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1. INTRODUCTION

Planar analogues of various results of the classical theory of
partitions are found in the literature (cf. MacMahon [11], Gordon and
Houten [7], Gordon [6] and Stanley [12]). In this paper we study
various restricted n-color partition functions and give two different n-
color analogues of the Gaussian polynomials defined by (cf. [10,
Def. 3.1])

r (4:9) :
= L if0<k<r 1.1
M (49D (4 D1 . v
0 - Otherwise,
where
= (1-aq')
(a; q)n = n+iy °
l_o[ (1-aq™)
We know that
r+k
[ ] =Y p(r.kv)g, (1.2)
k v20

where p (r,k,v) denotes the number of ordinary partitions of
v into at most k parts, each < r.

We first recall the definition of an n-color partition from [1,3].

Definition. An n-color partition (or, a partition with “n copies
of n") is a partition in which a part of size n, n=1 can come in n
different colors denoted by subscripts : n,, n,,.......... ,n.. Thus, for
example there are six n-color partitions of 3, viz., 3,, 3,, 3,, 2,+1,,
2,+1,,1,+1,+1,. In[3] it was shown that if P(v) denotes the number
of n-color partitions of v then
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1+Y PO’ =[Ja-¢"". (1.3)
v=1

n=1

Since the right-hand side of (1.3) is the generating function
for plane partitions, this implies that the number of n-color partitions
of v equals the number of plane partitions of v. in [1,3] several new
Rogers - Ramanujan type identities were found using these
partitions. Recently, in [4] a graphical representation for n-color
partitions was given and conjugate and self-conjugate n-color
partitions were defined. In this paper we shall study various
restricted n-color partition functions. In Sections 2 and 3 we study
two different n-color analogues of the partition function p(r, k, v)
appearing in Equation (1.2) above. This enables us to obtain two

r
different n-color analogues of the Gaussian polynomials [k} and

their following properties (cf.[10,Th. 3.2))
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In Section 4 we obtain generating functions for several other
restricted n-color partition functions. In Section 5 we obtain two
combinatorial identities using the generating functions of Section 4.
One of our identities Theorem 5.1 is a true n-color analogue (very
similar in structure) of the following famous identify due to Euler (cf.
(10, Cor. 1.2)).

Theorem (*). The number of partitions of v into distinct parts
equals the number of partitions of v into odd parts.

We conclude in Section 6 by posing three open problems.

The most important tool in this work is the bijection y.¢

established recently in [2] between plane partitions of v, on the one
hand and the n-color partitions of v on the other. For the clarity of
our presentation we shall first recall some definitions from [9,12]

and reproduce the bijection .9 here.

A plane partition /7 of v is an array of non-negative integers.

for which Zn,.j =n and the rows and columns are in non-
i'j
increasing order : n; 2 N,y Ry 2 By, for all i,j =1. The non-
zero entries n,>0 are called the parts of /7 . A plane partition is
called symmetric if n,=n, for all i and j. If there are 4, partsin the i-
th row of /7, so that, for some rr,

A2A, 224, 24,,=0,
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then we call the parition A, 24,2>..2A4, of the integer

p=2A +..+A4,, the shape of /7. If the non-zero entries of /7 are

strictly decreasing in each column, we say that /7 is column strict.
And if the non-zero elements of /7 are strictly decreasing in each
row; we shall call such a partition strict. The conjugate trace of /7 is

defined to be the number of parts n, of /7 satisfying n; 2i. In

w9, ¢is due to Knuth [8.Th.2] and is the 1-1 correspondence of the
following theorem:

Theorem (Knuth). There is a one-to-one correspondence
between ordered pairs (//,, /7,) of column-strict plane partitions of
the same shape and matrices (a,) of non-negative integers. In this
correspondence

0] k appears in /7, exactly D "a, times, and

(ii) k appears in /7, exactly Zak,. times.

A different version of this theorem known as Bender and
Knuth Theorm is also found in literature (cf. Bender and Knuth [9],
~ Nijenhuis and Wiff [5]).

Theorem (Bender and Knuth). There is a one-to-one
correspondence between plane partitions of v, on the one hand,

and infinite matrices a;(/, j 21)of non-negative integer entries
which satisfy.

rzl i+ j=r+l

on the other.
In the sequal we shall call images ¢ (/7) K, -matrices (K for

Knuth). Although these matrices are infinite matrices, but we will
represent them by largest possible square matrices containing at
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least one non-zero entry in the last row (or last column). Thus, for
example, we will represent six K,-matrices by

3, 10, 11, 0 0, 001 000
10 00 01 000 000
000 100

Before we establish the bijection y between K, -matrices
and the n-color partitions of v, we give a definition.

Definition 1.1. We define a matrix E,; as an infinite matrix
whose (l,j)-th entry is 1 and the other entries are all zeros. We call
E,, distinct part of a K -matrix.

Now we define the mapping  as follows:

Le‘t A = al,lEl.l +a"2EL2 + ...+ az,lEz_, +a2,2E2_2 +...

+ay,E; +ay B+

be a K, -matrix where a, are non-negative integers which

denote the multiplicities of E,, We map each part £, of A to a
single part m,of an n-color partition of v. The mapping y is

V/:Ep'q—)(p+q—l)p, (1.9)
and the inverse mapping l//'l is easily seen to be
vy im—>E, ... (1.10)

Under this mapping we see that each K, -matrix uniquely
corresponds to an n-color partition of v and vice-versa. The

composite of the two mappings ¢ and y denoted by y.¢ is

clearly a bijection between plane partitions of v, on the one hand,
and the n-color partitions of v on the other.
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To illustrate this bijection we consider the case for v =3

(Table 1).
TABLE1

Plane partitions of 3 ¢ (I w o (1)
I
111 3 =3E,, 31, = 1,+1,41,
2 1 11 =E, +E,, 1,+2,

00
11 10 =E1.1+E2.1 11"'22
1 10
3 0 0 1 -EI.J 31

000

000
2 00 =E,, 3,
1 01
1 000 =E, 3,
1 000
1 100

2. FIRST ANALOGUE OF THE GAUSSIAN POLYNOMIALS

In the ordinary restricted partition function p(r,k, v ) there are
two restrictions : one is on the number of parts which is <k and the
other is on the size of the parts as each part < r. if we look at an n-
color partition, say, /7=(a,), +(a,),, +...+(a,), . we see that
three restrictions can be considered : first on the number of parts,
second on the size of each subscript b, and the third on the size of

each part a. Considering these three restrictions we define two
different restricted n-color partition functions as follows :

Definition 2.1. Let P, (r, k, m, v) denote the number of n-color
partitions of v into exactly m parts such that each subscript b, < r
and each part a, < k+b—-1.

Definition 2.2. Let P,(r, k,-m, v ) denote the number of n-
color partitions of v into exactly m parts such that each subscript
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b,< r and each part a,< k.

In this section we shall study the function P,(r, Kk, m, v ) and
in the next section we shall study the function P, (r, kK, m, v ).

Our first object here is to prove the following result :

Theorem 2.1. We have

w k 1
P(r.kmv)z"g' =] | ———. 2.1
z;‘mzo ) ) l:.[(zq’;q), @1

Proof. Under the mapping ¢ every plane partition /7 of v

corresponds to a K, -matrix say, A, via an ordered pair (/7,, /7 ,) of
column strict plane partitions of the same shape. Stanley [12]
pointed out that the number of rows of /7 equals the largest part of
[1,, the largest part of /7 equals the largest part of /7, and the
conjugate trace of /7 equals the number of parts of /7, or [7,.

Now suppose

A=Za E_ _and

P pa

w(d)=2 a,,(p+q-1,=3a,, (@),

where a=p+qg-1 and b=p

Under the mapping i the largest part of /], is the largest p
which is the largest subscript in the corresponding n-color partition
under the mapping ¥ . Similarly, under the mapping ¢the largest

part of /7, is the largest q which is the largest (p+q-1) — p+1 = a-
b+1 under the mapping ¥ .

Also, the number of parts of /7, or /], equals the number of
parts £, of Aunder the mapping ¢ which equals the number of

parts (a,.),,‘ of the corresponding n-color partition under the mapping

w . We thus conclude that our restricted n-color partition function
P,(r. k, m, v ) also enumerates plane partitions of v with < r rows,
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largest part < k, and with conjugate trace m. now an appeal to
Stanley’'s Theorem (Section 2.2, p.56, [12]) proves our Theorem
2.1.

To illustrate the method of the proof we have given, we
21
consider the plane partition 2 of 6. We see that
1

21 110
2 =5 000=E +E,+E,,—>123,
1 """[1 " ]100

Now we define the first analogue A,(r, kK, m; q) of the
Gaussian polynomials by

A (rk,mq)= Z p,(r.k,myv)q". (2.2)

v20

Remark. Since P,r, kK, m, v)=0if v> m (k+r-1) and
P, (r, k, m, m(k+v -1))=1, therefore A, (r.k,m;q) is a polynomial in q
of degree m(k+r-1).

Using Theorem 2.1 and the Taylor's theorem, we get the
following formula :

A k,m; )“—]‘dm ﬁ : 9
7 K5,m,q midz" | 54 (29”;q), z=0. |

Formula (2.3) is implementable on computer.
Using this formula on MACSYMA - a symbolic Mathematics

software, we obtained the following table of A,(r, kK, m; q) for
1<r, k< 4 and m=2
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TABLE -2

1 2 3 4
1 |q° q+q*+q* g +q’+2q9*+q°+q° |Q*+q’+2q'+2q°+
2q°+q’+q°
2 |g°+q°+q" qd°+29°+4q"+29°+|q*+2q°+5q"+ q°+2q°+5q"+
q° 5q°+5q° +29'+q° |69°+8q°+6q’+5q"+
2 q9 + qw
3 |g*+q*+2q'+q°+|q°+29°+5q"+50°+|q*+2q°+6q"+ q*+29°+6q*'+9q°
q° 5q°+2q"+q° 8q°+119°+8q'+ [+14q°+14q’+14q"°
6q°+29°+q" +93°+6q‘°+2q"
+q
4 |gP+q+29'+  |g+29°+5q+  |q*+2q°+6q" q*+2q°+6q'+10q° ‘
2q9°+2q°+q'+q° |6q°+89°+6q"+5q°|+9q°+14q°+ +179°+20q"+24q" |
+2q°+q" 149’+149°+9q°  |+209°+17q"+10q"
+6q|0 +2q11+ql2 +6q|2+2q|3+q|4

Analogues to the properties (1.4) — (1.8) of the Gausssian
polynomials we shall now prove properties of the polynomials

A,(r, k. m, ;q).

Theorem 2.2. The polynomials A,(r, kK, m, ;q) satisfy the

following relations.

degree A,(r, kK, m ;q)=m (r+k—1),

Alr k 0,9)=1,

A1, k m ;q).= Ak, 1, m ;q),

for 1<r<m,

clr i .
q" 4 (r,k,m;q)=2[j](—1)‘q"’ V24 (r,k+1,m- j,q),
=0
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and
r+m-— ] -1
A(r,k+1,mq) =g~ Z[ ]A(rkj,q) (2.8)
Jj=0
Proof. Equation (2.4) follows from the remark given below
Equation (2.2). Equation (2.5) is obvious from the Definition (2.2)

while Equation (2.6) follows from the Definition (2.2) and the fact
that P,(r, k, m, v ) is symmetrical in r and k which is clear from

Theorem 2.1. To prove (2.7) and (2.8) we set

[ q) =Y A kmg)z". (2.9
‘m=0

G(r,k;z,q9)= l_[
From the first part of (2.9) we get the g-functional equation
G(r, k; 2q, q) = (zq; q),G(r, k+1,; Z, q). (2.10)
In (2.10) if we use Euler's identity (cf. [10,eq (3.3.6)])

rlr S
(z9), = Z[ .](—1)’ /g

Jj=0

and then equate the coefficients of z” we arrive at (2.7).

Similarly, (2.8) is obtained from (2.10) by. using another
identity of Euler (cf. [10, Eq. (3.3.7)])

_ r+j—l
(zq) Zo[ ]

and then comparing the coefficients of z*. This completes
the proof of Theorem 2.2.

We close this section by proving one more theorem which
establishes the fact that our polynomials A,(r, k, m; q) generalize
the Gaussian polynomials.
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Theorem 2.3. We have

[k +m—1
A(Lk,mqg)=q" " ] (2.11)
. L m
m [k +m
and > A4,(Lk,s;9)= ] (2.12)
5=0 L m

Proof. Since P,(1, kK, m, v)=p(k, m, v )-p(k, m-1, v),

k+m| |k+m-1
therefore, 4,(1,k,m;q)= [ :'—[ ],
m m-1
which leads to (2.11) in view of (1.8).
Similarly, to prove (2.12), we use the fact
plk,m,v)=> R(,k,s,v).

5=0

3. SECOND ANALOGUE OF THE GAUSSIAN
POLYNOMIALS

Following the method of proof of theorem 2.1 one can prove
that P,(r,,m, v)=ll‘im P,(r,k,m,v)equals the number of plane
—©

partitions of v with < r rows and with conjugate trace m.

Stanley's formula [12, Eq. (6), p. 59] leads us to the following result.

Theorem 3.1. We have

® k
> > P(r.k,mv)z"q" = [Ja-zg"y™==. 3.1)
w=l

v=0 m=0

Now we define the second analogue A,(r, kK, m; q) of the
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Gaussian polynomial by

A, (r,k,m;q) =Y P, (r,k,m,v)q".
v20

Remark.

(3.2)

Since P,r, kK, m, v)= 0 if v> mk and

P, (r, k, m; mk) = 1, we see that A,(r, kK, m; g)is a polynomial in q of

degree mk.

Using Theorem 3.1 and the Taylor's theorem we get the

formula

m

k

il

A, (r,k,m;q)= llgz-”—,[n (1-zq’ )-min(r,j):l _ (3.3)

Like Formula (2.3), Formula (3.3) is also implementable on
computer. Following is a MACSYMA produced table of A,(r,k,3; q)

for 1<, k< 4.
TABLE-3
1 )2 3 4
1 19° [q*+q*+q°+q° q’+q'+2q°+2q°+ q°+q‘+2q’+3c!°+3q’+3q“
2q9’+q"+q’ +39°+29"°+q"'+q"
2 |q° |q°+29'+3q°+4q° |q’+2q*+5q°+ q’+2q'+5q°+10q°+13q"+
8q°+9q'+6q°+4q° |16q°+15q°+12q"+
qu 1 + 4q12
3 |9’ |g°+2q9'+3q°+4q° |q*+2q*+ qQ’+29°+6q°+13q°+21q"+
: 16q°+100°+15q’+ |30q°+34q°+30q "+
[129°+10q° 18q''+10q"
14 |9° |g'+2q"+39°+4q° |g*+2q*+ q’+2q*+6q°+14q°+23q"+
6q°+10g°+15q'+  [36q°+44q°+44q™+30q"
12q°+10g° +20q"
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We shall now discuss the properties of the polynomials
A, (r, k, m; q) which are analogous to the properties (1.4) — (1.8) of
the Gaussian polynomials.

Theorem 3.2. The polynomials A, (r, k, m; q) satisfy the following
relations

degree A, (r, k, m; q) = mk. (3.4)
A,(r k 0;q) =1. (3.5)
if r> k then A,(r, k, m; q) = A,(k, k, m; q), (3.6)
for 1<r<m,

| r . .
q"A,(r,k,m;q) = Z[j](—l)’ g4, (r k+L,m~ j,q), (3.7)
J=0

men|r+m—j—1
A, k,mg)=q Z[ .

j=0

:lAZ(r’k:j;q)’ ' (3'8)

Proof. Equation (3.4) follows from the remark given just
after Equation (3.2). Equation (3.5) is obvious from the definition of
A,(r, k, m; q) given by Equation (3.2). Equation (3.6) follows from

the fact that in an n-color partition /7=(a,), +(a,),, +...+(a,)s,

no subscript b,can exceed the part a, Tthe proofs of Equations (3.7)
and (3.8) are similar to those of Equations (2.7) and (2.8),
respectively and are hence omitted.

Remark. |t is interesting to note that from (2.1) and (3.1) it
follows that

P(1,k,m, v)="P,(1, kK m, v)
which implies

A, (1r k, m; q) =A2(1' k, m; q)'

and so Theorem 2.3 also holds good for the polynomials A,
(1. k. m; g).
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4. GENERATING FUNCTIONS FOR OTHER n-COLOR
RESTRICTED PARTITION FUNCTIONS.

In the classical theory of partitions several restricted
partition functions have been studied. p(r, k, v ) is one such function.

Other restrictions are partitions into distinct parts, partitions
into odd parts, partitions satisfying certain medulo conditions etc. In
general a restricted partition function is of the type p(S,n) which
counts the number of partitions of n that have all their parts in a set
of positive integers S. . A

Analogues to this classical restricted partition function
P (S, n) we in this section study various restricted n-color partition
functions. ‘ '

Definition 4.1. Let P(S; T; v ) denote the number of all n-
color partitions of v of the form ) (a,), such that the parts

a;e S and the subscripts beT -

Definition 4.2. Let P" (S; T; v ) denote the number of all n-
color partitions of v enumerated by P (S, T: v ) with the added
restriction that there be exactly m parts.

Definition 4.3. If f(v) denotes the number of any kind of
partitions of v then f,(v) will denote the number of partitions of v
enumerated by f(v ) with the added restriction that each part < k.

Definition 4.4. Let P(D; v ) denote the number of n-color
partitions of v into distinct parts.

Definition 4.5. Let Q(v) denote the number of n-color
partitions of v in which even parts appear with even subscripts and
odd with odd subscripts.

We will denote the set of all positive integers, the set of all

even positive integers and the set of all odd positive integers by
N, E and O, respectively.
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We obtain the following generating functions by a straight
forward application of the standard techniques of partition theory
(10, Chap. 1) :

1+YP(0,0,vq" =[Ja-¢"")"
v=l n=1
=1+q+q¢*+30°+3q'+60°+..., (4.1)

1+Y PO, Ev)g” = [ [ -4 )"
v=1

i
=14q°+2¢°+..., (4.2)
1+ 3 PEEWT = [[0-4")"
S e
=1+q%+3q"+..., (4.3)
1+ iP(E, 0;v)q" = ﬁ a-q)”
- pl
=1+q’+3q'+..., (4.4)

l+iP(E,N;V)q" = ﬁ(l_qzn)-z,,
v=1

n=1

=1+2q°+7Q"+..., (4.5)

1+ ZP(O, N:v)g' = l’[ - q2n—l)-(2n-l)
v=1

n=1

=1+q+q*+4q'+9q°+..., (4.6)
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1+3 P(Dyv)g*  =[Ja+4q")"
=1+q+2q9°+5q°+8q'+16q°+..., 4.7)

1+30me =[] a 13

v=] n=\
=1+q+29°+49°+7q"+12q%+..., (4.8)
where [ ] is the greatest integer function.

The two variable generating functions for P" (S, T; v ) can
be given by using a double series.

Thus, for example,

w0 0

zip'"(o, O;v)z"q” =[] (- 24"y (4.9)

v=0 m=0 n=1

The generating function for P,(S, T; n) is obtained by using
a finite product instead of an infinite one on the right-hand side.
Thus, for example,

w k
1+ P(0,0;mq" =[]0 =4*")™", (4.10)
v=] n=)
@ k
1+ R(Dvg" =[]a+q")", (4.11)
v=l n=1
etc.

5. COMBINATORIAL IDENTITIES

Using the generating functions of the previous section
several combinatorial identities can be obtained. For the brevity of
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the paper we give only two.

Theorem 5.1. Let B(v) denote the number of n-color
partitions of v such that the parts are either odd with any subscript
or even with even subscripts only. Then P (D; v ) =B (v).

Example. P(D,4) = 8, since the relevant partitions are

4, 4, 4, 4,

3,1,, 3,1, 8,1,

2,2,

Also, B(4) = 8, in this case the relevant partitions are

4,, 4,

3,1, 8,1, 3,1,

2,2, 211, 1111,

Proof. We have
S PD;v)g" =]]U+q")"
v=0 n=1
(by(4.7))
( _an)n
n (l — n)n

@ Zn)n

= l—[ (] qzn )2n (1 ‘Zn—l )2n-—l

l_]I (1 q‘Zn) (1 2n-1 )Zn—l
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= Zw: B(v)q".

(by (4.3) and (4.6))

Since a power series expansion of a function is unique, we
see that

A()=B(v), forall v.

Remark 1. Theorem 5.1 may be considered as an n-color
analogue of Euler's identity (*).

Remark 2. the condition “even parts appear with even
subscripts only” on the partitions enumerated by B(v) can be
replaced by the condition “even parts appear with old subscripts
only” in view of the generating functions (4.3) and (4.4).

Theorem 5.2. Let A(v ) denote the number of strict plane
partitions of v. Then

Q(v)=RA(v) forally.

Example. Q(4) = 7, since the relevant partitions are 4,, 4,,
3,1,,8,1,,2,2,, 2,11, 11,11,

Also, R (4) = 7, since the number of strict plane partitions of
4 is also 7. They are

-t
e e e

Proof. This theorem is an immediate consequence of the
fact that the right-hand side of (4.8) is also a generating function for
R (v ) (cf. Gordon and Houten [7]).
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6. CONCLUSION

We hope that like Gaussian polynomials our polynomials
A, (r, kK, m; q) and A, (r, k, m; g) will find more applications in
number theory, combinatorics, special functions, algebra, statistics,
theoretical physics and computer algebra. We conclude by posing
three open problems.

Problem 1. s it possible to find explict expressions (in terms of
q only ) for the polynomials A, (k, r, m; q) and

A, (k, r, m; q) as we have for Gaussian polynomials
given by (1.1)?

y
Problem2. we know that lin}[k] equals the binomial
q—>

r
coefficient (k] do A,(r, kK, m; 1)and A, (r, kK, m; 1)
have interpretations other than partition theoretic?
Problem3. We have used generating functions for proving
Theorems 5.1 and 5.2, is it possible to prove them
combinatoriaily?

Acknowledgment. | wish to thank the referee for his
suggestions.
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