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Abstract It is shown in this paper that every 2-
connected claw-free graph containing a k-factor has a
connected [k, k + 1]-factor, where k > 2.

1 Introduction

All graphs under consideration are undirected, finite and simple. Let
G = 3D(V(G), E(G)) be a graph with vertex set V(G) and edge set
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E(G). We denote by zy the edge joining the vertices = and y. Let g
and f be two mappings from V(G) to Z+ such that g(v) < f(v) <
dg(v) for all v € V(G). If a spanning subgraph F of G meets the
condition that g(v) < dp(v) < f(v) for all v € V(G), then F is called
a [g, f]-factor of G. If g(v) = 3Df(v) for all v € V(G) then we call
the [g, f]-factor an f-factor. If g(v) = 3Da and f(v) = 3Db for all
v € V(G), then the [g, f]-factor is called [a, b]-factor, where a and
b are constants. When a = 3Db = 3Dk, the [a, b]-factor is called a
k-factor.

A graph is said to be claw-free if it contains no copy of K3
as an induced subgraph. The concept of connected factor was first
proposed by M.Kano[1]. It is easy to see that the problem of deciding
whether a given graph contains a connected k-factor is N P-hard in
general, as a connected 2-factor is 2 Hamiltonian cycle. It seems
to us that connected factor problem is an interesting research topic
since it is closely related to the hamilton problem and information
networks. The following recent results on f-factors or on connected
(9, f]-factors have been published.

Theorem 1 [2] Let k be a positive integer, and G a graph of
order n with n > 4k — 5, kn even, and minimum degree at least k,
then G has a k-factor if the degree sum of each pair of nonadjacent
vertices of G is al least n.

Theorem 2 [3] Let k > 3 be an integer, and G a connected
graph of oder n with n > 4k — 3, kn even, and minimum degree at
least k. If for each pair of nonadjacent vertices u,v of V(G)

maz{do(u), de(v)} = 3
then G has a k-factor.

Theorem 3 [4] Let k be a positive integer and G a connected
graph of order n. If G has a k-factor F and, moreover, among any
three independent vertices of G there are(at least)two with degree
sum at least n — k, then G has a matching M such that MUF is a
connected [k,k + 1]-fasctor of G.
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Theorem 4 [5] Let G be a graph of order n and g, f be two
mappings from V(G) to Z* — {0, 1} with g(v) < f(v) < dg(v) for all
v € V(G). If G has an [g, f]-factor and o Hamiltonian path, then G
has a connected (g, f + 1]-factor.

Theorem 5 [6] If G is a 2-connected claw-free graph, then G
has a connected (2, 3]-factor.

We are going to show that every 2-connected claw-free graph
containing a k-factor has a connected [k, k + 1]-factor for an integer
k>2.

2 Preliminary

In this section and next section, it is assumed that G is 2-connected,
and contains a k-factor, but contains no connected [k, k + 1)-factor,
where k > 2. In the following, we use I to denote a fixed k-factor of
G with k > 2. Then we try to construct a connected [k, k + 1]-factor
based on the k-facor F' and on the connectivity of G. To do so, we
need to introduce some notations.

Let H and T be two disjoint vertex subsets (or subgraphs) of G.
We denote by Ny (T, G) the set of all vertices in H adjacent in G
to a vertex in T. Specially, when T' = 3D{v} and H = 3DG, we
use N(v,G) instead of Ng({v},G). For a subset M of V(G), we
use G[M] to denote the subgraph of G induced by M. M is called
a clique of G if G[M] is complete. Let F be a factor of G. We
denote by C: the component of F' containing z, and by F the set
of all components of F', and |F]| the cardinality of F. A connected
subgraph H of G is called F-connected if F[V(H)| consists of some
components of I, that is, V/(H) is partitioned into U UUpU---UU;
such that every U;,1 < i < j, is the vertex set of some component
of F. A connected [k, k + 1]-subgraph H of G is called F-maximum
if H is an F-connected subgraph of maximum order among all F-
connected subgraphs. We denote by H the set of all F-maximum
connected [k, k + 1]-subgraphs of G. For a path P of G, we always
assume that the path P has a fixed orientation. Denote by IN(P)
the set of internal vertices of P. For a vertex z in IN(P), we use zp
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and £} to denote the predecessor and successor of = on P according
to the fixed orientation. An inner vertex z in P is said to be singular
if none of zp and :z:ﬁ is contained in the component C,; otherwise,
z is said to be non-singular. Put

Fp = 3DE(P) U (Ugern(p)E(Cz))

For a subgraph A and subgraphs Bj,i € I, of G, let H + A
and H + U;e;B; denote the subgraphs of G induced by the subsets
E(H)U E(A) and E(H) U (U;erB;), respectively.

Let H € H, R = 3DG — H, and a,b be two distinct vertices in
H. If G[V(R) U {a,b}] has a path of length at least 3 connecting
a and b with all internal vertices nonsingular then a and b are said
to be related by R on H, denoted by aRb. For H € H, we define a
relation set on H, denoted by D(H), as follows:

D(H) = 3D{(a,b)la,be V(H) and aRb}

Lemma 1 D(H) # 0 for every H € H, where H is the set of
all F-mazimum connected [k, k + 1]-subgraphs of G.

Proof Let H € H be a F-maximum connected [k, k+1]-subgraph
of G. Since G has no connected [k, k + 1]-factor, R=3DG — H is a
nonempty subgraph such that F[V(R)] consists of components of F.
To show that D(H) # 0, it suffices to verify that there are vertices a
and b in H such that G[V(R) U {a,b}] contains a path connecting a
and b of length at least 3 and its all internal vertices nonsingular.

By the connectivity of G, for any component C of F[V(R)], there
exist two vertex disjoint paths X and Y connecting C and H, where
X has endvertices u € V(H) and s € V(C), and Y has endvertices
v € V(H) and t € V(C). Let Z denote the path in C connecting
s and t. Then the coalition of X,Y and Z, denoted by P, has
length at least 3, all internal vertices in R, and at least two internally
nonsingular vertices (say s and t). It follows that there exist paths
of length at least 3 with endvertices in H, and all internal vertices in
R, and at least two internally nonsingular vertices. We choose such
a path P with the minimum number of singular vertices.
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The remainder to be proved is that number of singular vertices
on such a path P equals to zero.

Assume to the contrary: let v be a singular vertex in IN(P).
Then P is of length at least 4 since IN(P) contains at least two
nonsingular vertices and one singular vertex. By the choice of P,
v~v* is not an edge of G (since otherwise the path P/ = 3DP —
{vo=,vv*} 4 {v~vt} is still of at least two internally nonsingular
vertices because v~ (resp.v*) being a nonsingular vertex of P im-
plies that v~ (resp.v™) is also a nonsingular vertex of P’, but of less
singular vertices than that of P, a contradiction). Let w be a vertex
adjacent to v in Cy. Since G is claw-free, either v~w or vtw, say
v*w, is an edge of G. Then the path P — {vv*} + {vw, wv+} is of
at least two internally nonsingular vertices, but of singular vertices
less one than P, a final contradiction. | |

Lemma 2 Let H € H, and (a,b) € D(H). If a vertex z of H
is adjacent to a vertex in V(G)\V(H) in G, then dy(z) = 3Dk +1,
in particular, dy(a) = 3Ddy(b) = 3Dk + 1.

Proof Suppose that dy(z) = 3Dk and zw € E(G), where z €
V(H)and w € V(G)\V(H). Then H' = 3DH +{zw}+C, is a larger
F-connected [k, k + 1]-subgraph, contradicting the F-maximality of
H. |

3 Main Result and Proof

The main result we are going to prove in this section is as follows.

Theorem 6 Letk > 2, and G be a 2-connected claw-free graph
containing a k-factor. Then G has a connected [k, k + 1]-factor.

Proof Let H* € M, (a*,b*) € D(H*). Then there is a path in
G[V(R*) U {a*,b*}], connecting a* and b*, where R* = 3DG — H*,
of length at least 3 and of all internal vertices nonsingular. Let
P* = 3Da*swjws - - - wyth* be a path with minimum length among all
such paths. It is easy to see that a*b* is not an edge of H* (otherwise
H' = 3DH*—{a*b*}+ Fp- is a larger F-connected [k, k+1]-subgraph
of G). Now we first observe the following fact.
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Claim 1 IfN(t,G)NN(b*, H*) # 0, then N(s, G)NN(a*, H*) =
3D0D. Symmetrically, the inverse statement holds. In particular, we
may assume that N(s,G) N N(a*, H*) = 3D holds without loss of
generality.

Proof Suppose that N(s,G) N N(a*,H*) # 0 and N(t,G) N
N(b*, H*) # 0. It suffices to derive a contradiction under this as-
sumption. Let £ € N(s,G) N N(a*, H*). If there exists a ver-
tex y € Ng(z) N Np(s), then we obtain a contradiction by con-
sidering H' = 3DH* — {za*} + Fp, where P = 3Da*syz. Hence
Ng(z)NNp(s) = 3D). Since sz € E(G) and G is claw-free, G[Np(s))
is a clique. If two vertices u,v € Np(s) are not adjacent in F', then we
obtain a contradiction by considering H' = 3DH* + {uv, sa*, sz} +
Cs—{a*z, su}. Thus F[NF(s)] is also a clique of F. Note that C; is
a k-regular subgraph of F. It follows that F[Np(s) U {s}] = 3DCs.
Because of the minimality of the length of P*, the edge wyw2 of P*
is not an edge of F'. Similar statements hold for ¢ and w.

Choose y € N(t,G) N N(b*,H*). Then H' = 3DH* + Fp. +
{S(D, ty} - {xa*’yb*a Swlytwr} - {wiwi+l | Cw,- = 3Dcw,'+1)wiwi+l ¢
E(Cw,),i = 3D1,2,---,r — 1} is a larger F-connected [k,k + 1]-
subgraph of G, a contradiction. The claim 1 is proved. E

By Claim 1, we may assume that N(s,G) N N(a*, H*) = 3D0.
Since G is claw-free, N(a*, H*) must be a clique of G. Let v1,w; €
N(a*,H*). Put

Vi =3D{a*} UN(a*, H*)

Then we note the following fact.
Remark 1 Ny;(t,G) = 3DY.

Proof Assume the contrary: there is a vertex w € Ny:(t,G).
Then H' = 3DH* + Fp: — {wa*}, where P' = 3DP* — {tb*} + {tw},
is a larger F-connected [k, k + 1]-subgraph, a contradiction. |
Let

Vi =3DV/u{b*}, Vi=3DV(H*)-W

A1 = 3D{'01’w1}, Bl = 3D{a*w1}
Claim 2 dy+(v1) =3Dk+1 and |Ny, (v, H*)| =3Dk.
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Proof We first show that dy+(v;) = 3Dk+1. Assume to the
contrary that dy«(v1) = 3Dk. By Lemma 2 that dy-(a*) = 3Dk+1,
there is another vertex y adjacent to a*, but not to v; in H*. Note
that yv; is an edge of G. Then H' = 3DH* + {n1y} — {a*y} € H
with dy(a*) = 3Dk, contradicting with Lemma 2.

Now we are going to show that | Ny, (v1, H*)| = 3Dk. If N(v;, H*)N
N(a*,H*) #0, then H' = 3DH* — {a*v1} € H with dgy(a*) = 3Dk,
this contradiction implies that N(vi, H*)NN(a*, H*) = 3D@. If v;b*
is an edge of H*, then H' = 3DH* + Fp« + {vyw1} — {a*w;, b*v;} —
{wiw,-.,.l | C’w,. = 3DCw,.+1,w,-wi+1 ¢ E(Cw‘-),i = 3D1,2, e, P — l}
is a larger F-connected [k, k + 1]-subgraph of G. This contradiction
implies that v b* is not an edge of H*. Therefore, Ny, (v, H*) =
3D{a*}. Recalling that dy-(v1) = 3Dk+1 =, we get | Ny, (v, H*)| =
3Dk. The claim 2 is proved. |

Let Hy = 3DH* + A — B;. By Claim 2, H; is a F-connected
subgraph of G such that

k, z = 3Da*
di, () =3DS k+2, =z=3Dy
due(z), ¢ € V(H")—{a*,n1}

Since G is claw-free and k£ > 2, Claim 2 allows us to choose two
vertices vz, w2 € Ny, (v1, H*) such that dy- (v2) is as large as possible
and v» is adjacent either to a* or to ws in G.

In fact, if vp is chosen such that dy«(v2) is as large as possible,
but v, is not adjacent to both of a* and ws in G, then a*w, must be
an edge of G because G is claw-free. If dg+(w2) = 3Dk, then H' =
3DH;+ {w2a*}—{a*v,} € H with di(a*) = 3Dk, this contradiction
gurantees that dgy«(ws) = 3Dk+1. Thus we should choose ws instead
of v2. Put

V4 = 3DV{ U Ny, (w1, H).

Then we observe the following fact.
Remark 2 1. Ny(t,G) =3D0.
2. If dy+(v) = 3Dk for v € Ny, (v, H*), then va* € E(G).
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Proof Suppose that there is a vertex w € szr(t, G). By
remark 1, w € Ny, (v1). Then we have a larger F-connected [k, k+1]-
subgraph H' = 3DH,+Fp—{viw}, where P’ = 3DP*—{tb*}+{tw}.
This contradiction implies that Ny;(¢,G) = 3D0.

Suppose that there is a vertex v € Ny, (v1, H*) such that dp+ (v) =
3Dk and va* € E(G). Then we obtain a F-connected [k,k + 1}-
subgraph H' = 3DH, + {va*} — {e*v1} € H with dm(a*) = 3Dk,
contradicting with Lemma 2. |

Then we rechoose b* € Ny-(t,G) which is not adjacent to v in
G = if possible, i.e., if Ny+(t,G) C Ny+(v2,G) then any vertex in
Npg+(t,G) can be chosen as b*; otherwise, we choose b* € Ny-«(t,G)\
Npy+(v2,G). Put

Vo =3DVyjU{b*}, Vo=3DV(H*) -V,

AiU{wve} wove € E(G)
A, =3D
2=3 { AU {vawz} wove ¢ E(G)

By U {’Uo'U1} VoU2 € E(G)
B, U {viwe} wvs ¢ E(G)

where v9 = 3Da*. Then we observe the following fact.

B2=3D{

Claim 3 dy-(v2) =3Dk+1 and |Ny,(ve, H*)| = 3Dk.

Proof Assume to the contrary that dg«(v2) = 3Dk. By the
choice of vg, we have dg+(v) = 3Dk for all v € Ny, (v1, H*). Remark
2 ensures that va* is not an edge of G for all v € Ny, (v1, H*).
Because G is claw-free, we see that Ny, (v1, H*) is a clique of G. Let
z and y be two vertices of Ny, (v1, H*). If zy is not an edge of H*,
then H' = 3DH, + {zy} — {viz} € H with dy/(a*) = 3Dk, this
contradiction implies that Ny, (v, H*) is also a clique of H;. Note
that dg+(v) = 3Dk for all v € Ny, (v1, H*) and | Ny, (v1, H*)| = 3Dk.
We see that v; is a cut vertex of H; (or H*). By the connectivity
of G, G contains a path P connecting u € Ny, (v1,H*) and v €
V(H*) — Ny, (v1, H*) U {v1} with all internal vertices not in H*.
By Lemma 2, P is of length exact 1, that is, P is just an edge
uwv. Furthermore, we have dy, (v) = 3Dk + 1, since otherwise H' =
3DH, + {uv} — {un } € K with dg:(a*) = 3Dk, a contradiction.
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On the other hand, since H; — {v u} is connected, H; — {viu}
contains a path from v to u, say P’ = 3Dvvt .- u~u. If dg,(vt) =
3Dk +1 then H' = 3DH, — {vv*,vu} € H with dy/(a*) = 3Dk,
this contradiction implies that dg, (vt) = 3Dk. Now that dg, (v) =
3Dk+1 and dg, (vt) = 3Dk, there exists a vertex w which is adjacent
to v, but not to v* in H,. Now we consider the four vertices u, v, w
and v*. Since v* has degree k in H), we can guarantee that uv*
is not an edge of G by the same reason as we prove that v must
be of degree k + 1. Because G[{u,v,w,v*}] # K3, one of wu
or wvt is an edge of G. But then we can get a contradiction by
considering H' = 3DH, + {wu} — {uv;,vw}, if wu is an edge of G;
or H' =3DH; + {wvt} — {uv1,vw}, if wv* is an edge of G.

Now we start to show that | Ny, (v2, H*)| = 3Dk. We first observe
that vp is not adjacent to any vertex in V2 \ {v;,b*} in H* since oth-
erwise H' = 3DH; — {v1v2} € H with dg(a*) = 3Dk, contradicting
with Lemma 2. Since dp, (v2) = 3Dk + 1, we only need to show that
veb* is not an edge of H*. Assume to the contrary that veb* is an
edge of H*. Since dy-(b*) > k > 2, there is a vertex y(# v2) which
is adjacent to b* in H*. It is easy to see that y & V5 since otherwise
we can get a contradiction by considering H' = 3DH; — {vjv2}. Now
we consider the four vertices b*,y,t and vo. If tvo is an edge of G,
then H' = 3DH) + Fp: — {viv2}, where P’ = 3DP* — {tb*} + {tva},
is a larger F-connected [k, k + 1]-subgraph of G, a contradiction. If
yvz is an edge of G, then /' = 3DH\ + Fp+ + {yvo} — {yb*, v1v2} is a
larger F-connected [k, k + 1]-subgraph of G, a contradiction. Hence
both of v2y and v,t are not edges of G. Since G[{b*,y,¢,v2}] # K\ 3,
ty must be an edge of G, contradicting the choice of b*. Claim 3 is
proved. [ |

By Claim 3, Hy = 3DH* + Az — B, is a F-connected subgraph
of G such that

k, z = 3Da*
du,(z) =3DS k+2, z=3Dv
dye (.’I)), z e V(H*) — {a*,vg}

and we can choose two vertices v, w3 € Ny, (v2, H*) such that dy+ (v3)
is as large as possible and v3 is adjacent either to v; or to ws in G.
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In general, let m» > 1 be an integer. Suppose that we have got
VI, V4,---, V! such that

V! =3DV_,UNy,_ (vi1,H*),i=3D1,2,---,n
and
V; =3DV/ u {b*},V; =3DV(H*) — V;,i=3D1,2,---,n

such that for i =3D1,2,.---,n

1. Ny:(t,G) = 3D0;

2. If dy- (v) = 3Dk for v € Ny, (v;, H*), then vu;_) € E(G);

3. dpy+(vi) =3Dk +1;

4. |Ny, (v, H*)| = 3Dk.
and have got for ¢ =3D1,2,---,n

A: = 3D AU {’U,'_z'ui} vi—2v; € E(G)
! A1 U {viwi} vi—2v; € E(G)
Bi_1U {vi—gvi_1} wvi—2v; € E(G)
Bi U {viciwi}  viou; ¢ E(G)
where v9 = 3Da*, and H; = 3DH* + A; — B; is a F-connected
subgraph such that

B,-=3D{

k, z = 3Da*
du,(z) =3D k+2, z=3Dy
dy-(z), ze€ V(H*) - {a*,v}

where v; € Ny,_ (vi—1),% = 3D2,---,n has degree as large as possi-
ble, and one of v;v;—2 or v;w; is an of G.

Now that |Ny, (va, H*)| = 3Dk > 2, we can choose two distinct
vertices Un41, Wn+1 € Ny, (vn, H*) such that dy«(vn+1) is as large as
possible, and one of vp41Un—1 O Un+1Wn+1 is an edge of G. Put

w1 = 3DV, U Ny, (vn, H).

Then the following fact still remains.
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Remark 8 1. Ny (t,G)=3D0.
2. If dy+(v) = 3Dk for v € Ny, (vn, H*), then vun_) € E(G).

Proof The proof of this remark is the same as that of Remark

2. So we omit it here. |

Then we choose b* € Ny-(t,G) which is not adjacent to vp4 in

G if possible, i.e., if Ny+(t,G) C Ng+(Un41,G) then any vertex in

Ny (t,G) can be chosen as b*; otherwise, we choose b* € Ny+(t,G)\
Nys (41, G). Put

Vai1 = 3DVi U {b*}, Vag1 =3DV(H*) - Vay1,

AU {’un_lvn+1} Un—1Un+1 € E(G)

A1 = 3D
v+ { Ap U {Vng1Wns1} VUn—1Vnt1 ¢ E(G)

B, U {'Un'wn-l-l} Un—1Vn41 ¢ E(G)

Then we still have the following fact.

Claim 4 dg-(vn41) = 3Dk+1 and |Ny,,, (vns1, H*)| = 3Dk.

Proof The proof of this claim is the same as that of Claim 3.
For the completeness, we duplicate it here.

Assume to the contrary that dg+(vn4+1) = 3Dk. By the choice
of vny1, we have dy«(v) = 3Dk for all v € Ny, (vn, H*). Remark
3 ensures that vv,_1 is not an edge of G for all v € Ny, (vn, H*).
Because G is claw-free, we see that Ny, (vn, H*) is a clique of G. Let =
and y be two vertices of Ny, (vn, H*). If zy is not an edge of H*, then
H' = 3DH, + {zy} — {vnz} € H with dy.(a*) = 3Dk, contradicting
with Lemma 2. Hence Ny, (v, H*) is also a clique of Hy. Note that
dy+(v) = 3Dk for all v € Ny, (vn, H*) and |Ny, (va, H*)| = 3Dk.
We see that v, is a cut vertex of H, (or H*). By the connectivity
of G, G contains a path P connecting © € Ny, (vn, H*) and v €
V(H*) — Ny,_(vn, H*) U {v,} with all internal vertices not in H*.

By Lemma 2, P is of length exact 1, that is, P is just an edge
uv. Furthermore, we have that dy,(v) = 3Dk + 1, since otherwise
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H' =3DH, + {uv} — {uv,} € H with dg(a*) = 3Dk, contradicting
with Lemma 2.

On the other hand, since Hy, — {vnu} is connected, Hy, — {vu}
contains a path from v to u, say P/ = 3Dvv*..-u~u. If dgy, (v*) =
3Dk + 1 then H' = 3DHy, — {w*,vou} € H with dgy(a*) = 3Dk,
this contradiction implies that dy, (vt) = 3Dk. Now that dy, (v) =
3Dk+1 and dy, (vt) = 3Dk, there exists a vertex w which is adjacent
to v, but not to v* in H,. Now we consider the four vertices u, v, w
and vt. Since vt has degree k in H,, we can guarantee that uv+
is not an edge of G by the same reason as we prove that v must
be of degree k + 1. Because G({u,v,w,v*}] # K3, one of wu
or wu't is an edge of G. But then we can get a contradiction by
considering H' = 3DH,, + {wu} — {uv,, vw}, if wu is an edge of G;
or H =3DH, + {wvt} — {uvs, vw}, if wv is an edge of G.

Now we start to show that |Ny, (vn41, H*)| = 3Dk. We first
observe that vny is not adjacent to any vertex in Vo1 \ {vn,b*} in
H* since otherwise we can get a contradiction by considering H' =
3DHyp, — {vnUny1} € H with dy+(a*) = 3Dk. Since dy, (vn+1) =
3Dk + 1, we only need to show that v,+1b* is not an edge of H*.
Assume to the contrary that v,4+1b* is an edge of H*. Since dy-(b*) >
k > 2, there is a vertex y(# vn41) which is adjacent to b* in H*. It is
easy to see that y ¢ V4 since otherwise we can get a contradiction
by considering H' = 3DH, — {vn¥n4+1}. Now we consider the four
vertices b*,y,t and vp41. If tva4; is an edge of G, then H' = 3DH,, +
Fpr — {vnUnt1}, where P' = 3DP* — {tb*} + {tvn41}, is a larger F-
connected [k, k + 1]-subgraph of G, a contradiction. If yv, is an
edge of G, then H' = 3DHp+Fpe+{yvn+1}—{yb*, Unvn41} is a larger
F-connected [k, k+ 1]-subgraph of G, a contradiction. Hence both of
Un+1Y and Va4t are not edges of G. Since G[{b*,y,t,vn4+1}] # K13,
ty must be an edge of G, contradicting the choice of b*. Claim 4 is
proved. | |

By Claim 4, Hpy, = 3DH* 4+ Apy1 — Bpyy is a F-connected
subgraph of G such that

k, z =3Da*
dpp () =3D4q k+2, z=3Dvny
du+(z), z € V(H*)- {a* vns1}
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and we can choose two vertices Un+42, Wny2 € Ny, (Vn41, H*) such
that dy+(vn42) is as large as possible and v,y is adjacent either to
Up O tO Wp4o in G.

Repeating the above procedure infinitely, we can get a sequence
{Va} such that |V;| = 3Dnk + 3 for all n > 1. This contradicts the
finiteness of G. Proof of the theorem is completed. ||

As a remark, we can show that every connected claw-free graph
containing a k-factor has a connected [k, k + 2]-factor by utilizing the
technique for proving Theorem 6. This result has been proved by B.
G. Xu and Z. H. Liu [7].
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