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ABSTRACT: Let G be a 2-connected simple graph with order n(n >
5) and minimum degree 3. This paper proves that if for any two vertices
u,v of G at distance two there holds [N(u) UN(v)|>=n — 8, then G is
vertex-pancyclic with a few exceptions.
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1. INTRODUCTION

We use the notation and terminology of [1] and [2]. Only simple
undirected graphs are considered. A graph G with order n is called
pancyclic if it contains cycles of length from 3 to n.

For x, ,xz,m »Xx € V(G), we use N(x,,X,,+,x,) to denote the set

of vertices UN(x;), n(x;,X;,°**,Xi) to denote the order of N(x,,x,,+*,
i=1

xi) and N(x;,%;,++,%,) to denote N(x,,X;5+,%) U {X1sXzs0 X ). A
cycle of length p is called a p-cycle. Let C = v v, »v; be a p-cycle. We
denote by v,év, or C[v;, v;] the path v;v;};+**v;on C,while vév, or ‘C[v,,v,]
denotes the path v;v;_,+++v;;,v;on C (the indices of vertices are to be taken
modulo p). For u € V(C), we use u*,u” to denote its successor and
predecessor vertex on C, respectively. Let T < V(C). By T+,T~ we
denote the sets {u* |[u € T} and {u~ |u € T). We use T** to denote
(TH)+, '

Pancyclic graphs were first considered by Bondy in [3]. Recently
people began to study vertex-pancyclic graphs and have obtained many
sufficient conditions for a graph to be vertex-pancyclic. For example, in
(4] and [5], the authors gave sufficient conditions for vertex-pancyclic
graphs which involve degree sum or neighborhocd intersections. In Cel,
Faudree, Gould, Jacobson and Lesniak conjectured that if G has order n,
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connectivity t and minimum degree 8, for any two nonadjacent vertices u,v
of G there holds [N(u) UN()| =>n —twithd>t + 1, then G is
vertex-pancyclic. In [7], Song reproposed this conjecture in the form that
if each pair of nonadjacent vertices u and v in a 2-connected graph of order
n and minimum degree  satisfies [N(u) UN(v)| =>n—3+1, thenGis
vertex-pancyclic. Obviously, Song’s conjecture can imply the conjecture by
Faudree et al. In [8], the authors solved Song’s conjecture. In this paper,
we give an improvement of Song’s conjecture.

Before giving the description of our main result, we define some
special graphs.

G, is the graph with V(G) = {x,u,v} U A U B, N(x) = {u,v},
Nu) = A U {x},N(v) =B U {x} and G[A U B] is complete,

G, is the graph with V(G) = {x,u,v} U A,N(x) = {u,v},uve€E,
Furthermore, Na(u),Na(v) % & and Na(u) N} Na(v) = &,G[A] is
complete.

Gsis the graph with V(G) = {x,u,v,y1,¥2,¥s} UD, (|D| =2) and
E(G) = {xu,xv,uv,xys,uy,,vy;} U {ywl|i=1,2,3,w € D} U {wt|w,
t € D}.

G* = (GIV(G) = {x,u,,uz,m,ua} U A,NX) = (uu‘":ua} and
N(u) UNQy) = A U {x}( #j),N(x) is independent. G[A] can be any
graph of order n — & — 1}.

Clearly G, ,K%,% c G-

The following theorem is our main result. .

Theorem Let G be a 2-connected simple graph of order n and
minimum degree 8. If for any u,v € V(G) with d(u,v) = 2 there holds
IN(u) UN(v)| =n — 3, thenGis vertex-pancyclic unless G € G* U
{G2,Gs).

2. PROOFS

Lemma 1 Let G be a graph of order n satisfying the conditions of
Theorem. Then for any vertex x of G, x lies on a 3-cycle of G unless G €
G*, and x lies on a 4-cycle unless G € G* U {G;,Gs}. Furthermore, x
lies on a 5-cycle unless G L2 Kg.;z;.

Proof : We consider two cases.

Case 1 x doesn’t lie on any 3-cycle of G
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Let N(x) = {u;,uz,+=s,u,}. N(x) is independent. If m > & then
n(y;,yu;) < n — 9, a contradiction. Thus m = & and n(y;,u) = n — 3G,
j=1,2,%,8,i % ). Let A = V(G)\N(x), it is evident that G € G".

If for any i and j(i # j), N(uw) N N(y;) = {x}, then clearly G G,
and x must lie on some 5-cycle. Thus we assume that there existiand j €
{1,2,+,8)} such that |N(y;) N N(y;) | = 2. Obviously x lies on a 4-cycle.
Now we prove that x also lies on a 5-cycle unless G L K%'%.

Let y(5 x) € N(w) ) N(u)). If there exists y' € N(u;)\N(u) (or
N(u;)\N(y;)), then y'y € Eord(y,y’) = 2. If yy' €E, then x lieson a
5-cycle clearly. Thus we may assume d(y,y’) = 2. If N(w;) N N(y,y’') #
& , then x lies on a 5-cycle. Thus N(w) N N(y,y') = &, implying n(y,
y') < n — 8, a contradiction.

If there exists no such y', then N(u) ) N(y;) = N(w;,y;), for any i,
j€ {1,2,++,8). Since n(u;,u;) =n—23, n=23. Itis easy to see that G
L Ka a. '

2°'2

Case 2 x lies on a 3-cycle xuvx.

Since G is 2-connected, we can assume N(u)\{x,v} # & without loss
of generality.

Case 2.1 d(x) =2.

If there exists y € N(u)\{x,v} such that y v € E, then x lieson a
4-cycle. Since G is 2-connected, there exists y’ € N(u,v)\{x,u,v,y}. If
yy' & E, then d(y,y’) = 2 and n(y,y') <Xn — 3. A contradiction. Thus
y ¥y € E and x lies on a 5-cycle.

If for any y € N(\{x,v}, yv & E, then d(y,v) = 2. By the
hypothesis of Lemma 1, n(y,v) =2 n — 2. This implies that for any s €
VAN(V), ys € E. Similarly, for any z € N(v)\{x,u} and g € V\N(u),
zq € E. It is not difficult to prove that G L2 G,.

Case 2.2 d(x) = 3.

Case 2.2.1 x doesn* lie on any 4-cycle of G

Let w € N(x)\{u,v)},d(v,w) =2 and n(v,w) <{n — 2 — (d(u) —
2) = n — d(u). Thus d(u) = 8. Similarly d(v) = 3. Since G is
2-connected, & = 3. If d(x) = 4, let w,,w, € N(x)\{u,v}, then d(v,
w;) = 2and n(v,w;) <n—2— (d(u) —2) — (d(w,) —2) <n—3d.
A contradiction. Thus d(x) = 3 and d(u) =d(v) =d(x) =8 = 3. Let
Y1,y € V\{x,u,v,w} such that u y,,v y, € E. Since d(y,,v) = 2 and
N;,v) N {y;,v,w} = &, for any r € B = V\{x,u,v,y,,y;,W},yir €
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E. Similarly, y,r and wr € E. For t,,t, € B, since n(t;,t,) <n — 3 if
d(t;,t;) = 2, we have t;t, € E. Hence G L G; and clearly x lies on a
5-cycle,

Case 2.2.2 x lies on some 4-cycle Xox;X,X3%0(x = x,).

If x,x;and x,x; & E. Suppose G has no 5-cycle containing x. Let y be
any vertex of N(x,)\({(x,,x;3}, clearly d(y,x,) = 2 and N(y,x,)
VAN(N(x) U {y}). If y & N(x;), then n(y,x,) <<n — 3, a contradiction.
Thus y € N(x;), that is N(x,) & N(x;). Since G has no 5-cycle
containing x, N(x,) [ N(x;) is independent. But this contradicts the
supposition of Case 2.

If xox, & E and x,x; € E. Suppose G has no 5-cycle containing x. Let
y be any vertex of N(x¢)\{x;,x3}, clearly d(y,x;) = 2 and N(y,x,) &
VACNGO\{xs}) U {y}). I Nx3)\N(x;) # &, then n(y,x;) <n-—3,
a contradiction. Thus N(x;)\N(x;) = &. Similarly N(x,)\N(x;) = &,
and so N(x;) = N(x;3). If d(x;) > 3, let z € N(x;)\{%,%;,X3}, then
d(z,x;) = 2 and n(z,x,) <<n — |[NX)\{x1,x:}| — |{x2o2}| <n — 8.
This is a contradiction. Thus d(x,) = d(x;) = 3. Since G is 2-connected,
there exists y € V\N(x,,x,,x;3) such that y'x, € E. Since d(y,x,) = 2,
we have n(y,x;) = n — 3. On the other hand, we have N(y,x,) C
VAN (x)\{x5}) U {y}), which implies n(y,x,) << n — 8. Thus n(y,
x;) = n — d and y is adjacent to any vertex of VAN (x,,x;,x;,X;). By the
same argument, y' is adjacent to any vertex of V\N(x,,x, ;xz,xs). Hence
d(y,y') = 2. But n(y,y') <Xn — 4 <n — 8. A contradiction.

By the similar argument, if x,x, € E and x;x; & E, then we can
deduce a contradiction.

If xox, € E and x,x; € E. Let A; = N(x;)\{X0,%;,X;,%3}(i=0,1,2,
3). Suppose G has no 5-cycle containing x. Clearly A; | A; = & and any
vertex of A;is nonadjacent to any vertex of A;(i,j € {0,1,2,3}). Since G
is 2-connected, at least two of A,,A,;,A; and A; are nonempty. Suppose
ALAj = JGA#)). Lety € A, y; € A Fork#1,j, n(x,y) <n—2
—(@—3)—d)—3)=n—8+4—d(x;) <<n— 8, we conclude that
vi is adjacent to any vertex of VA\N(xo,x%,,X;,%;). Similarly, y; is adjacent
to any vertex of VAN (xo,%,,X;,%3). Thus d(y;,y;) = 2. But n(yi,y;) <n
—4— B —3)—Wd&x)—3)=n—38+2—-dx)<n-—3 A
contradiction. This complete the proof of Lemma 1.

Lemma 2 Let G be a graph of order n and satisfy the condition of
Theorem, then for any vertex x of G, x lies on cycles of length from 6 to n
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unless G L K_;;‘.%.
Proof ; Let x be a vertex of G. We will prove that if G has a p-cycle

containing x, then G also has a (p + 1)-cycle containing x unless G ¥
K 2. By contradiction. Suppose, to the contrary, that there exists some

a,
integer p(5 << p < n) such that G has a p-cycle containing x, but has no
such (p + 1)-cycle. We shall obtain contradictions. Let C = v;v,+++v,v, be
a p-cycle containing x. There exists u € R = V\V(C) such that N¢(u) #
&. Set T = Nc(u) = {t;,ty5+,tn}. Let C; = CLtF,t7,] G = 1,2,
p.

We consider two cases.

Casel m= 2.

If x*and x"€ T, then C' = x* Cx~ ux*isa p-cycle with do (x) >
2. Notice that any (p + 1)-cycle involved in the following proof of Case 1
contains x and u, so we can assume x* or x~ & T. (otherwise use C' and x
to take the places of C and u). Without loss of generality, we assume x &
T+,

Claim 1 T* {u} is independent.

Claim 2 m < 3.

If m>=38, then |T*U {u}| =8+ 1. Clearly d(u,t}) = 2 and n(u,
t{) < n — 8. A contradiction. Thus m << 3.

Set B = Ngi(u), then

Claim3 N@B) N T* = g&.

Claim 4 T?* is independent.

If claim 4 is not true. Suppose tf*,t#* € T?* and t#*t¥* € EG < ).
It is not difficult to verify that N(t#,t") N B= &. If N(t*) N N(;") #
&, then d(t;*,t) = 2. Butn(tt,") <n— |T* | — |IBU {u}| <n—
3. Thus N(tf") N N(;t) = &. Now we prove that n(u,t") << n — 9.
Define a bijection f; on N(t;*) as follows: for w € N(t;)
(w w € Ne(t")
wo w € C[t#*,t]
wt w e (_S[t ST

f =<

W =10 e Get,e1n T
ind W=t
u w =t

It is not difficult to verify that for w € C[t?*,t,],w™ & N(u,t*) and for w
e CLu+ st INT™,w* & N(u,t*). For w € C[t#+,t7] N T-,wet &

123



N(u,t#). If ttw+ € E, then f(w) = f(w*) = w?*. But we can prove
that tf w* & E. Otherwise d(tj* ,w?*) = 2. Since n(tj*,w?**) >=n— & and
N@EH N GuyUBUTH) =&, N(w) NB# . Lety € N(w**) N
B, then the cycle C':t uyw“‘at;' wt Ct?*tf*ﬁt; is a (p + 1)-cycle
containing x. So for any two vertices w,w’ € N(tj*),f(w) # f(w'). Thus
n(u,t) < n — 3. From the hypothesis of Lemma 2, n(u,tf) = n — &.
From f,, if tft;7 & E, then n(u,t) < n — 3. Thus tt] € E.
Clearly ut?* & E, t;*t* & E. And it is not difficult to see that (T* \{t;"})
U {t#*} is independent. On the other hand, N(t,t#*) N (B U {u}) =
&. Thus n(ti,t#*) <n — 3. This is a contradiction.
Claim 5 N(t*) N Bor N(t,) N B# &G = 1,2, ,m)
Suppose N(t") NB=N@#) NB=g. ENGH) ANG@L) # L,
then d(t,t}4;) = 2 and n(t*,t4 ) <n— |T*| — |IBU {u}| <n-—3,
thus N(t) N N@4,) = &. Now we define a bijection f,:N(t%,) -
VAN (u,t*) by
w wE NR(ti-Sq)
w-  w € C[th,u)
f,(w) =<w*  w e C[t¥ i8]
it W = tiyy
u w = tiyy
From f,,n(u,t) <<n —d. Andif t},t3, & E, then n(u,tf) <n—238.
Thus t,t3, € E.
Since t¥,t; & E, if t*t7 & E, then n(u,t*) <n — 8. Thus 't €
E. Since ti,t?* & E, we must have tt}* € E(otherwise n(u,t") <n —
8). Thus tt,t#* & E. Similarly, t*t!* € E. Continue in this way, we
have t*t3, € E. Since tht3, € E, d(tf,th,) = 2. This is a
contradiction,
Hence Claim 5 holds.
Claimé¢ I NG@H) NB+#* J, lety € Nt$) N B, then titu € E,
that is |C,| = 1.
If claim 6 is not true, suppose t{tu & E.
Since we assume x & T+, we have N(u) N Ng(t}*) = &. If Nt
N Nr(t3*) # &, then by the assumption of Case 1, either u = x or u 7
x we can easyly got a (p + 1)-cycle containing x. This is a contradiction.
Thus N(tf ,u) [} Nr(t}*) = &. Define a bijection fyon N(t{*) as follows;
for any w € N(tf"')
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w w € Ne(t}")
w= we Y uI\x")
u

fs(w) = w = t§+
tf w=t]
B+ w=x* (x*#t")

it is easy to verify that for any w € N(t¢*), f;(w) & N(u,t}), and for
any w,w (w#%w') € N(t}*), f;(w) #{;(w'). Thus n(u,tf) <n—23d.
Since t} & N(t},u), by f;,t}*t3t € E, implying d(t?*,t2%) = 2. If
|Ca| = 2, then by Claim 3,4,n(t}*,t3") < n — 8. A contradiction.
Hence |C,| = 1. But then t} & f;(N(t¢*)), by f;,n(u,tf ) <n—38. A
contradiction. Thus titu € E,
Claim7 |C]=1,i=1,2,,m.
If Claim 7 is false, suppose there exists an integer k such that |C,| >
2. If N(t#¥) N B# &, then as claim 6 we can prove that |C,| = 1. Thus
assume N(tf) | B = &. By Claim 5, N(ti~,) N B % &. By claim 6,
|Cy—1| = 1. We only prove |C,| = 1. Suppose |C,| == 2 and N(tF) N B
= . Clearly |C,| = 1. Since ti” & N(u,t{") U f;(N*)), by f;, we
have n(u,t) <<n — 3.
By f;,t*ti* € E, otherwise n(u,t{) <<n — 8. Since N(t}) N B =
&, we have N(u,t{) N Nr(t7) = &. Suppose x 7% t2*. Define a bijection
f, on N(tF) as follows; for any w € N(t})
w w € Ne(tf)
wo w € C[ti+,t,]

f,(w) =
' tF w = ti*
tf w=t,

Since u & N(u,t}) U f(N(@$)), by f,n(u,tf) < n — 8 A
contradiction.
If x = t{*, we define a bijection fs:N(t¢*) — V\N(u,t}) by:

w w € Nr(tf%)
Loy = ¥ WE Clt*,t,]

tf w =t

tr w =t

Since u & N(u,tf) U f;(N@}*)), we have n(u,t}) < n — 8, a
contradiction. This completes the proof of claim 7.

By claim 7. |G| =1, i=1,2,*,m, clearly p is even. Let A, =
Ngr(T*), A, =Ng(T). Since d(u,t¥) = 2, from the above discussions, it
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is easy to see that Nc(t#*) = T+, which implies G[T U T*] £ Ka,n.
Clearly A, and A, are independent sets and A; | A, = . Let a €
A:\{u}, then d(u,a) = 2, and n(u,a) <n — |A;] —m<{n— 98 Thus
n(u,a) =n—29d. Thatis |A;| +m=3. Since n(t;,t;,) <n—m — |A,|
and n(t,,t,) =>n—38, wehavem + |A,| = 8. If VA(V(C) U A, U A
# &, then clearly n(t,,t,) <<n — 8. Thus V= V(C) U A, U A,. Since
d=m+ |A;| =m+ |A,| and A, U T, A, U T* are independent, G L
K

(XYL
.
Y51

.

Case 2 m << 1. Assume for any u € R, dc(u) <<

Claim 8 For any i, there is no edge between Ny (v,) and Ng(viyq).

Suppose, to the contrary, assume there is an edge between Ng(v;)
and Ng(v;). Let u;,u, € R such that uju, € E and uv,,u,v, €E. If p=
6, suppose X 7 V;,Vs,Vy,clearly d(v;,vs) = 2. But since N(v;,vs) ()
(N@u)\{v;,u;}) = &, we have n(v;,vs) < n — 3. A contradiction.
When p = 5, if x 7 v,, the proof is the same as p 2= 6. Thus assume x =
v,. Clearly dc(x) = 2. Since {v,,v;,u,} is independent, § > 3. Lety €
Ng(x), then d(y,v;) = 2. But since N(y,v;) | Nr(uw,) = &, we have
n(y,v;) <<n — 3. This is a contradiction.

Now we consider two cases. Assume x = v,.

Case 2.1 p< 0

Clearly Nr(v)) # & (i=1,2,+,p). Let y; € Nr(vy),y: € Nr(vs).
Since N(v;) N Nr(ys) = &, if N(v1) N Nr(y3) = &, then n(y;,v,) <
n — 8. Thus N(y;) N Nr(ys) # &, implying d(y;,y;) = 2. But since
N(y,,y:) N N(v;) = &, we have n(y;,y;) <n — 8. A contradiction.

Case2.2 p=0+1

Let u;,u; € R such that d(u;,u;) = 2, clearly n(u;,u;) <n — 3.
Thus R is the union of complete graphs. Let R, be a complete graph of R.

Since G is 2-connected, there exist v;,v; € V(C) and u,,u, € R, such
that u,v;,u,v; € E. Clearly vi* 7% vjand vi 5 vi. (i <<j). Without loss of
generality, assume x € (_f[vi,vj]. Define a bijection fs on N(v}*) as
follows: for w € N(v/*)

w w € Ng(vit)
wo wE é[v, »Vi]
fe(w) =yw* w € CLv#*

+

Vi W =V

u W = Vj1
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Clearly fs(N(v{*)) N N(u;,vi¥) = &. Thus n(u,,vif) = n — 8. This
implies vi*vi* € E. If v}*v{* & E, then clearly v* v}* € E. The cycle C',

vy, u, vj‘C-I vitvit 6 v;is a p-cycle containing x with d¢ (v;") == 2. By Case
1, we can got a (p + 1)-cycle containing x or prove that G L2 Kg,.;_. Thus
vi*vit* € E. But then viuuvCvitvirvitvi*Cvi is a (p + 1)-cycle
containing x.

This completes the proof of Lemma 2.

By Lemmas 1 and 2, Theorem holds immediately.
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