On Groups with Redundancy in Multiplication¹

M.M. Parmenter

Following the terminology in [2], we define a B_k -group to be a group G which satisfies the following condition:

If
$$\{a_1,\ldots,a_k\}$$
 is a k-subset of G , then $|\{a_ia_j|1\leq i,j\leq k\}|\leq \frac{k(k+1)}{2}$.

As in [2] and [3], we will use the notation $\{a_1, a_2, \ldots, a_k\}^2$ to denote $\{a_i a_j | 1 \le i, j \le k\}$.

Clearly all abelian groups are B_k -groups, as are all non-abelian groups of order $\leq \frac{k(k+1)}{2}$. The interesting problem is to determine which other nonabelian groups are B_k -groups. When k=2, Freiman [4] showed that a nonabelian group is a B_2 -group if and only if it is a Hamiltonian 2-group. It appears that this is the only value of k for which a complete characterization has been given, but Brailovsky [3] proved that when k>2 a nonabelian B_k -group must be finite of order $\leq 2(k^3-k)$. The corresponding notion of B_k -rings has been investigated by Bell and Klein in [2], and the same authors studied a related redundancy condition on rings in [1]. We would like to thank Howard Bell for several helpful conversations on this topic, and for providing us with a copy of [2].

In this note, we give a complete characterization of B_k -groups in the cases k=3, k=4. Specifically, we show that the only nonabelian B_k -groups in these cases are those of order $\leq \frac{k(k+1)}{2}$. We then give an example showing that this behaviour does not extend to k=5.

The first half of the proof of the k=3 case is essentially the same as the proof of Lemma 4.3 in [2].

¹This research was supported in part by NSERC grant A-8775.

Theorem 1 A nonabelian group G is a B_3 -group if and only if G is isomorphic to S_3 .

Proof.

Assume that G is a nonabelian B_3 -group. We will show first that if x, y are two noncommuting elements of G, then $\langle x, y \rangle \cong S_3$.

To see this suppose first that $x^2 = 1$ and $y^2 \neq 1$. Note that $\{x, y, xy\}^2$ contains the 6 distinct elements $1, xy, y, yx, y^2, yxy$, so any other element in $\{x, y, xy\}^2$ must equal one of these. The only possibility for xy^2 is $xy^2 = yx$, while the possibilities for xyxy are xyxy = 1, yx, or y^2 . The latter two cases are incompatible with $xy^2 = yx$, so we are left with xyxy = 1 and $xy^2 = yx$. But this means that $y^3 = x^2y^3 = xyxy = 1$, and so $\langle x, y \rangle \cong S_3$ as desired.

Next note that if $x^2 = 1$ and $y^2 = 1$, then $(xy)^2 \neq 1$ (since $xy \neq yx$). Since $\langle x, y \rangle = \langle x, xy \rangle$, we are in the case covered by the previous paragraph.

Finally assume $x^2 \neq 1$ and $y^2 \neq 1$. Since $\{1, x, y\}^2$ contains the 6 distinct elements $1, x, y, x^2, xy, yx$, we conclude that $y^2 = x^2$ in this case. But then consider $\{x, y, xy\}^2$. It contains the 6 distinct elements $x^2, xy, x^2y, yx, yxy, xy^2$. Hence xyx equals one of these elements, and the only possibility is xyx = yxy. Similarly we must have $xyxy = x^2$ or yx, but these are both incompatible with xyx = yxy. We conclude that this case is impossible.

Now let x, y be any two noncommuting elements of G. We have shown that $\langle x, y \rangle \cong S_3$, and may assume that $x^2 = 1, y^3 = 1$ and $yx = xy^2$.

We wish to prove that $\langle x,y \rangle = G$. Assume to the contrary that $z \notin \langle x,y \rangle$. We may assume that x and z don't commute (otherwise replace z by yz). It follows from our earlier argument that $\langle x,z \rangle \cong S_3$. Since $x^2 = 1$, either $z^3 = 1$ or $(xz)^3 = 1$. Replacing z by xz if necessary, we may assume that $z^3 = 1$. But then $\{x,y,z\}^2$ contains the 7 distinct elements $1, xy, xz, yx, y^2, yz, z^2$, and we have a contradiction. \square

The proof for the k=4 case follows along similar lines but is somewhat longer, primarily because of the proof of the following lemma (let D_n denote the dihedral group of order n and K_8 the quaternion group).

Lemma 2 If x, y are noncommuting elements of a B_4 -group, then $\langle x, y \rangle$ is isomorphic to one of S_3, D_8, K_8, D_{10} .

The main result follows reasonably directly from Lemma 2. Because of this, we will give the proof of Theorem 3 first and later outline the argument for Lemma 2.

Theorem 3 A nonabelian group G is a B_4 -group if and only if G is isomorphic to one of S_3 , D_8 , K_8 , D_{10} .

Proof of Theorem 3.

Let x, y be noncommuting elements from a nonabelian B_4 -group G. Then $\langle x, y \rangle$ is isomorphic to one of S_3, D_8, K_8, D_{10} . We will prove that $G = \langle x, y \rangle$ in all cases.

First assume $\langle x,y \rangle \cong D_8$ or D_{10} . We may also assume $x^2 = 1, y^4 = 1$ or $y^5 = 1$, and $yx = xy^{-1}$. Note that $\{x,y,xy\}^2$ contains the 8 distinct elements $1, xy, y, yx, y^2, yxy, xyx, xy^2$. Hence, if $z \notin \langle x,y \rangle$ we would have 11 distinct elements in $\{x,y,xy,z\}$, giving a contradiction. So $\langle x,y \rangle = G$ in this case.

Next assume $\langle x,y \rangle \cong K_8$ and $x^4 = 1, y^2 = x^2, yx = xy^3$. Say $z \notin \langle x,y \rangle$. We can assume that z does not commute with x (otherwise use yz). By Lemma 2, since $\langle x,z \rangle = 0$ contains an element of order 4 we know that $\langle x,z \rangle \cong D_8$ or $\langle x,z \rangle \cong K_8$. But if $\langle x,z \rangle \cong D_8$, then $\langle x,z \rangle \cong G$ by the previous paragraph. So we may assume $\langle x,z \rangle \cong K_8$. It follows that $z^2 = x^2 (=y^2)$ and $zx = xz^3$. Now $\{x,y,xy\}^2$ contains the 7 distinct elements $x^2, xy, x^2y, yx, yxy, xyx, xy^2$. Also the elements xz, yz, xyz, zx are distinct, so $\{x,y,xy,z\}^2$ has 11 distinct elements and we have a contradiction. Again $G = \langle x,y \rangle$.

Finally assume that $\langle x,y \rangle \cong S_3$ and $x^2 = 1, y^3 = 1, yx = xy^2$. Say $z \notin \langle x,y \rangle$. We may assume that z does not commute with x, and the only case not settled is where $\langle x,z \rangle \cong S_3$. We may assume z is of order 3 (using xz if necessary), and so $zx = xz^2$. But now $\{x,y,xy,z\}^2$ contains all 6 elements of $\langle x,y \rangle$ plus the 5 additional distinct elements xz,yz,xyz,z^2,zx . We again have a contradiction and conclude that $G = \langle x,y \rangle$.

Now we return to the lemma.

Proof of Lemma 2.

This argument is divided into a number of cases, depending on the orders of x and y. Initially we will consider the situation where one of the generators (say x) is of order 2.

First assume that $x^2 = 1$ and that y is of order 8. Then $\{x, y, y^2, y^3\}^2$ contains the 9 distinct elements $1, xy, xy^2, xy^3, y^2, y^3, y^4, y^5, y^6$. Hence either yx or y^3x must be equal to one of the 9 elements listed. The only possibility for yx is $yx = xy^3$ (note $yx = xy^2$ implies $y^4x = xy^8 = x$), while the only possibility for y^3x is $y^3x = xy$ (note $y^3x = xy^3$ implies yx = xy) and this would then give $yx = xy^3$. So yx must equal xy^3 in either case. But then $\{x, y, xy, y^2\}^2$ contains the 11 distinct elements $1, xy, y, xy^2, yx, y^2, yxy, y^3, xyxy, y^2x, y^2xy$. We have a contradiction, so this case doesn't occur.

Next assume that $x^2 = 1$ and that the order of y is greater than 6 but not equal to 8. In this case $\{x, y, y^2, y^3\}^2$ contains the 10 distinct elements $1, xy, xy^2, xy^3, yx, y^2, y^3, y^4, y^5, y^6$ (note $yx = xy^2$ implies $y = yx^2 = y^4$ while $yx = xy^3$ implies $y = y^9$). It follows that y^2x must equal one of these ten elements and the only possibilities are $y^2x = xy^2$ or $y^2x = xy^3$ (note $y^2x = xy$ implies $y = x^2y = y^4$). Similarly we must have $y^3x = xy^2$ or $y^3x = xy^3$. But $y^2x = xy^2$ and $y^3x = xy^3$ together imply yx = xy, while $y^2x = xy^3$ and $y^3x = xy^2$ give $y^6x = xy^9$ and $y^6x = xy^4$. Hence we obtain a contradiction and this case also cannot occur.

Now assume that $x^2=1$ and that y is of order 6. Hence $\{x,y,y^2,y^3\}^2$ contains the 9 distinct elements $1,xy,xy^2,xy^3,yx,y^2,y^3,y^4,y^5$. So either y^2x or y^3x must equal one of these nine elements. The only possibilities are $y^2x=xy^2$ or $y^3x=xy^3$ (for example $y^2x=xy^3$ would imply $y^4x=xy^6=x$). But if $y^2x=xy^2$, then $\{x,y,xy,y^3\}^2$ contains the 11 distinct elements $1,xy,y,xy^3,yx,y^2,yxy,y^4,xy^2,y^3x,y^3xy$. Also, if $y^3x=xy^3$ then $\{x,y,xy,y^2\}^2$ contains the 11 distinct elements $1,xy,y,xy^2,yxy,y^3,xy^3,y^2x,y^4$. Again we have a contradiction.

The next case is where $x^2 = 1$ and $y^5 = 1$. Observe that $\{x, y, xy, y^2\}^2$ contains the 10 distinct elements $1, xy, y, xy^2, yx, y^2, yxy, y^3, xy^3, y^4$ (note $yx = xy^2$ implies $y = yx^2 = y^4, xy^3 = yx$ implies $y = y^9$). Now y^2x must equal one of these elements, and the only possibility is $y^2x = xy^3$ (note $y^2x = xy$ implies $y = y^4, y^2x = xy^2$ implies yx = xy). But then $yx = y^6x = xy^4$, and so in this case we have $\langle x, y \rangle \cong D_{10}$ which was one of the possibilities.

Next assume $x^2 = 1$ and y is of order 4. If $yx = xy^3$, then we have $\langle x, y \rangle \cong D_8$, so assume this is not the case. But then similar reasoning to that seen before tells us that $\{x, y, xy, y^3\}^2$ contains the 11 distinct elements $1, xy, y, xy^3, yx, y^2, yxy, xy^2, x, y^3x$, y^3xy , and we have a contradiction.

We now assume $x^2 = 1$ and $y^3 = 1$. If $yx = xy^2$ then $\langle x, y \rangle \cong S_3$, so assume that this is not the case. Then $\{x, y, xy, y^2\}^2$ contains the 10 distinct elements $1, xy, y, xy^2, yx, y^2, yxy, x, y^2x, y^2xy$. In this case, xyx and xyxy must both equal elements which are already listed. But the only possibilities for xyx are xyx = yxy or $xyx = y^2xy$, while the possibilities for xyxy are xyxy = yx or $xyxy = y^2x$. Checking case by case, we see that each combination of these possibilities leads to a contradiction.

If $x^2 = 1$ and $y^2 = 1$ then $(xy)^2 \neq 1$ (since $xy \neq yx$), so we can assume we are in one of the cases already considered.

To finish the argument, we need to handle cases where neither x nor y is of order 2.

First assume that $x^2 \neq 1, y^2 \neq 1$ and $x^2 = y^2$. If $yx = xy^3$, it will then follow that $y^3 = yx^2 = xy^3x = y^7$, so $y^4 = 1$ and $G \cong K_8$. Hence we may assume $yx \neq xy^3$. Then $\{x, x^3, y, xy\}^2$ contains the 10 distinct elements $x^2, x^4, xy, x^2y, x^3y, x^4y, yx, yx^3, yxy, xy^2$ (note $x^3 \neq 1$ since $x^2 = y^2$, also $yx^3 = xy$ implies $xyx = yx^4 = x^4y$). Hence xyx must be equal to some element in this list, and the only possiblity is xyx = yxy. But then xyx^3 is distinct from all elements in the list, and we have a contradiction.

Next assume that $x^2 \neq 1, y^2 \neq 1, x^2 \neq y^2$, and also that $xyx \neq y$ and $yxy \neq x$. We may also assume $(xy)^2 \neq 1$ or we would be in an earlier case. Consider the 12 elements $1, x, y, xy, x^2, x^2y, yx, y^2, yxy, xyx, xy^2, xyxy$ in $\{1, x, y, xy\}^2$. At least \underline{two} of these must be equal to other elements in the list. However, given the conditions, the only possibilities are $yx = x^2y, yxy = x^2, xyx = yxy, xyx = y^2, xy^2 = yx, xyxy = yx$. The condition $yx = x^2y$ contradicts each of the other 5, and the same remark holds for $yx = xy^2$ and xyxy = yx. So we assume these do not hold. Next observe that $yxy = x^2$ and xyx = yxy cannot be true at the same time, nor can xyx = yxy and $xyx = y^2$. We are left with the possibility that $yxy = x^2$ and $xyx = y^2$. But in this case $\{x, y, xy, x^2\}^2$ contains the 11 distinct elements $x^2, xy, x^2y, x^3, yx, y^2, yx^2, xy^2, xyx^2, x^3y, x^4$, and so this case cannot occur.

The last set of cases all assume $x^2 \neq 1, y^2 \neq 1, x^2 \neq y^2$ and xyx = y. Once these possibilities have been settled, we will be finished because similar situations with yxy = x are symmetrical. Note that $yx = x^{-1}y$ means that $y^nx = x^{-1}y^n$ whenever n is odd, and so forces the order of y to be even.

To begin, assume $x^2 \neq 1, y^2 \neq 1, x^2 \neq y^2, xyx = y$ and the order of y is greater than 4 but not equal to 8. Then $\{1, x, y, y^3\}^2$ contains the 11 distinct elements $1, x, y, y^3, x^2, xy, xy^3, yx, y^2, y^4, y^3x$ (note $x^2 = y^3$ implies $xy^3 = y^3x = x^{-1}y^3$, also either of $yx = xy^3, xy = y^3x$ implies that $x^2 = y^2$, also $y^4 = x^2$ implies $y^5 = yx^2 = x^{-2}y = y^{-3}$), and so this case can't occur.

Next consider the case where $x^2 \neq 1, y^2 \neq 1, x^2 \neq y^2, xyx = y$ and the order of y is 8. Now $\{1, x, y, y^3\}^2$ contains the 10 distinct elements $1, x, y, y^3, x^2, xy, xy^3, yx, y^2, y^3x$. So y^4 must be in this list, and the only possibility is $y^4 = x^2$. But then y^6 is distinct from all elements in the list, and we have a contradiction.

Finally, we assume $x^2 \neq 1, y^2 \neq 1, x^2 \neq y^2, xyx = y$ and the order of y equals 4. Then $\{x, y, xy, y^2\}^2$ contains the 9 distinct elements $x^2, xy, x^2y, xy^2, y^2, y^3, xyx, xy^3, 1$. It follows that either yx or yxy must be equal to one of the elements listed, and the only possibilities are $yx = x^2y$ or $yxy = x^2$. If $yx = x^2y$, then $x^3 = 1$ and $\{xy^2, y, x^2, x^2y\}^2$ contains the 11 distinct elements $xy^2xy^2, xy^3, xy^2x^2, xy^2x^2y, yxy^2, yx^2y, x^2y, x^2y^2, x^2y^2$ (= $x^2, xy^3, y^2, y^3, x^2y^3, xy, xy^2, x^2y, x, x^2y^2, y$). On the other hand, if $yxy = x^2$, then $y^2 = x^3$ and $\{x, y, x^2, x^2y\}^2$ contains the 11 distinct elements $x^2, xy, x^3, x^3y, yx, yx^2, yx^2y, x^2y, x^4, x^2y^2, x^2yx^2$. So this case can't occur either.

The proof is complete.

We will close with an example showing that Theorems 1 and 3 do not extend to the case k = 5. Specifically, we present a nonabelian B_5 -group of order $16 > \frac{5(6)}{2}$.

П

Example 4.

Let $G = K_8 \times C_2$. We will show that G is a B_5 -group. To do this, it will be useful to note that the center Z(G) is an elementary abelian 2-group of order 4, and that one particular element of Z(G), which we will denote h, has the property that $x^2 = h$ for all noncentral elements x of G. In addition, if a product xy of noncentral elements x, y is noncentral in G then xy = yxh.

Assume to the contrary that G is not a B_5 -group. This means that we can choose distinct elements a, b, c, d, e in G such that $\{a, b, c, d, e\}^2 = G$.

Observe that each of a^2, b^2, c^2, d^2, e^2 must equal 1 or h. In

particular, this means that there are at least 3 repeated products among these squares. If $a^2 = 1$ and $b^2 = 1$, then a and b would have to be central, and this would lead to 7 more repeated products in $\{a, b, c, d, e\}^2$. We now have a contradiction to $\{a, b, c, d, e\}^2 = G$ (since there are 25 products), so we can assume from now on that at most one of a, b, c, d, e is central in G.

First assume that one of these elements is central, i.e. $a^2 =$ 1 and $b^2 = c^2 = d^2 = e^2 = h$. We now have 7 repeated products in $\{a, b, c, d, e\}^2$ (namely $c^2, d^2, e^2, ba, ca, da, ea$). Since $\{a,b,c,d,e\}^2 = G$ and |Z(G)| = 4, some product of different noncentral elements must be in Z(G) and not equal to 1 or h - by relabelling if necessary we can assume bc is this product. But then bc = cb, so we have an eighth repeated product. In addition, some other such product must equal the fourth element of Z(G), and this gives a ninth repeated product. If this product involves b or c, we would be able to construct yet another central product and would have a tenth repeated product and a contradiction (e.g.if bd is central, then so is $cd = (cb)b^2(bd)$). So the only possibility is that $de \in Z(G)$. But now (ce)(db) = c(ed)b = (cb)(ed) = h, since it is the product of the two elements of Z(G) which are different from 1 and h. But for this to happen in G, it must be the case that either ce and db are central or ce = db. In either case, we have a tenth repeated product, and hence a contradiction.

We are left with the case where $a^2 = b^2 = c^2 = d^2 = e^2 = h$. So now we have 4 repeated products in $\{a, b, c, d, e\}^2$. In this situation, the three central elements other than h must all be obtainable in $\{a, b, c, d, e\}^2$. Some element in $\{a, b, c, d, e\}$ must be used twice in these products - by relabelling, we can assume ab and ac are central. But then, as seen earlier, $bc(=ba(a^2)ac)$ is also central. So now we have 7 repeated products. Since ab, ac and bc are all different, we may assume that ab = 1 and it follows that b = ah. Next observe that if ad or ae were central, then we would be able to find additional central elements as

above, getting more repeated products and a contradiction. So we can assume that none of these products is central. But then ad = dah = db, da = adh = bd, ae = eah = eb, and again we have 10 repeated products.

This completes the proof.

П

The argument in Example 4 shows that $|\{a, b, c, d, e\}^2| \le 14$ when $G = K_8 \times C_2$. It is easy to see that the bound of 14 is best possible.

References

- 1. Howard E. Bell and Abraham A. Klein, On rings with redundancy in multiplication, Arch. Math. 51(1988), 500-504.
- 2. Howard E. Bell and Abraham A. Klein, Combinatorial commutativity and finiteness conditions for rings, preprint.
- 3. L. Brailovsky, A characterization of abelian groups, Proc. Amer. Math Soc. 117(1993), 627-629.
- 4. G.A. Freiman, On two- and three-element subsets of groups, Aequationes Math. 22 (1981), 140-152.

Department of Mathematics & Statistics Memorial University of Newfoundland St. John's, Newfoundland, Canada A1C 5S7