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Abstract

A transversal cover is a set of gk points in k disjoint groups of
size g and, ideally, a minimal collection of transversal subsets, called
blocks, such that any pair of points not contained in the same group
appears in at least one block. In this article we present a direct con-
struction method for transversal covers using group divisible designs.
We also investigate a particular infinite family of group divisible de-
signs that yield particularly good covers.
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1 Introduction

Transversal covers have received a lot of attention recently due in part to
their applicability to software testing [4, 5, 16, 19] and compression prob-
lems [12]. Most discussion has focused on non-constructive and asymptotic
bounds (7, 8, 9, 12, 13, 14], but recent work has focused on various recursive
and direct constructions [3, 4, 5, 16, 17, 19] as well as lower bounds [18].

The study of transversal covers is challenging. Katona [10], Kleitman
and Spencer [11] and Rényi [15] all used extremal set theory to completely
solve the problem for group size 2. Gargano, Kérner and Vaccaro [7, 8, 9]
used binary entropy, probability theory, and Markov chains to produce
asymptotic results, in particular that

te(k,9) _ g
k—oo logk 2

where te(k, g) is the minimum number of blocks in a transversal cover with
k groups of size g. This result is non-constructive. Sloane used recursive
constructions and intersecting codes, and reported the use of integer pro-
gramming by Applegate to find instances of transversal covers and the first
known optimal transversal cover that is not a design for g > 2: t¢(5,3) = 11
(16]. Cohen et al. and Williams and Probert implement recursive and
direct constructions on computer to produce transversal covers for direct
application [4, 5, 19] . The first and last author have used aspects of design
theory to develop direct and recursive constructions [17] and together with
L. Moura have derived a selection of lower bounds from extremal set theory,
packings and design theory and found 11 new optimal transversal covers
[18]. Each of these diverse methods seems to fill in separate pieces of the
question.

Sloane reports the best known upper bounds for ¢c(k, 3) found by him-
self, Ostergard, Cook and Mallows [16]. Examples of the best known upper
bounds previous to the constructions discussed in this paper are shown
in Table 1. Design theory and computer methods appear to be the most

L] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
[ 9 11 12 12 13 13 15 15 16 15 16 17 17 18 18 18 1§ 18 18 18 18 19
Cc(i 4) 16 16 16 16 16 25 26 27 27 28 28 28 28 28 28 28 28 28 28 28 381 31 31 31 31

Table 1: Previously known best upper bounds on tc(k, g).

successful for producing instances of transversal covers and generating con-
crete upper bounds. This paper discusses a direct construction using group
divisible structures from design theory. We will derive a general construc-
tion method, improve a certain instance of it, produce an infinite family of
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transversal covers from the construction and improve the values shown in
Table 1.

1.1 Definitions

Definition 1.1. Let k£, g and n < g be positive integers. A transversal
cover (TC(k,g : n) ) is a triple (X, G, B) where X is a set of kg points,
G = {G1,Gs,...,Gi} is a partition of X into k sets of size g, B is a
collection of subsets of X, called blocks or transversals, each block has size
k and intersects each G; in exactly one point, and each pair of points of X
not in the same G; occurs in at least one block. Further, there is a set of
at least n disjoint blocks in B. The smallest number of blocks possible in
a TC(k, g : n) is denoted by te(k,g : n). When we are not concerned with
the cardinality of a set of disjoint blocks we will omit the parameter n.

Example 1.2. Let V = {0,1,2,3,4,5,6,7} be partitioned into groups
G, = {0,1}, G2 = {2,3}, G3 = {4,5}, G4 = {6,7}. Then the follow-
ing blocks form a transversal cover:

{0,2,4,6},{1,3,5,6},{1,3,4,7},{1,2,5,7},{0,3,5,7}.

A TC(k,g : n) with g blocks is a transversal design. We will call a
TC(k, g : n) with the n disjoint blocks removed an incomplete transversal
cover or ITC(k,g: n). It is clear that

te(k,g:1) < tc(k,g:j) <tc(k,g:%)+j—1i, forany1<i<j<n.

Treating transversal covers as b x k arrays of elements from a g-ary
alphabet, allows for an easy translation among the many ways that these
objects have been viewed and approached in the literature. The array is
formed by placing the same g-ary alphabet on each group and then listing
the blocks explicitly as the rows of the array. The groups become the
columns and a set of disjoint blocks becomes a set of rows with pairwise
Hamming distance k. With this in mind, we define:

Definition 1.3. A covering array (CA(k, g : n)) is an array with k columns
of values from a g-ary alphabet such that given any two columns, ¢ and j,
and for all ordered pairs of elements from a g-ary alphabet, (g1, g2), there
exists a row, 7, such that a; » = g1 and a;,» = g». Further, there is a set of
at least n rows that pairwise differ in each column; they are disjoint.

Row and column permutations, as well as permuting symbols within
each column, leave the covering conditions unchanged.
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Example 1.4. The transversal cover from Example 1.2, with the binary
alphabet {0,1} placed on each group, yields the following covering array:

Q= O
EX-E NN -
-0~ QO
OO

Deflnition 1.5. Let k, g and u be positive integers. A group divisible
design of order ug (k-GDD of type g*) is a triple (V,G, B) where V is a
finite set of cardinality ug, G is a partition of V' into u groups of size g, and
B is a family of subsets, called blocks, of V' which satisfy the properties:

1. If B € B then |B| = k;

2. Every pair of distinct elements of V' occurs in exactly one block or
one group but not both; and

.u>1

Definition 1.6. Let B be a set of blocks of some incidence structure. A
resolution class is a collection of blocks which partitions the point set of
the incidence structure.

A k-GDD of type g* is called resolvable and denoted k-RGDD of type
g" if its blocks can be partitioned into resolution classes.

In any incidence structure k will denote the size of each block. We use
log for log,. |z] will denote the largest integer < z. [z] will denote the
smallest integer > z. A g-ary alphabet is a set of cardinality g; it will
usually be {0,1,...,9 —1}.

2 A Group Divisible Design Construction

2.1 The Basic Construction

Because all pairs of points of a group divisible design not on the same group
are covered by blocks we can extend each block to a transversal and get

Theorem 2.1. If a k-GDD of type g% exists then

2 -
te(u,g:1) < gkt(t%vl)
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Proof. Arbitrarily extend each block to a transversal. a

Using the block size recursive construction [17] we can show that

logu

Bg(_mrz')] (@®-9)+g

telbo) < |

where m be the maximum number of idempotent mutually orthogonal latin
squares of order g. Using Fisher’s theorem on the number of blocks in a
design [1}, for the GDD construction to yield results better than already
known, it is necessary that

glu(u—1) [ logu
k(k—1) — |log(m +2)

(91 < ] @-+e Q)

If g is a prime power then m =g — 2.

Applying Inequality 1 shows that when g is a prime power, this con-
struction only betters what we already know if g + 2 < u < 29. Checking
the divisibility conditions for g < 7 and comparing the results to the best
covers known, this construction can only improve on what is known when
u = g + 2. We deal with this case in Subsection 2.3. In Subsection 2.2,
we improve the general group divisible design construction by adding more
groups after the extension of each block to a transversal.

2.2 Adding More Groups

The restrictions on the GDDs enabling them to yield better covers, are
quite strong. In all the cases with g a prime power except g+ 2 <n < 2g
and for g < 7 except n = g+2, the number of blocks is far too large for this
construction to provide more optimal covers than known. However, this
construction has speed and simplicity advantages and, if we can extend the
covers by a significant number of groups then we may be able to produce
better covers than already known. If we are able to partition the blocks of
the GDD in a particular way then we can add a number of groups to the
final transversal cover.

We will need to partition the blocks so that the blocks in each part, after
they have been extended to transversals, cover every point of the GDD at
least once. The following lemma is the necessary and sufficient condition
on the blocks of a part for this to happen.
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Lemma 2.2. A collection of blocks of a GDD can be extended to-transver-
sals that cover every point at least once if and only if the number of blocks
missing each group i3 at least the number of points missed on the group
before the extension each block to a transversal.

Proof. To see that the conditions are necessary we observe that each point
on a group must be covered after the extension of the blocks to transver-
sals. All the points on a group not covered before the extension must be
covered by a block after extension. These blocks must be distinct and not
go through the group before extension.

To see that the conditions are sufficient, for each point not covered on
a group before extension, assign it to a block not going through this group
so that no block will get assigned more than one point per group. No
block will get assigned a point in a group where it already has a point and
all points will be assigned. When extended, blocks will go through their
assigned points, and through an arbitrary point on any group where they
have not been assigned a point. (]

This implies that each part must have at least g blocks and g disjoint blocks
will suffice.

Theorem 2.3. The transversal cover constructed from a k-GDD of type
g with a partition of the blocks into p parts each satisfying Lemma 2.2 can
be extended by at least e groups, where

-l

Proof. There are p parts each with at least g blocks. Order them arbitrarily.
Viewing the resulting transversal cover as a covering array on symbol set
{0,1,...,9 — 1}, and defining e as above, add e zeros to the rows of the
array corresponding to the blocks of the first part. In the first of the new e
columns arbitrarily place the symbols 1,2, ...,g—1 on the rows of the next
g—1 parts, all the rows within a part receiving the same symbol, a different
symbol for each part. On the rows of each additional part, arbitrarily place
the symbols 1,...,9 — 1, so every part has at least one row which gets each
symbol. This can be done since each part has at least g blocks. On the
second of the new e columns, arbitrarily place the symbols 1,2,...,g—1on
the rows of the g+ 1% to 2g — 1°¢ parts, a different symbol for each part, all
the rows within a part receiving the same symbol. On all the other rows,
arbitrarily place the symbols 0,1,...,g — 1, so every part has at least one
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the original array tho added groups

v U
[] 0 4] [+]
‘The firet part .
[ 0 0 0
] 0 ] [
T U [ 0
1 1 1 1
The second part .
1 82 -2 82
1 _g-1 g1 g-1
[ 1 [ [
1 1 1 1
The g + 14¢ port :
82 1 52 82
g-1 1 g-1 g-1
[ 3 [
1 1 1 1
The 2;“‘ part .
52 8-2 1 82
g-1 g-1 1 g-1
[ 0 T
1 1 1 1
The 8g — 1°t part .
82 82 g-2 1
g1 81 &1 1

Figure 1: Method for Adding New Groups in Theorem 2.3.

row which gets each symbol. On the i** new column place the symbols
1,2,...,9 — 1 on the rows of the (i — 1)g — i + 374 to ig — i + 1°t parts, a
different symbol for each part, all the rows within a part receiving the same
symbol. On all the other rows, again place the symbols 0,1,...,g — 1, so
every part has at least one row which gets each symbol. See Figure 1. This
is a covering array. a

Theorem 2.4. The transversal cover constructed from a k-GDD of type
g* with a partition of the blocks into p parts each satisfying Lemma 2.2,
where the g smallest parts have cardinality c;, 1 <1 < g, can be ertended
by e groups where e is the mazimum integer such that

te(e, g y)<gk(k ) 4go Zc.

i=1

Proof. Again we will think of the covers as covering arrays and extend by
e columns. On the rows corresponding to the smallest g parts (assume
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that these make up the top set of rows in the array) we put the symbols
0,1,...,9 — 1 in each of the e columns, one symbol per part. We have
covered all pairs of columns, one from the original set and one from the
new set, and because we started with a covering array we have covered all
pairs of columns from the original set. All we must do is now cover all pairs
of columns from the new set. We have

rows empty in the new set of columns. In each pair of new columns, we
have covered the pairs of identical symbols (¢,i) and so we place in the
set of unfilled rows (the empty lower right hand subarray of dimension

(%‘-ﬁ% -3, c;) x €), the largest ITC(e, g : g) that will fit. See Fig-

ure 2. O
the original array the added groups
0 -0 ---0 --- 0
The first part : : : :
0 0O --0 .0
1 -1 - 1 1
The second part :
: 1 1 -1 .- 1

The g** part

The g + 1% part

: ITC(e,9: 9)
The p** part

Figure 2: Method for Adding New Groups in Theorem 2.4.

Theorem 2.5. The transversal cover constructed from a k-GDD of type
g" with a partition of the blocks into p parts each satisfying Lemma 2.2 can
be extended by e groups where e is the mazimum integer such that

tc(e,g:9) <p.
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Proof. On the rows from each part, we will always place the same symbol.
This will guarantee coverage of all pairs of columns, one from the original
array and one from the new set of columns. Then to cover all pairs of
columns, both from the new set, we put the largest covering array with
fewer than 9-,%'311 rows, on the new columns treating each part as a single
row, and arbitrarily completing any empty cells. O

When the GDD is resolvable we can obtain the desired partition by
removing sets of g disjoint blocks from each resolution class. When there
are less than g blocks left in the class we can add these blocks to any of the
parts already obtained. This gives us

p= g(:_— 11) l%J

and since we can add the unused blocks to any part we like and $=} > 1
(resolvable transversal designs cannot be extended by Theorem 2.4 and by
only one column in Theorems 2.3 and 2.5) the smallest p parts all have
cardinality g. Similarly when the GDD is a k-frame we get

_ gu |u-1
”‘k-1[ k J

and again we can assume that the g smallest parts all have cardinality g.

Unfortunately there are not many families of RGDDs or frames known
yet with large block sizes. For all the families known [6] we have checked to
see what Theorems 2.3, 2.4 and 2.5 yield and none of the transversal covers
constructed are better than those already known for g < 7 and extended
block size less than 50. These constructions produce many transversal
covers with enormous parameters. No GDD with group size less than 8,
block size less than 5 and fewer than 50 groups produces better covers than
by other methods, even for large parameters [17]. It is unclear how to obtain
the desired partitions for other GDDs. The next family of GDDs, although
not resolvable, have large block size and at least one new group can always
be added. We will not use Theorems 2.4 or 2.5 to add the additional groups.
The method in Subsection 2.3 is superior in this particular case.

2.3 An Infinite Family from the Construction

As mentioned in Subsection 2.1 when u = g + 2, the divisibility conditions
are met and the number of blocks is reasonably small. An affine plane of
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order ¢ with one point removed is a ¢-GDD of type (¢ — 1)?t!. From this
we can construct a TC(g + 1, — 1 : 1) with q% — 1 blocks. The blocks
of this GDD can be partitioned into ¢ + 1 sets of ¢ — 1 blocks which are
mutually disjoint. Each of these sets of blocks misses one group entirely, so
by Lemma 2.2, when we choose the new points of these blocks, extending
the GDD to a TC they remain a set of disjoint blocks. Theorem 2.3 allows
us to extend this TC by one group to get

Theorem 2.8. If g is one less than a prime power then tc(g+ 3,9 : g) <
g> +2g. a

This gives
tc(7,4:4) <24
tc(9,6: 6) <48 (2)
tc(10,7:7) < 63

where the previous constructions [17] only give

te(7,4:4) < 28
tc(9,6 : 6) < 64 3)
tc(10,7: 7) < 91.

In a few cases we can take advantage of the structure of these GDDs to add
more than one group. These GDDs come from the 1-rotational presentation
of the affine plane [2, 6): the g2 points of the affine plane are co and the
points of Z,2_,; and the blocks are generated additively from two base
blocks. The first is the short block Go = {0} U{a(g+1): 0 < a <
g — 2} and the second is By = {di,...,d,} where d; = 0 and p% =1+
put=2(a-1) for § = 2,...,q, p a primitive element of F,2 and u an integer
not a multiple of ¢ + 1. These GDDs are difference packings which can be
used to construct difference triangle sets [6]. The GDD is just this design
with oo removed, the groups generated by the short base block, Gy, and
the blocks generated additively from Bg. The points are labeled as shown,
where columns represent groups.

0 1 e g
g+1 q+2 ---2¢+1

¢®-q-2 ¢-q-1-¢*-2

To make the blocks transversals, we will add a point to Bg. We will choose
this point later. With this presentation, the sets of disjoint blocks are
P, ={Bo+k(g+1)+ i}g;?, where j = 0,1,...,q. But consider also the
sets of blocks @Q; = {Bo + k(g — 1) + j}} o, where j =0,1,...,¢g - 2.
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If g is a power of 2 then g — 1 and g + 1 are relatively prime. We define
the extension by two new groups. For any block B add symbol j in the first
new column if B € Q; and i in the second new column if B € P;. Since
g—1 and g+ 1 are relatively prime, the last two columns are covered. This
method will cover all pairs of columns, one from the original set and one
from the new set of two columns as long as every point in Z,2_, appears in
each of the Q;s. We have not yet extended the blocks, nor added symbols
in the second column if B € P; for i > g — 1 (we did not need to put the
symbols in the second new column from the first ¢ — 1 P;s, but we could
have chosen any g — 1 of the P;s in any order). These flexibilities may allow
us to guarantee coverage and possibly also to extend by more than two
columns.

The base block, By, from the GDD contains ¢ points and the pairwise
differences cover every element of Z,2_; which is not a multiple of g + 1.
The q differences which are multiples of g — 1 will be covered, and the pairs
of elements of By whose differences are multiples of g — 1 will generate the
same point sets under development in the Q;. In each Q;, we will generate
one of these point sets twice if ¢ = 4 and at least three times if ¢ > 4. Since
we can still add a point to the By to cover all the points by each Q;, we
need at least ¢ — 2 different point sets generated which is impossible when
q > 4. Hence, this construction can only work if ¢ = 4 and indeed, it does:
use base block By = {0,2,3,11} and add the point 1 to it, then each Q;
will cover each point at least once. Each P; also covers each point exactly
once and so we can extend by two columns.

However, in this case, we can do even better by taking all possible sets of
three P;s (we can pick any g—1 of the P;s) and adding the columns given in
Figure 3. The first column is from the @;s and the remaining ten columns

00000000112
11110210002
22011211120
00212212211
10121122222
20000001021
01111020001
12101221110
21202112111
01022121222
10000002200
21112100000
02221201100
12222012011
22220120222

Figure 3: The extension of TC(5,3 : 1) by eleven additional columns.
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are from the ten possible triples of P;s which are ordered lexicographically
as the ten possible triples from a 5-set. These additional columns gives us
tc(16,3 : 1) < 15 which is better than 17, the value obtained from other
methods.

When q is an odd prime power, we can do the same sort of construction
to try to extend by two groups. Because ¢ — 1 and g + 1 are not relatively
prime, we will not automatically get that the two new columns (from the P;s
and @;s) are covered. We won’t have filled in all of the columns determined
by the P;s (the second new column). This flexibility may allow us still to
succeed. Because we need all the points to be in each Q;, a similar argument
shows that ¢ = 3 and q = 5 are the only possibilities. When g = 3, we are
constructing a cover with g = 2. Since we know what optimal covers for
g = 2 look like, this is uninteresting. It is, however, worth mentioning that
a total of 31 groups can be added which is the most possible and achieves
the optimal cover with block size 35.

When ¢ = 5, we have By = {0,2,15,16,19} to which we add the point
1. Each Q; covers all the points and so we must only worry about covering
all the pairs on the two new columns. This can be done with these columns:

012301230123012301230123)\"
012310012310012332012332

so we get tc(8,4 : 2) < 24 which is better than 27, the value from other
methods. By this method, we can only extend by two groups because we
cannot add another column from a different set of four P;s. Some variation
of these methods may generate additional new columns for these particular
values of g. We have now improved the best known values to those shown
in Table 2. Many of these values have since been further improved [17].

1 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 2 3 4
tc(h,3)|© © 9 9 1t 12 12 13 13 15 15 15 156 15 16 15 18 18 18 18 18 18 18 18 19
tc(h,4) |16 18 16 16 16 24 24 24 27 28 28 28 28 28 28 28 28 28 28 28 31 31 31 31 31

Table 2: Improved upper bounds for tc(k, g).

3 Conclusion

Group divisible designs offer a convenient and fast way of constructing
transversal covers. Simply extending the blocks of a group divisible design
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to transversals improves some previously known transversal covers. How-
ever, if the group divisible design is resolvable, a frame, or we can suitably
partition the blocks, then we can use this additional structure to extend
the transversal cover obtained by several groups and improve a larger range
of parameters. None of the few resolvable group divisible designs or frames
known construct transversal covers better than those already found. The
constructions applied to resolvable group divisible designs and frames do
construct many transversal covers larger than any known and may well be
better than those we can construct by other methods.

We have found one infinite family of group divisible designs yielding
transversal covers better than those previously known. Each of these con-
structions can be extended by at least one group. Three of them are known
to be extendible by more.

More work remains to be done for transversal covers in general. The
group divisible design constructions seem to offer a powerful and efficient
method for constructing transversal covers. This method will become more
and more useful as more is discovered about group divisible designs, resolv-
able GDDs and frames. As we construct more transversal covers with large
parameters we may find that the constructions herein are the best. These
GDD constructions fit into broader ongoing work on transversal covers.
The first author is keeping a table of the best known transversal covers. So
far the table is kept for g < 7 and k < 50. For the most recent published
table see [17]. Please send any new covers, even those beyond the scope of
these bounds, and the method used to obtain them to the address given;
they will be added to the table with the method used and credit given to
the contributer.
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