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ABSTRACT. For an ordered set A and B whose orders agree
on its intersection, the gluing of A and B is defined to be the
ordered set on the union of its underlying sets whose order is
the transitive closure of the union of the orders of A and B.
The gluing number of an ordered set P is the minimum number
of induced semichains (suborders of dimension at most two) of
P whose consecutive gluing is P. In this paper we investigate
this parameter on some special ordered sets.

In this paper we introduce and study a new parameter, gluing number,
for finite ordered sets related to their decompositions. We begin with some
basic definitions and notations for ordered sets. Ordered sets are assumed
to be finite throughout this article.

Let P be an ordered set. The elements of P are called vertices and an
ordered pair (a, b) of elements of P is called an edge if b covers a, i.e.,a <b
and there no vertex z such that ¢ < £ < b. In fact, vertices and edges
are just the vertices and directed edges of the (Hasse) diagram of P as a
directed graph. For an ordered set P, a suborder is a subset ) together
with a subrelation of the ordering of P which is itself an ordering of Q. An
tnduced suborder is a subset Q with the restriction of the ordering of P to
the set Q as its ordering. A linear extension L of P is a linearly ordered
set with the same underlying set as P such that z < y in P implies z < y

*The author wishes to acknowledge the financial support of the Korea Research Foun-
dation made in the program year of 1998

ARS COMBINATORIA 63(2002), pp. 139-144



in L. The dimension of P is the minimum number of linear extensions the
intersection of whose orderings is the ordering of P itself.

In 1950, Dilworth [1] proved the celebrated chain decomposition theorem
that the width of an ordered set P is the minimum number of chains whose
vertices cover P. Motivated by this result, Fishburn [2] introduced a new
parameter of describing the structure and complexity of an ordered set.
To do this he considered relatively simple ordered sets, called semichains,
which are ordered sets of dimension at most two. Then he defined the thick-
ness of an ordered set P to be the minimum number of induced semichains
whose vertices cover all vertices of P. Unfortunately, in this decomposi-
tion we cannot reconstruct the original ordered set P from its semichain
components. For example, any bipartite ordered set can be decomposed
into two antichains, the maximal vertices and the minimal vertices, and
so it has thickness at most two. But we cannot see its original ordering
from the antichains. On the other hand, Lee [4] defined the edge covering
number of an ordered set P to be the minimum number of (not necessar-
ily induced) semichains so that every edge of P is included in one of the
suborders. In this decomposition of edges we can reconstruct P from its
components. Namely, the ordering of P is the transitive closure of the union
of the orderings of the components.

We now define our new parameter of an ordered set. For an ordered set
A and B whose orders agree on AN B, the gluing (or amalgam) A+ B of A
and B is defined to be the ordered set on AU B whose order is the transitive
closure of, that is, the least order containing, the union of the orders of A
and B (cf. Lee [3]). Observe that this operation is commutative but not
associative and that both A and B are induced suborders of A « B (see
Lemma 1.1).

Lemma 1. Let P = Ax B. Then z < y in P if and only if one of the
following holds:

(i) z<yinA
(i) z<yin B
(iii) There ezists z € ANB such thatz <z inAand 2z <y in B

(iv) There exists z € AN B such that z < z in B and z < y in A.

Now we define the gluing number g(P) of an ordered : et P to be the least
number k of semichains A;, Ay, As, ..., Ax such that F' = (...((A; * A3) *
A3z) % ...) * A which is simply written as P = A; * Ay *--- * A;. In this
case we can also reconstruct P from its components.

Let [n] = {1,2,...,n}. Then n and n denote the chain and the antichain,
respectively, on [n]. For ordered sets Pi,..., Py, the product Py x...Xx Py, is
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the ordered set defined by the condition that (a,...,a,) < (b1,...,bn) &
a; < b; for each 7 € [n]. Given an ordered set P, the notation P™ is used
as shorthand for the n-fold product P x ... x P. If P([n]) is the power set
of [n], then (P([n]),C) = 2.

For a natural number n > 3, consider S, = ({A € P([n]): |4| € {1,n —
1}}, €), which is usually called the n-dimensional standard ordered set. Let
U, be the ordered set obtained from the n-dimensional standard ordered
set S, by subdividing (inserting an element on) every edge and T, the
ordered set on the set {{1},{2},...,{n},{1,2},{2,3},...,{n,1},...,[n] -
{n},[n] - {1},..., [n] — {n —1}} ordered by set-inclusion. Then U,, and T,
are of gluing number 2, while they are n-dimensional (see Lee [3]).

It is not always true that if @ is an induced suborder of P then g(Q) <
g(P). For instance, even though S, is an induced suborder of both T,
and U, of gluing number 2, we will see in Theorem 3 that g(S,) = [n/2].
Now it is natural to ask when g(Q) < g(P). We consider a special kind of
induced suborders for our purpose. An induced order @ of an ordered set
P is said to be convez provided that z € Q whenever a < £ < b in P for
a,be Q.

Lemma 2. If Q is a convex induced suborder of an ordered set P = Ax B,
then Q@ = (ANQ) *» (BN Q).

Proof: Let a < b in Q. Since the other cases can be treated similarly, we
only consider the case that a € A— B and b€ B — A for a,b € Q. Then
there exists £ € AN B with a < z < b and, by the convexity of @, z € Q,
whence a < bin (AN Q) * (BN Q), as desired. ]

Theorem 1. If Q is a convex induced suborder of an ordered set P then

9(Q) < g(P).

Proof: Let g(P) =nand P = A;* Aa*- - -x A, with semichains A, As,...,
An. By Lemma 2,

RQ=((A1*--xAn1)NQ) (A N Q).

Since (A; *---*x A,_1)NQ is also a convex induced order of Ay *---*x Ap—1,
we have

(A% % An1)NQ = ((A1 % ¥ Aa2)NQ) ¥ (An-1N Q)
Continuing this we conclude that
Q=(A1NQ)*(A2NQ) *...(A.NQ),

whence g(Q) < n, as desired. ]

Let P and @ be two disjoint ordered sets. The disjoint sum P + @ of P
and Q is the ordered set on P U Q such that z < y if and only if z,y € P
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andz < yin Por z,y € Q and z < y in Q. The linear sum P &® Q of
P and Q is obtained from P + @ by adding the new relations z < y for
all z € P and y € Q. An ordered set P is called series-parallel if it can
be constructed from singletons using the operations of + and @ only. The
lexicographic sum Y .p Q: of ordered sets Q. over an ordered set P is
defined to be the ordered set on | J ¢ p Q= such that a < b if and only if
a<bin@Q, forsome z€ Porz <yin Pwhena€ Q. and b€ Q,.

Theorem 2. Let P be a series-parallel ordered set. If g(Qz) = 2 for
z € P, then (3" cp Q=) = 2.

Proof: Let P, = A; * B; and P, = A; * By with semichains A;, B;, As,
Bs. Clearly, Py + P, = (A1 + A2) * (B + Bz), whence g(P, + P,) = 2. Now
consider P,@® P,. Let Q = max Py ®min P,. Then Pi®P; = (A;UQU A2)*
(B1UQU By). However we can see easily that 4; UQU Az and ByUQU B,
are semichains. Hence g(P; @ P») = 2. Now the result follows. O

Now we determine the gluing number of the standard ordered set S,,. To
do this we give a simple but useful lemma.

Lemma 3. Let P = A+ B. If y covers z in P, then y covers z in A or B.

Theorem 3. For a natural number n > 3,
9(Sn) = [n/2].

Proof: For i € [n], let a; = {3} and b; = [n] — {3}, the complement
of a; in S,. Then we can divide S, into [n/2] semchains each of which
consists of two (or one) maximal elements and all minimal elements. Hence,
g(Sn) < [n/2]. So, it can be seen that g(S3) = g(S4) = 2.

Now we proceed by induction on n. Suppose that S, = A% B (n > 5)
and B is a semichain. If b € B — A, then, by Lemma 3, a9, as,...,ax
belong to B. If ay € B — A, then b3, b4, bs belong to B, whence B
contains S3 of dimension 3 as an induced order. This contradiction implies
that az € AU B. By similar arguments we can see that ag, ..., a, belong to
AUB. If a; € B—A, then B again contains S3. Ifa; € A—B, then by, ..., b,
belong to AU B as above and so B again contains S3. Consequently, all of
a,...,a, belong to AU B, whence B contains at most one more element
among by,...,b,, say bp. Now B 2 S, — {b1,b} 2 S,_o as induced
suborders. Since g(Sn—2) = [n/2] — 1, we conclude that g(S,) = [»/2]. O

It is well known that every tree has dimension at most 3. But we show
in the following theorem that even a bipartite tree may have an arbitrarily
large gluing number. For a natural number n, let F;, = {§} U {uv: u =
(31...%), 1 <k <n,1<ipn <2n—1for m=1,2,...,k} be an ordered
set such that only comparabilities are

0 < (il) > ('iliz) < (ilizia) > (i1i2i3i4) een
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for 1y,4,13,- -+ € {1,2,...,2n—1}. For example, § < (1) > (12) < (121) >
(1214) but (121) and (1121) are incomparable. Then each F,, (n > 1) isa
bipartite tree and contains a lot of induced ordered sets isomorphic to the
ordered set (spider) SP (Figure 1) or its dual which is not a semichain.

AVA%N

SP
Figure 1

Theorem 4. For a natural number n,

g(Fn) =n.

Proof: We shall proceed by induction on n. If n =1, then F; = 2 so that
g(Fy) = 1. Assume that g(F,) = n. Let F,yy = A x B with g(B) = 1.
Observe that no more than two elements of the form (3; ...ix) for a fixed
(31...1k—1) belong to B — A, since otherwise B contains the spider SP
or its dual as an induced suborder. For, if (¢y...ix) € B — A, then by
Lemma 3 (i) ...1k—1) € B and (3;...%i) € Bforanyi € {1,2,...,2n+1}.
Consequently, for each k > 1 and each (% ...4x_1), at least 2n —1 elements
of the form (4 ...4x—1%x) belong to A, whence A contains I, as an induced
suborder. Hence, g(Fr4+1) > n+ 1. But we can easily see that g(Fny1) <
n + 1. In fact, for each k, the set of all elements of the form (z;...%x) or
(1. ..%k+1) induces a semichain. [}

Finally we consider the gluing number of some products of chains. It is
well known that the dimension of n* is k. We can see easily that g(2*) < 2
for k < 3. Now we can verify g(2%) = 2 by the following two semichains:

{0, {1}, {2}, {1, 2}, {1,3},{1,4}, {2,3}, {2,4},{3,4},{1,3,4}, {2,3,4}, [4]};
{0,{2}, {3}, {1, 2}, {1,3},{1,4},{2,3}, {2,4}, {3,4}, {1,2,3}, {1, 2,4}, (4]}

Further we can only show at this moment that g(25) > 2. Let X =
{1,2,3,4,5}. Suppose that the power set P(X) be the gluing of two
semichains A and B. If more than two of one-element subsets of X belong
to either A — B or B — A, say {1}, {2},{3} € A - B, then, by Lemma 3, A
contains {{1}, {2}, {3}, {1, 2}, {2,3}, {3, 1}} which is isomorphic to S3. Now
suppose that at most two of one-element subsets of X belong to either A—B
or B—A. If {1},{2} € A — B, then one of {3}, {4}, {5} belongs to AN B,
say {3} € AN B, then A again contains {{1}, {2},{3},{1,2},{2,3},{3,1}}
which is isomorphic to S3. Finally, if more than three of one-element sub-
sets of X belong to A or B, say {1}, {2}, {3}, {4} € A, then at least two
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of their complements in X belong to B — A because otherwise A contains
S3. But this case also leads to a contradiction as the preceding argument
applies dually.

Although the dimension of n3 is 3, its thickness can be arbitrarily large
as n gets large. Since clearly the thickness is less than or equal to the gluing
number for any ordered set, the gluing number of n® can also be arbitrarily
large as n gets large. Even though the thickness of 83 is 2, it may not be

easy to determine g(33).
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