n, respectively, where

m<m <!, "< <k m+n<m +n,
such that M[1..my,1..n] has no 0-line and

P-M[l.m,1.m]- Q1 = A[l.m,1.n],
P - M[1.my,1.n]-Q All.my, 1..n).

Proof. Since permutation equivalent matrices have the same number of
0-rows and the same number of 0-columns, and since doubly ordered
matrices have 0-lines either all at the right or all at the bottom, we
may restrict to the case that the matrices M and A coincide with their
supports, respectively, i. e., they have no 0-lines. Hence

k<n and [ <m,

since otherwise either there is a 0-line or A = A,. By hypothesis the
main blocks of size m by n' of M and of A are permutation equiva-
lent and the main blocks of size m’ by n are permutation equivalent.
Since all of these main blocks are doubly ordered, we obtain that their
lower or their right 0-blocks, respectively, have the same size. Since A
has block diagonal form and M([l..m',1..n'] has no O-line, there are
minimal n;,m;, with n’ < n; < k and m' < m; < [, such that
M[m; + 1..m,1.n'] = 0 and M[l.m/,n; + 1.n] = 0. Thus the per-
mutation matrices P and Q have the form P = diag(P', P, P;) and
Q = diag (Q', @}, Q3), where P| is of size m; — m’' and @ is of size
ny —n'. If my = m’ or n; = n' then P] or Q] do not exist, respectively.
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n o k n
|
!
I
P'M[1.m',1.n)Q' '0 0
|
[}
'
m :
ml ————— (—) ——————— -
l
O diag (A,,...)
m

It remains to show that m' +n' = m, +n, is impossible. But in this
case m' =m; and n' =n,. f m’ <! and n' < k then

M[1.1,1.k] = diag (M[1.m/, L.n/), M[m' + 1.0,n' + 1..k]),

a block diagonal matrix. Since m’ < ! and n' < k, this is a proper
decomposition of M which, because of PMQ = A, leads to a proper
decomposition of A, but A, was indecomposed. By hypothesis m' = {
and n' = k cannot hold simultaneously. So assume that either m' = [
or n' = k. In the first case m' = | and ' = n;, < k, we obtain
M([l..m,n; + 1..k] = 0 and M contains a O-column, contradicting the
fact that we took M to coincide with its support. The second case
m' =m; <!landn' =k leads to a O-row. This completes the proof. O

We are now ready to show that one can recognize whether a ma-

trix is decomposable by inspecting any doubly ordered permutation
equivalent matrix.
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Theorem 8. A decomposable doubly ordered (0,1)-matriz is decom-
posed and totally decomposed. The diagonal block structure of this total
decomposition is an invariant of its periodic equivalence class, i. e., the
size of the indecomposable diagonal blocks is unique up to rearrange-
ment of the blocks.

Proof. Let M be a doubly ordered (0, 1)-matrix of size m by n. We
may assume that M coincides with its support. Suppose that M is
permutation equivalent to some proper block diagonal matrix A =
diag (A;,...), where A, # A is indecomposable of size I by k.

First we will show that M is decomposed with a diagonal block
permutation equivalent to A;. The periodic equivalence of M and A
is preserved if the blocks of A are arranged in a different order or if
the individual blocks are doubly ordered according to the algorithm of
Theorem 6. We will take advantage of this fact later.

Necessarily the first row z, of M is of the form

zn=(,...,10,...,0)

nl

with row sum n’. Since PMQ = A with permutation matrices P,Q,
the row z, of M is permuted to some row u; of A. This row is in one of
the blocks of A. Since the rearrangement of the blocks of A is done by
a permutation of lines, we may assume that u, is in the first block A,
of A. Moreover, we assume that u, is the first row of A,. Since M
is doubly ordered the first row 2; never has a proper cover among the
rows of M, cf. Lemma 5. So u; has no proper cover among the rows
of A, and by doubly ordering the block A, according to the algorithm
of Theorem 6 using the Remark, we may assume that the block A, is
doubly ordered and the first row of A is equal to z;. Altogether we
have

PMQ=A and P =diag(P,P"), Q=diag(Q,Q"),
where P' = (1) is of size 1, Q' is of size n’ where n' < k. Moreover,
M[1,1.n]-Q=P -M[1,1.n]-Q=A[l,1l.n] =2
and
P M[l.m,1.n]-Q = A[l.m,1..nf}.

This is a setting where Lemma 7 applies. Iterating Lemma 7 we end
up with P = diag (P*, P**),Q = diag(Q*,Q"*), where P*,Q" are of
size | and k respectively, showing that

M = diag (M[1..L, 1..k], M[l + 1.m, k + 1..n}),
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and
P*M[1.1,1..k]Q" = A,.

Thus M is decomposed and since the diagonal blocks of a decomposable
doubly ordered matrix are also doubly ordered this is a total decom-
position. Moreover, since the indecomposable block A; was arbitrary
among the occuring diagonal blocks of any decomposed matrix A per-
mutation equivalent to M, it is obtained that the diagonal block struc-
ture of M is, up to rearrangement of the diagonal blocks, an invariant
of the periodic equivalence class of M. O

An immediate consequence of Theorem 8 is the following corollary.

Corollary 9. The block structure of totally decomposed representatives
in a class of permutation equivalent matrices is unique up to rearrange-
ment of the diagonal blocks.

As representatives of a class of permutation equivalent matrices we
can choose doubly ordered and totally decomposed matrices. Note that
there can be different doubly ordered indecomposable matrices that are
permutation equivalent. For example, the different earlier matrices

1111000 1111000
1100111 /1110100
M=l1100110| 2 =] 447711
1011100 1001110
are doubly ordered and both permutation equivalent to the matrix M,

so permutation equivalent to one another. Specifically,

0001000
0001 1111000 0000001
1000000

1000 1100111
0000100

0100 1100110
0010 1011100 00100000
0000010
(0010000,
1 11100 0]
_ 1110100
= 1001111
100111 0]

But there is always a unique lexicographically maximal doubly or-
dered representative in a class of permutation equivalent matrices, if we
for instance take the sequence of rows to be lexicographically maximal.
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4. OPEN QUESTIONS

There are some natural questions in this context.

(1) Find an algorithm to decide whether two indecomposable doubly
ordered (0, 1)-matrices are permutation equivalent.

(2) Are two invertible and indecomposable doubly ordered and per-
mutation equivalent (0, 1)-matrices permutation similar, i. e., ex-
ists a permutation matrix P such that B = PAP~!?

(3) Determine the periodic similarity classes of doubly ordered ma-
trices.

(4) The degrees of order of all doubly ordered matrices in a periodic
equivalence class form a set of invariants of this class. What can
be said about those sets?

(5) How many matrices in a periodic equivalence class have maximal
degree of order?

(6) Find an algorithm that determines the matrices of maximal de-
gree of order within a periodic equivalence class.

(7) The term rank of a (0,1)-matrix is the maximal number of 1’s
with no two of the 1’s on a line. This is an invariant of a periodic
equivalence class of matrices. Is the double ordering helpful, to
determine the term rank of a (0, 1)-matrix?

Remark. There are fast C-programs for both algorithms double or-
dering (0, 1)-matrices, cf. [3]. Double ordering of a square matrix of
size 1000 on a PC takes less than one second. These algorithms seem
to be quadratic in the size of the matrices, whereas the graph the-
oretic algorithm to find the block structure is linear. But we would
like to emphasize that double ordering remains interesting in itself be-
yond getting a block decomposition. Sparse matrices, even if they are
indecomposable, get a characteristic shape, since double ordering con-
centrates the entries 1 close to the diagonal.
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