On Groups with Redundancy in
Multiplication!

M.M. Parmenter

Following the terminology in (2], we define a By-group to be
a group G which satisfies the following condition:

If {ay,...,a:} is a k-subset of G, then |{a;a;]1 < i,5 < k}| <
k(k+1)
—

As in [2] and [3], we will use the notation {a,as,...,ai}* to
denote {a;a;|1 < 1,5 < k}.

Clearly all abelian groups are Bji-groups, as are all non-

k+1
abelian groups of order < ﬂ——-l-—) The interesting problem

is to determine which other nonabelian groups are Bj-groups.
When k = 2, Freiman [4] showed that a nonabelian group is a
Bs-group if and only if it is a Hamiltonian 2-group. It appears
that this is the only value of k¥ for which a complete charac-
terization has been given, but Brailovsky (3] proved that when
k > 2 a nonabelian Bi-group must be finite of order < 2(k®- k).
The corresponding notion of Bj-rings has been investigated by
Bell and Klein in [2], and the same authors studied a related
redundancy condition on rings in [1]. We would like to thank
Howard Bell for several helpful conversations on this topic, and
for providing us with a copy of [2].

In this note, we give a complete characterization of By-
groups in the cases k = 3,k = 4. Specifically, we show that
the only nonabelian Bj-groups in these cases are those of or-

der < FE+D)

behaviour does not extend to k = 5.
The first half of the proof of the k = 3 case is essentially the
same as the proof of Lemma 4.3 in [2].

. We then give an example showing that this
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Theorem 1 A nonabelian group G is a Bs-group if and only if
G is isomorphic to Ss.

Proof.
Assume that G is a nonabelian Bs-group. We will show first that
if ,y are two noncommuting elernents of G, then <z,y>=8;.

To see this suppose first that z2 = 1 and y? # 1. Note that
{z,y,zy}? contains the 6 distinct elements 1, zy,y,yz,y? yzy,
so any other element in {a: v, :cy} must equal one of these.
The only possibility for zy? is zy? = yz, while the possibilities
for zyry are zyzy = 1,yz, or y?. The latter two cases are
incompatible with zy? = yz, so we are left with zyzy = 1 and
ry? = yz. But this means that y*® = z%y® = zyzy = 1, and so
< z,y >= S3 as desired.

Next note that if z2 = 1 and y? = 1, then (zy)? # 1 (since
zy # yz). Since < z,y >=< z,zy >, we are in the case covered
by the previous paragraph.

Finally assume z? # 1 and y # 1. Since {1,z,y}? contams

the 6 distinct elements 1, z,y, z2, ry, yz, we conclude that y?
z? in this case. But then consider {z,y,zy}? It contains the
6 distinct elements z2, zy, 2%y, yr,yry, zy®. Hence ryz equals
one of these elements, and the only possibility is zyz = yzy.
Similarily we must have zyzy = z? or yz, but these are both
incompatible with zyz = yzy. We conclude that this case is
impossible.

Now let z,y be any two noncommuting elements of G. We
have shown that < z,y >& 53, and may assume that z? =
1,43 =1 and yz = zy?.

We wish to prove that < =,y >= G. Assume to the con-
trary that z €< z,y >. We may assume that z and z don’t
commute (otherwise replace z by yz). It follows from our ear-
lier argument that < z,z > S3. Since 22 = 1, either 2°> =1

or (;z:z) = 1. Replacing z by zz if necessary, we may assume
that z3 = 1. But then {z,y,2)} contains the 7 distinct elements
1,zy,z2,yz,y% yz2, 2%, and we have a contradiction. a
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The proof for the k = 4 case follows along similar lines but is
somewhat longer, primarily because of the proof of the following
lemma (let D,, denote the dihedral group of order n and Kj the
quaternion group).

Lemma 2 If z,y are noncommuting elements of a By-group,
then < z,y > is isomorphic to one of S3, Dg, K3, Dyo.

The main result follows reasonably directly from Lemma 2.
Because of this, we will give the proof of Theorem 3 first and
later outline the argument for Lemma 2.

Theorem 3 A nonabelian group G is a B4-group if and only if
G is isomorphic to one of Si, Ds, Ks, D1o.

Proof of Theorem 3.

Let z,y be noncommuting elements from a nonabelian B4-group
G. Then < z,y > is isomorphic to one of S3, Dg, Kg, D1o. We
will prove that G =< z,y > in all cases.

First assume < z,y >= Dg or Djp. We may also assume
z? =1,y =1 or y° = 1, and yz = zy~'. Note that {z,y,zy}’
contains the 8 distinct elements 1, zy, y, yz,v% yzy, zyz, Ty’
Hence, if z €< z,y > we would have 11 distinct elements in
{z,y,zy, z}, giving a contradiction. So < z,y >= G in this
case.

Next assume < z,y > Kg and z* = 1,y? = z?%,yz = z¢°.
Say z €< z,y >. We can assume that z does not commute
with z (otherwise use yz). By Lemma 2, since < z,z > con-
tains an element of order 4 we know that < z,2 >= Dg or
< z,z > Kg. But if < z,2 >= Dg, then < z,z >= G by the
previous paragraph. So we may assume < z,z >= Kj. It fol-
lows that 22 = z2(= y?) and zz = z2%. Now {z,y, zy}® contains
the 7 distinct elements z2, zy, 2%y, yz,yzy, ryz, zy?. Also the
elements zz,yz, zyz, zz are distinct, so {z,y, zy, z}2 has 11 dis-
tinct elements and we have a contradiction. Again G =< z,y >.
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Finally assume that < z,y >~ S; and z? = 1,3® = 1,yz =
ry?. Say z €< z,y >. We may assume that 2z does not commute
with z, and the only case not settled is where < =,z > §3. We
may assume z is of order 3 (using zz if necessary), and so zz =
z2z%. But now {z,y, zy, z}’ contains all 6 elements of < z,y >
plus the 5 additional distinct elements zz,yz,zyz, 2%, zz. We
again have a contradiction and conclude that G =< z,y >.

a

Now we return to the lemma.

Proof of Lemma 2.

This argument is divided into a number of cases, depending on
the orders of z and y. Initially we will consider the situation
where one of the generators (say z) is of order 2.

First assume that 72 = 1 and that y is of order 8. Then
{z,y,1% 33} contains the 9 distinct elements 1, zy, zy?, zy?,y%,
v, v*,v°%, 3% Hence either yz or y3z must be equal to one of
the 9 elements listed. The only possibility for yz is yz = zy*
(note yz = zy? implies y*z = zy® = z), while the only possi-
bility for y3z is y®z = zy (note y3z = zy® implies yz = zy)
and this would then give yz = zy3. So yz must equal zy® in
either case. But then {:z:,y,:l:y,gf}2 contains the 11 distinct el-
ements 1,zy,y, zy% vz, ¥%, yzy, %, 2yzy, y’z, y’cy. We have a
contradiction, so this case doesn’t occur.

Next assume that 2 = 1 and that the order of y is greater
than 6 but not equal to 8. In this case {x,y,y2,y3}2 contains
the 10 distinct elements 1, zy, zy?, zy3, yz, ¥%, v3, v*, v°, ¥® (note
yz = zy? implies y = yz? = y* while yz = zy® implies y = ¢°).
It follows that y2z must equal one of these ten elements and the
only possibilities are y?z = zy? or y’z = zy® (note y’z = zy
implies y = z?y = y*). Similarly we must have y°z = zy?
or y®z = zy®. But y’z = zy? and y3z = zy> together imply
yz = zy, while y’z = zy® and y3z = zy® give y°z = zy° and
y®z = zy*. Hence we obtain a contradiction and this case also
cannot occur.
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Now assume that z? = 1 and that y is of order 6 Hence
{z, y, ,ya} contains the 9 dlstlnct elements 1, zy, zy?, zy3, yz,
v?, v, 9%, y5. So either y?z or y3z must equal one of these mne
elements. The only possibilities are y? a: = zy? or ¥’z = 1y
(for example ¥’z = zy® would imply y*z = zy® = z). But if
v’z = zy? , then {x,y, Ty, 3} conta.lns the 11 distinct elements
L, zy,y,2y°% yz, 9% yzy, v', 297, 42, 482y, Also, if 43z = zy?
then {a:, Y, my, 3,{2}2 contains the 11 distinct elements 1, ry, y, Ty?,
yz,y%, yzy, y3, oy® ,y T,y Again we have a. contradiction.

The next case is where z2 = 1 and y® = 1. Observe that
{x Y, xy,yz} conta.lns the 10 distlnct elements 1 zy,y, zy ,y:t:,
%, yzy,y° 2y, y* (note yz = zy? implies y = yz? = y*, zy°
yz implies y = y®). Now y%z must equal one of these elements,
and the only possibility is y?z = zy® (note y?z = ry implies
v = y*,y%’z = zy? implies yz = zy). But then yz = ybz = zy?,
and so in this case we have < z,y >2 D,o which was one of the
possibilities.

Next assume z? = 1 and y is of order 4. If yr = zy3, then we
have < z,y > Dg, so assume this is not the case. But then sim-
ilar reasoning to that seen before tells us that {z,y, zy, y3}2 con-
tains the 11 distinct elements 1, zy, y, zy3, yz, ¥?, yzy, zv?, z, vz,
y3zy, and we have a contradiction.

We now assume z? = 1 and y® = 1. If yz = zy? then
< z,y >= S;, so assume that this is not the case. Then
{z,y,zy,y*}* contains the 10 distinct elements 1, zy, y, zy?, yz,
v, yzy, ¢, y’z, y?zy. In this case, zyz and ryzy must both equal
elements which are already listed. But the only possibilities for
Tyz are zyr = yzy or zyz = y’zy, while the possibilities for
Tyzy are Tyzy = yz or zyzy = y’z. Checking case by case,
we see that each combination of these possibilities leads to a
contradiction.

If £2 = 1 and y? = 1 then (zy)? # 1 (since zy # yz), so we
can assume we are in one of the cases already considered.

To finish the argument, we need to handle cases where nei-
ther z nor y is of order 2.
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First assume that z2 # 1 y #1 andz =y Ifyz =y, it
will then follow that y® = yz* =zy’z =y",s0y* =1l and G =
Ks. Hence we may assume yz # :cy"’ Then {:c :L' ,y, a:y} con—
tains the 10 distinct elements z2, z4, zy, 2%y, 2%y, o'y, yz, y=°,
yzy,zy® (note 23 # 1 since z? = yz, also yz® = zy implies
zyz = yz* = z'y). Hence zyz must be equal to some element
in this list, and the only possiblity is zyz = yzy. But then
zyz?® is distinct from all elements in the list, and we have a
contradiction.

Next assume that z? # 1,y> # 1,22 # y?, and also that
zyz # y and yzy # z. We may also assume (zy)? # 1 or we
would be in an earlier case. Consider the 12 elements 1, z, y, zy,
22, 2%y, yz, y2, yoy, Ty, %, zyzy in {1,7,y, 3y}’ At least two
of these must be equal to other elements in the list. However,
given the conditions, the only possibilities are yz = Ty, yzy =
2, zyz = yey,zyz = Y%, 7y’ = yz,zyzy = yz. The condi-
tion yz = z?y contradicts each of the other 5, and the same
remark holds for yz = zy? and zyzy = yz. So we assume
these do not hold. Next observe that yzy = z? and zyz = yzy
cannot be true at the same time, nor can zyz = y:cy and
Ty = y2 We are left with the posmbxhty that yzy = z? and
ryz = y*. Buti 1n this case {:c y,my, 2} contalns the 11 dis-
tinct elements z2, zy, 2%y, 23, yz, ¥?, yz?, 2y, zyz?, 23y, 24, and
so this case cannot occur.

The last set of cases all assume z? # 1,y% # 1,z # 3?
and zyz = y. Once these possibilities have been settled, we
will be finished because similar situations with yzy = z are
symmetrical. Note that yz = z~'y means that y"z = z~1y"
whenever n is odd, and SO forces the order of y to be even.

To begm, assume 2 # 1,y? # 1,22 # y*,zyz = y and the
order of y is greater than 4 but not equa.l to 8. Then {1 z,v, y"‘}
contains the 11 dnstmct elementsl x y v3, 22, zy, 23, yz, v, v,
vz (note 2 = y implies zy® = y z = z"y3 also either of
yz = a:y , Ty = Yz 1mp11es that 22 = y?, also y* = z? implies
y® = yz? = z-%y = y~3), and so this case can’t occur.

124



Next consider the case where z? # l,y #1,22 # y?, zyz =
y and the order of y is 8 Now {1, a: yYs 3} conta.ms the 10 dis-
tinct elements 1, z,y, 3, 22, zy, 73, yz,¥%,v3z. So y* must be
in this list, and the only possibility is y* = z2. But then y® is
distinct from all elements in the list, and we have a contradic-
tion.

Finally, we assume z? # 1,3® # 1,2% # y%,zyz = y and the
order of y equals 4 Then {z y, Ty, y2} contains the 9 distinct
elements z2, ry, 22y, zy?, y%, ¥°, zyz, 2y3 1. It follows that either
yz or yzy must be equal to one of the elements listed, and the
only possibilities are yz = z2y or yzy = z2. If yz = z%y, then

3 = 1 a.nd {a:y’,y,:cz, a:zy}2 conta.ins the 11 distinct elements
zylzy’? ,zy ,wy a: my z y,y:vy yw yw Y,z %y, z, 2%, z?yz?
(= 2%,z %, ¢° ,:v ¥, a:y,:vy ,a: ¥, T, 2%y, y). On the other
hand, if yzy = 2 then yi==z and {x,y,:c a: y} contalns the
11 distinct elements 22, zy, 23, 23y, yz, y2?, yz’y, 2%y, =4, 222,
z?yz?. So this case can’t occur either.

The proof is complete. O

We will close with an example showing that Theorems 1 and
3 do not extend to the case k = 5. (Speciﬁcally, we present a
5(6)

nonabelian Bs-group of order 16 > —— >

Example 4.
Let G = Kgx C,. We will show that G is a Bs-group. To do this,
it will be useful to note that the center Z(G) is an elementary
abelian 2-group of order 4, and that one particular element of
Z(G), which we will denote k, has the property that 2 = h for
all noncentral elements z of G. In addition, if a product zy of
noncentral elements z,y is noncentral in G then zy = yzh.
Assume to the contrary that G is not a Bs-group. This
means that we can choose distinct elements a, b, ¢, d, e in G such
that {a,b,c,d,e}* =G
Observe that each of a?,b%,c%,d%, €? must equal 1 or k. In
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particular, this means that there are at least 3 repeated prod-
ucts among these squares. If a® = 1 and % = 1, then a and
b would have to be central, and this would lead to 7 more re-
peated products in {a,b,c,d, 6}2. We now have a contradiction
to {a,b,c,d,e}’> = G (since there are 25 products), so we can
assume from now on that at most one of a, b, ¢, d, e is central in
G.

First assume that one of these elements is central, i.e. a
land 8 = ¢ = d* = €2 = h. We now have 7 repeated
products in {a, b, c,d, e}’ (namely ¢?, d?, €2, ba, ca, da, ea). Since
{a,b,¢,d, e}’ = G and |Z(G)| = 4, some product of different
noncentral elements must be in Z(G) and not equal to 1 or A
- by relabelling if necessary we can assume bc is this product.
But then bc = cb, so we have an eighth repeated product. In
addition, some other such product must equal the fourth el-
ement of Z(G), and this gives a ninth repeated product. If
this product involves b or ¢, we would be able to construct
yet another central product and would have a tenth repeated
product and a contradiction (e.g.if bd is central, then so is
cd = (cb)b*(bd)). So the only possibility is that de € Z(G).
But now (ce)(db) = c(ed)b = (cb)(ed) = h, since it is the prod-
uct of the two elements of Z(G) which are different from 1 and
h. But for this to happen in G, it must be the case that either
ce and db are central or ce = db. In either case, we have a tenth
repeated product, and hence a contradiction.

We are left with the case where a? = b2 = ¢ = d* = €? = h.
So now we have 4 repeated products in {a,b,c,d,e}*. In this
situation, the three central elements other than A must all be
obtainable in {a, b, ¢,d, e}?. Some element in {a,b,c,d, e} must
be used twice in these products - by relabelling, we can assume
ab and ac are central. But then, as seen earlier, bc(= ba(a?)ac)
is also central. So now we have 7 repeated products. Since
ab, ac and bc are all different, we may assume that ab =1 and it
follows that b = ah. Next observe that if ad or ae were central,
then we would be able to find additional central elements as

2
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above, getting more repeated products and a contradiction. So
we can assume that none of these products is central. But then
ad = dah = db,da = adh = bd,ae = eah = eb, and again we
have 10 repeated products.

This completes the proof. a

The argument in Example 4 shows that |{e,b,c,d, e}?| < 14
when G = Kg x C;. It is easy to see that the bound of 14 is
best possible.
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