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Abstract
We study the weight distributions of the ternary codes of finite
projective planes of order 9. The focus of this paper is on codewords of
small Hamming weight. We show there are many weights for which
there are no codewords.

1 Introduction

The p-ary code of a projective plane of order n, where p is a prime, is the
GF(p)-span of the incidence matrix of the projective plane, with the rows indexed
by lines and the columns indexed by points. As shown by Hamada [6], this code is
only interesting when p | n.

In this paper, we will examine codewords of small Hamming weight in the
(ternary) codes of the projective planes of order 9. Since there are four projective
planes of order 9 (up to isomorphism) [4], there are four distinct codes to be studied.
The weight distribution, which counts the number of codewords of each weight, is
still unknown for all four of these codes. The weight distributions of the codes of
the projective planes of orders 2, 3, 4, 5, and 8 have been calculated [3, 7, 8). In
each case, there are no words of weight w where n+ 1 < w < 2. It has also been
shown that there are no codewords of weight w where p + 1 < w < 2p in the p-ary
code of the Desarguesian plane of prime order p [3]. Because of these gaps in the
known weight distributions, it is conjectured that for any code of a projective plane
of order n, there are no codewords of weight w where n + 1 < w < 2n. This paper
proves the conjecture is true for the special case n = 9,

2 Planes, Codes, and Codewords

Let C be the p-ary code of a projective plane of order #n. The set of coordinate
positions where a codeword ¢ has nonzero entries is called the support of ¢, denoted
supp(c). The codeword of a line 0 is the characteristic vector of the points incident
with £. The symbol ¢ will refer to both the line and its codeword. A blocking set is a
set of points which is incident with every line but contains no line. The following
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facts are known for codes associated with planes ([1], Section 6.3):
1)  The minimum weight of C is # + 1 and the minimum-weight vectors
are precisely the nonzero scalar multiples of the lines.
2)  Thecode C N C* is generated by codewords which are the
differences of two lines.
The latter implies that for any codeword ¢ € C and any two lines ¢ and m, the dot
product ¢ « (0 —m) = 0. It follows that ¢ « { has the same value for every line { of
the plane. If ¢ € C\C*, these products are all nonzero and equal and these
codewords have supports which intersect every line. If ¢ € C N C*, these products
are all necessarily zero.

We denote the weight distribution of a code C by Ao, 41, 42, etc..., where 4;
refers to the number of codewords of C of weight i.

An affine plane can be created from a projective plane by removing one line
and all of the points incident with it. We construct codes from affine planes in the
same way in which we have constructed codes from projective planes. There is a
natural projection from projective plane codes to affine plane codes (of the same
order) which we get by deleting the coordinates which correspond to a line from the
projective plane. The resulting affine plane code will be called a residual code and
its codewords will be called residual codewords.

3 Words of Small Weight
3.1 Introduction

We begin by summarizing some known results. There are four projective
planes of order 9 up to isomorphism [4]; the code of the Desarguesian plane of order
9 has dimension 37 and the three codes of the other planes have dimension 41 [8, 9].
The minimum weight of any of these codes is 10 and the minimum weight vectors
are the non-zero scalar multiples of the incidence vectors of the lines [8, 9]. A
previous result of Hall and Wilkinson [5] shows that the temary code of a projective
plane of order n (3 | n) has no codewords of weight = 2(mod 3). This implies that
there are no codewords of weight 11, 14, 17, ... The result also shows that words of
weight = 0(mod3) are codewords in C N C* and the words of weight = 1(mod 3)
are codewords in C\C*.

3.2 Incidence equations

Suppose I1 is a projective plane of order n. Let ¢ be a codeword of C, where C



is the p-ary code of IT (p | n). An i-secant is a line of the projective plane meeting
supp(c) in i points; we shall refer to i as the length of the secant line. Let s be the
size of supp(c). Fori = 0,1,...,n + 1, let i; be the number of i-secants to supp(c).
For a fixed point y ¢ supp(c), let y; be the number of i-secants through y; for a fixed
point z € supp(c), let z; be the number of /-secants through z. Counting yields the
following equations:
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The final equation of (3) is the difference of the previous two equations.

33 Weight 12

Each codeword ¢ € C of weight 12 lies in C C*. The following result is from
Sachar [8, 9].

Proposition Let Cl be the dual of the code of the projective plane of order »
over » (@ # 2, p | n). Then the minimum weight of C* is
—;n +2.

For n = 9, this bound is 14. Thus, 412 = 0.
34 Weight 13

As previously noted, all possible codewords of weight 13 lie in C\C*. Let ¢ be
such a codeword. The points of supp(c) form a blocking set of the projective plane.
The argument presented here is to rule out each possible value of i for a maximum
length i-secant. .

Suppose 0 is a maximum length i-secant, 5 < i < 10. By removing this line and
its points to construct an affine plane (for the non-Desarguesian planes this affine
plane is not unique up to isomorphismy), we get a natural projection of C onto a
residual code for an affine plane. This projection maps c to a residual codeword
with weight 13 — i, which for the specified values of i is less than 9. Since the
minimum weight of the (ternary) code of any of the seven affine planes of order 9 is
9, we have a contradiction [1, Theorem 6.3.3].



Suppose { is a maximum length 4-secant. Removing this line and its points to
get an affine plane leads to the residual codeword of ¢, call it ¢*, of weight 9. We
know that the code of an affine plane of order 9 has minimum weight 9, and that
these minimum weight vectors are scalar multiples of incidence vectors of lines [2,
p. 4]. This violates the maximality of the length of {, since ¢ must contain an 9- or
10-secant.

Suppose { is a maximum length i-secant, i < 3. The incidence equations (1)
yield the following:

m+ g2+ p3 =091
M+ 2p2 +3p3 = 130
M2 +3u3 =78

which have no non-negative integral solution. So 43 = 0.

35 Weight 15

All possible codewords of weight 15 lie in C N C* by the result of Hall and
Wilkinson referred to in Section 3.1. Let ¢ be such a codeword. Again, the
argument will be to rule out each maximum length i-secant. Below, a point of
supp(c) with coefficient 1 is referred to as a ‘1°, and a point with coefficient 2 is
referred to as a ‘2’.

Note that ) = y1 = z; = 0 for ¢ € CN C*. There are no i-secants fori > 7,
because equation (3) becomes

z3+224+325+426 + 527+ ... = 4
and for i < 6, the incidence equations (1) yicld
Ho + p2+ M3+ pa+ ps+  pe =91

2u2 +3u3 +4us + Sus+ 6ue = 150
H2+3p3 + 6pg + 10us + 1506 = 105

and after subtracting the third equation from the second, we get
H2—2p4 — Sus —9us = 45
which implies that y2 > 45.

Remark For any codeword ¢, let n;(c) (or n;) be the
number of entries in c that are equal to i.

There is also an upper limit on p2. Since ¢ € CN C*, we must have that
(c,0) = 0 for each line {. This implies that each 2-secant intersects cata 1 and a 2.

Since we have n1 + n2 = 15 = 0 (mod3) for any weight 15 codeword, the upper



bound for the number of 2-secants is
H2 < miny < 56.

We also know that the vector product of ¢ with the all-ones vector is 0, which
implies that 1 + 212 = 0 (mod3). Subtracting equations, we get #; = 0 (mod 3)
and so #; = 0 (mod3). Because 45 < nin2 < 56, we are limited to two cases:

n=9and ny =6

ny=6and np =9
Thus, the number of 1°s and 2’s for the codeword ¢ is six of one value and nine of
the other value.

Suppose { is a maximum length 6-secant. By removing this line and its points,
¢ would project onto a codeword of an affine plane, call it c*. The weight of ¢* is 9,
forcing this codeword to be a scalar multiple of a line, a contradiction of the
maximal length of ¢.

Suppose ¢ is a maximum length 5-secant. Because (c,?) = 0, the two
possibilities for the nonzero coefficients of the 5-secant are 2-2-2-2-1 and
2-1-1-1-1. Without loss of generality, multiply ¢ by the appropriate scalar so that
the 5-secant has nonzero coefficients 2-2-2-2-1.

Take the pencil of ten lines through the point z with coefficient 1 on the
S-secant. Sincezs = 1, equation (3) gives z3 + 2z4 = 1, which implies z3 = | and
z2 = 8. However, this is a contradiction, as there are at most nine 2’s of supp(c).

Suppose { is a maximum length line with length < 4. Because (c,0) = 0, there
are only two possibilities for the nonzero coefficients of any 3-secant: 2-2-2 and
1-1-1. Also, there is only one possibility for the nonzero coefficients of any
4-secant: 2-2-1-1. Thus, any line through a 1 and a 2 must be cither a 2-secant or a
4-secant. By counting the number of pairings of each 1 with each 2, we get

M2 +4us = niny = 54,
Adding this equation to the derived incidence equation gz — 2114 = 45, we get
2p2 +2u4 =99

which has no integral solution. So 415 = 0.
3.6  Weight 16

All possible codewords of weight 16 lie in C\CL. Let ¢ be such a codeword.
The points of supp(c) form a blocking set of the projective plane. Assume



(c,m) = 1 for all lines m w.l.o.g. For any fixed point y & supp(c), let y; be the
number of i-secants through y. The incidence equations (2) become (note yo = 0)

yity2+yi+..+ywo=10
yi+2y2+3y3+...10y10 = 16

and after subtracting the two equations, we have
y2+2y3 +3ya+4ys + 5y6 + 6y7+ Tys + ... = 6.

This equation implies that y; = 0 for i > 8. If we assume i > 4 for the maximum
i-length, then the non-negative integral solutions to these incidence equations are:

y1=1; y1=9
ye=1; y2=1 y1 =8
ys=1;, y3=1; y1=8
ys=1 y2=2 y=17

ya=2, =28

yva=lh ya=1 ya=1 y1=7
ya=1 y2=3; y1=6

Suppose ¢ is a maximum length 7-secant (the case y7 = 1 and y1 = 9). By
removing this line and its points, ¢ would project onto a codeword of an affine
plane, call it c*. The weight of ¢* is 9, forcing this codeword to be a scalar multiple
of a line, a contradiction of the maximal length of {.

Suppose { is a maximum length 6-secant. Pick a point of ¢ which is not in
supp(c); call ity. We have ys = I,y2 = 1 and y; = 8. With (¢,m) = 1 for all
lines m, the coefficients must be as shown in Figure 1.
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The points of ¢ \supp(c) must have the same configuration as y; however, this forces
the 2 points of supp(c)\W with codeword value 2 to be together on more than one
2-secant, a contradiction of the axioms for a projective plane.

Suppose @ is a maximum length 5-secant. Pick a point of the 5-secant ¢ which is
not in supp(c), call it y. Because (¢,m) = 1 for all lines m, we have one of the
following two types of configurations:

I: ys=1; ya=1 y1=8 (Figure2)

Figure 2
II: ys=1; y2=2; yi=7 (Figure3)

Figure 3

Because of the different coefficients, the five points of the 5-line not in supp(c) are
collectively all of type I or type II. The type II case can be ruled out because the



two points of supp(c) \ § with codeword value 2 cannot be together on five different
2-secants. Assume the type I case. Then supp(c) \ { has only one 2. Let Pbea
point of the 5-secant which is a 2 (there must be such a point, because if none exist,
then (¢, ) = 2). Since (c,m) = 1 for all lines m, each line through P must contain
either another point with coefficient 2, or two more points with coefficient 1,
requiring that there be at least 5 + 1 + 2(8) = 22 points of supp(c), a contradiction,
ruling out the type I case and the possibility of a maximum length 5-secant.

Suppose ¢ is a maximum length 4-secant. Pick a point of the 4-secant & which is
not in supp(c); call it y. Because (c,m) = 1 for all lines 7, we have one of the
following four types of configurations:

I: ya=2; y1 =8 (Figured)

11111 1 1 11

Figure 4

;. ys=2;y1 =8 (Figure5)

Figure 5
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I: ys=1; ya=1; y2=1; y1=7 (Figure6)

1 1111 1 1 2 2

Figure 6
IV: ya=1; y2=3; y1 =6 (Figure7)

Figure 7

Examine the 2’s from each case. The type I case has none. The type I case has three
and they are collinear. The type III case has three and they are noncollinear.
Finally, the type IV case has six. By the counts and arrangements of these 2’s, all 6
points of ¢\ supp(c) must have the same type. Type I is impossible because the
same three points would be collinear on six different lines. Types III and IV are
impossible because there are too few ‘partners’ for points with coefficient 2 on
2-secants. So the 6 points of ¢ not belonging to supp(c) must all be of type 1. By
reversing the roles of 0 and a different 4-secant, we can conclude that all coefficients
are 1’s, and that every line is a 4-secant or a 1-line. The incidence equations (1)
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M+ ps =91
1 +4us =160
6us = 120
have no solution, ruling out the possibility of a maximum length 4-secant.
Suppose { is a maximum length i-secant, i < 3. The incidence equations (1)
yield the following equations:

Hi1+ 2+ up3 =091
H1+2p2 + 33 = 160
M2 +3u3 = 120

which have no non-negative integral solution. So 416 = 0.

4 Summary

Let C be the code of a projective plane of order 9. The first 18 terms of the
weight distribution for Care 4o = 1, 410 = 182,and, 4, =0 for 1 <i< 17,
i # 10. Further, 4; is unknown for larger values of i. The words of weight 10 are
the scalar multiples of the lines. 413 and 419 are non-zero; there exist words of
weight 18 and 19 which are linear combinations of lines. Assmus and Key have
shown that the number of words of weight 18 varies amongst the codes of the four
planes. The gap between the smallest and second smallest nonzero weights is
interesting. Does such a gap from weights 7 + 1 to 2n exist for all codes of
projective planes of order n? The answer is yes in all of the presently known cases
(n=2,3,4,5,8,9, and all Desarguesian planes of prime order p).
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