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Abstract

Given a digraph D, its competition graph has the same vertex
set and an edge between two vertices = and y if there is a vertex
u so that (z,u) and (y,u) are arcs of D. Motivated by a problem
of communications, we study the competition graphs of the special
digraphs known as semiorders. This leads us to define a conditions
on digraphs called C(p) and C*(p) and to study the graphs arising
as competition graphs of acyclic digraphs satisfying conditions C(p)
or C*(p).
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1 Introduction

The notion of competition graph arose from a problem in ecology and has
since found application in problems of coding, channel assignment in com-
munications, scheduling, and the modeling of complex systems arising in the
study of energy and economic systems. (See [9] and [12] for details.) The
notion of semiorder arose from problems in utility theory and psychophysics
involving thresholds. (See [1], [6], [11], [13], [14].) Motivated by a problem
in communications, we consider competition graphs of semiorders. This
leads us to a general condition on digraphs that we call C(p) and the study
of competition graphs of digraphs satisfying condition C(p). We also study
a variant of this condition which we call condition C*(p).

Suppose D = (V, A) is a digraph. Its competition graph G = C(D)
has the same vertex set and has an edge {z,y} if for some vertex u € V,
the arcs (z,u) and (y,u) are in D. The long literature of competition
graphs is summarized in several survey papers, [4], [7], (12]. In much of the
literature, the study of competition graphs is restricted to acyclic digraphs
D. We shall not make this restriction for the entire paper, but will in our
main results. The literature of competition graphs sometimes allows loops
in digraphs. However, we shall make the convention that all digraphs in
this paper have no loops. In the communications application, the vertices
represent transmitters or receivers and in the digraph D, there is an arc
from a transmitter z to a receiver u if a message sent at = can be received at
u. The competition graph C(D) restricted to the set of transmitters then
has the interpretation that there is an edge between two transmitters if and
only if a message sent from them can be received at the same place. In this
case, we think of the two transmitters as interfering. In channel assignment
applications, interfering transmitters must be assigned different channels.

A digraph D = (V, A) (on a finite set of vertices V) is a semiorder if
there is a real-valued function f on V and a real number § > 0 so that for

alz,yeV,
(z,y) € A& f(z) > f(y) +4. (1)

Suppose the transmitters and receivers are lined up in a linear corridor
and messages can only be transmitted from right to left. Suppose also
that because of local interference (jamming?), a message sent at x can be
received at y if and only if y is sufficiently far to the left of z, e.g., more than
10 miles to the left. Then the digraph D in the communications application
is a semiorder (taking § = 10). This leads us to the question: What are
the competition graphs of semiorders? This question has a very simple
answer which we present in Section 2. In that section, we also consider
the competition graphs of interval orders, natural relatives of semiorders,
and then of the more general digraphs satisfying a condition we shall call
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condition C(p). In Section 3, we consider a variant of condition C(p) which
we call condition C*(p) and the competition graphs of digraphs satisfying
condition C*(p). There have been a number of papers about competition
graphs of specific classes of digraphs. For instance, competition graphs
of strongly connected digraphs have been studied in [2], of Hamiltonian
digraphs in [2] and [3], of interval digraphs in (5], and for various classes of
symmetric digraphs in [8] and [9).

We close this section by introducing some simple notation and recalling
a useful concept from the theory of competition graphs. The graph K,
is the complete graph on r vertices and V(K,) is its vertex set. We also
use the notaton K, — e for the complete graph on r vertices with one edge
omitted, K, — P3 for K, with a pair of adjacent edges omitted, and K, — K3
for K, with all edges on a triangle omitted. Also, I is the graph with ¢
vertices and no edges. We shall use the union notation G U H only for the
case where the vertex sets of graphs G and H are disjoint. It is easy to
see that if G = C(D) for D acyclic, then G must have an isolated vertex.
If G is any graph, then adding sufficiently many isolated vertices produces
a competition graph of an acyclic digraph ([10]). The smallest k so that
GU I is a competition graph of an acyclic digraph is called the competition
number of G and is denoted k(G). Clearly, then, £(G) > 1 whenever G is
connected and has more than one vertex.

2 The Condition C(p)

The question of when a graph is the competition graph of a semiorder has
a very simple answer:

Theorem 2.1 A graph G is the competition graph of a semiorder if and
onlyif G=1, forq >0 or G=K, U, forr >1,¢>0.

This is easy to prove directly, but will follow from a more general result.
A similar theorem holds for interval orders, which are closely related to
semiorders. If J and J' are two real intervals, we say that J > J' ifa > b
for all a € J and b € J'. D = (V, A) is an interval order if there is an
assignment of a (closed) real interval J(z) to each vertex z € V so that for
all z,y eV,

(z,y) € A& J(z) = J'(y). (2)

Semiorders are a special case of interval orders where every interval has the
same length. (For references on interval orders, see [1], [11], [14].)

Theorem 2.2 A graph G is the competition graph of an interval order if
and only if G=1, forq>0 or G=K,UI, forr >1,¢>0.
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This theorem will also follow from the more general results below.
If D = (V,A) is a digraph, we define a binary relation W on V as
follows:

aWb & [(bu) € A— (a,u) € A).

If p > 2 is an integer, we say that D satisfies condition C(p) if whenever S
is a set of p vertices of D, then there is a vertex z in S so that yWz for
all y € S — {z}. The key condition that allows us to prove Theorem 2.1
and Theorem 2.2 is C(2). Any such vertex z is called a foot of S and, by
a somewhat ambiguous notation, will be denoted F(S). (If there is more
than one foot, the context will tell us which is denoted by F(S).)

Proposition 2.3 Ifp < g, then C(p) implies C(q).

Proof. It suffices to show that if C(p) holds, then C(p+1) holds. Let S =
{z1,22,...,Zp41}. Consider T = {z1,za,...,2p} and U = {2, z3,...,Tp+1}.
By C(p), we may assume that F(T) = z, and that for some i € {2,3,...,p+
1}, F(U) = z;. If i = p, then F(S) = z,. If i # p, then transitivity of w
implies that F(S) = z;. Q.E.D.

It is straightforward to show that if p < g, then C(g) does not imply
C(p). Simply define D on the vertex set {1,2,...,q} by letting A = {(i,i+
1): ¢=1,2,...,q—1}.

It is straightforward to show that if D is a semiorder, then C(2) holds
and therefore C(p) for all p > 2. C(2) follows by noting that F(S) is the
minimum element of S if f satisfies Equation (1). Similarly, by using the
interval with the smaller left end point in a set of two intervals, we make
use of Equation (2) to show that C(2) and therefore C(p) for all p > 2 hold
for D an interval order.

Let us say that a connected component is nontrivial if it has at least
two vertices.

Proposition 2.4 If digraph D = (V, A) satisfies condition C(p) for some
p > 2 and K, K?,..., K™ are nontrivial connected components of C(D)
so that T = K1UK?U...UK™ has at least p vertices, then m = 1 and
K! is a clique.

Proof. Pick vertices a € K* and b € K7 where i could equal j. Let S be a
set of p vertices from T including vertices a and b. If F(S) = z, thenz € K*
for some ¢ and there is another y € K*. Hence, for some u, (z,u), (y,u) € A.
It follows from (z,u) € A that (a,u), (b,u) € A and so a, b are adjacent in
C(D). Q.E.D.
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Corollary 2.5 Suppose thatp > 2 and the union of all nontrivial connected
components of graph G has at least p vertices. Then G is C(D) for some
digraph D satisfying condition C(p) if and only if G = K, U I, for r >
1, >0.

Proof. The proposition shows that G = K, U I, for r > 1,q > 0. But
g = 0 is impossible. For then r > p so by Proposition 2.3, C(r) holds. Let
z = F(S) for S the set of all vertices. Then (z,y) is in D for some y in
S and hence (y,y) is in D, which is a contradiction of our convention that
digraphs have no loops. To prove the other direction, we construct D as
follows. Take the vertex set of D to be the vertex set of G' and include arc
(z,a) in A for all z € K,,a € I;. C(p) is straightforward. Q.E.D.

In the next theorem, we use the concept of competition number k(G)
defined in Section 1.

Theorem 2.6 Suppose that p > 2 and G is a graph. Then G is the com-
petition graph of an acyclic digraph D satisfying condition C(p) if and only
if G is one of the following graphs:

(a). Ij,q>0

(b). K.Ulg,r>1,4g>0

(c). LU I, where L has fewer than p vertices, ¢ > 0 and q > k(L).

Proof. Suppose that G = C(D) for D acyclic and satisfying C(p). If there
is no nontrivial connected component, then (a) holds. If the union of all
nontrivial connected components of graph G has at least p vertices, then
by Corollary 2.5, (b) holds. Suppose that L is the union of all nontrivial
connected components of G and L has fewer than p vertices. Then G =
L U I, and by acyclicity, g > 0. Since G is a competition graph, £(G) = 0.
Hence, there must be at least as many vertices in I as k(L). Thus, (c)
follows.

Conversely, if (a), then define D on the vertex set of G by putting no arcs
in. If (b), the result follows from Corollary 2.5. Finally, suppose (c) holds.
Since k(L) < g, there is an acyclic D’ so that G = C(D’). Let D be such
an acyclic digraph that is minimal in terms of arcs. To see that D satisfies
C(p), let S have p vertices. Then there is a vertex z in S — L. By min-
imality of D, there are no arcs from z in D and therefore z = F(S). Q.E.D.

Theorems- 2.1 and 2.2 follow as simple corollaries given our earlier ob-
servation that if D is a semiorder or interval order, then D satisfies C(p)
for all p > 2. The next four corollaries follow in a straightforward way by
considering the possible graphs L.
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We use the notation Py for the path of k vertices, Cj, for the cycle of k
vertices, and K 3 for the complete bipartite graph consisting of one vertex
adjacent to three others.

Corollary 2.7 Let G be a graph. Then G is the competition graph of an
acyclic digraph satisfying condition C(2) if and only if G = I, for ¢ > 0 or
G=K,Ul, forr>1,q>0.

Corollary 2.8 Let G be a graph. Then G is the competition graph of an
acyclic digraph satisfying condition C(3) if and only if G = I, for ¢ > 0 or
G=K,Ul, forr>1,¢>0.

Corollary 2.9 Let G be a graph. Then G is the competition graph of an
acyclic digraph satisfying condition C(4) if and only if G = I, for ¢ > 0 or
G=K,UI, forr > 1,4 >0 or G= P3UI, for ¢ >0, where Py is the path
of 8 vertices.

Corollary 2.10 Let G be a graph. Then G is the competition graph of
an acyclic digraph satisfying condition C(5) if and only if G is one of the
following graphs: (1) Ip,q > 0; (2) K, Ulg,r >1,4>0; (3) P3Ul;,q>0;
(4) P4UIq,q > 0; (5) K1_3UIq = K4—K3UIq,q >0, (6) KzUKzUIq,q > 0;
(7) C4U1p,9>1; (8) Ky —eUly,q>0; (9) Ky — P3UI;,q>0.

Note that ¢ > 1 in (7) of Corollary 2.10.

3 The Condition C*(p)

The converse D¢ of a digraph D = (V, A) has the same set of vertices and
an arc (z,y) whenever (y,z) is an arc of D. It is clear that the converse of
a semiorder or interval order is a semiorder or interval order, respectively.
The common enemy graph CE(D) of a digraph D = (V, A) has vertex set V
and an edge between z and y if there is a vertex u € V so that (u, z), (u,y)
are in A. Clearly, C(D) = CE(D¢).

Given D = (V, A), let W’ be the binary relation on V' defined by

aW'b & [(u,a) € A — (u,b) € A].

Condition C(p) has a natural dual version: If p > 2 is an integer, we say
that D satisfies condition C'(p) if whenever S is a set of p vertices of D,
then there is a vertex z in S so that zW'y for all y € S — {z}. By using
the converse D¢, we see that given an integer p > 2 and a graph G, there
is a (acyclic) digraph D so that C(D) = G and D satisfies condition C(p)
if and only if there is a (acyclic) digraph D’ so that CE(D’') = G and D’
satisfies condition C’(p).
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A more interesting variant on condition C(p) is the following. If p > 2
is an integer, we say that D satisfies condition C*(p) if whenever S is a
set of p vertices of D, then there is a vertex = in S so that zWy for all
y € S — {z}. If there is such a vertex z in the set S, we call = a head of S
and denote any such vertex by H(S).

The following proposition is analogous to Proposition 2.3 and has a
completely analogous proof.

Proposition 3.1 Ifp < g, then C*(p) implies C*(q).

There are some simple properties of head that we will use in the follow-
ing. We summarize them in the following proposition which has a straight-
forward proof.

Proposition 3.2 If G = C(D) for some digraph D, then:

1). H(S) is adjacent in G to any vertices in S that have neighbors in G
and to the neighbors of such vertices.

2). If S has any vertices not isolated in G, then H(S) cannot be isolated
inG.

Proposition 3.3 Suppose that digraph D = (V, A) satisfies condition C*(p)
for some p > 2 and K',K?,...,K™ are m > 2 nontrivial connected com-
ponents of C(D) so that T = K'UK?U...UK™ has r vertices. If q is the
number of isolated vertices of C(D), thenr +q < p.

Proof. Suppose r + q > p. By definition of r, » > 4. Form p-element
subset S of V' by taking s = min{p,r} vertices from T with at least two
from different components K* and K7. Add p — s isolated vertices to get
S. By the second part of Proposition 3.2, H(S) = z cannot be isolated in
G. There is a vertex y in S belonging to a nontrivial component of G not
containing z, which violates the first part of Proposition 3.2. Hence, C*(p)
fails. Q.E.D.

It follows that if p < 5 and G = C(D) for D acyclic, then G cannot
have more than one nontrivial component, since ¢ > 1 for D acyclic. This
observation will also follow from Propositions 3.7 to 3.9 and Theorem 3.10.
However, we note that K, U Ko U is C(D) for an acyclic D satisfying
C*(6) (vacuously). By the proposition, if D is an acyclic digraph satisfying
C*(p) non-vacuously, i.e., if the number of vertices of D is at least p, then
C(D) has at most one nontrivial component.

Proposition 3.4 If digraph D = (V, A) satisfies condition C*(p) for some
p 2 2, then D does not have a directed cycle of length at least p.
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Proof. Suppose C is a directed cycle of length p, with vertices vy, v2,...,vp
in order around the cycle. The set S of vertices of C violates condition
C*(p). That is because if H(S) = v;, then (vi-1,v:) € A implies that
(vi,v;) € A, contradicting our convention that D is loopless. (If i = 1,v;—
is vp.)

We show next that there are no cycles of length ¢ such that p <

g < 2p — 2. Suppose vi,v2,...,V, are the vertices in order around such
acycle. Let t = 2p—g— 1. Then t > 1. Consider the p-element set
S = {vp,Vpt1,.-+1Vq,V1,V2,...,?:}. This has a head. Since there are no

loops, vp is the only possible head and so (vg,v1) € A(D) implies that
(vp,v1) € A(D). Thus, v1,v3,...,p,v is a cycle of D of length p, which
is a contradiction.

We now argue by induction on s that D has no cycles of length greater
than (s —2)(p—2)+p and at most (s—1)(p—2)+p, s = 2. We have already
established the case s = 2. Suppose that G has no cycles of length greater
than (s —2)(p—2)+p and at most (s—1)(p—2)+p, s > 2 and suppose that
(s—1)(p—2)+p < q<s(p—2)+p where s > 2. Let v1,v2,...,7q be the
vertices of a cycle of length g in order around the cycle. Let r =q—p+2.
Note that r < q since p > 2. Let S = {v,Ur41,...,Vq,v1}. Since this has
p elements, there is a head. Since D has no loops, v is the only candidate
for a head. It follows that since (vq,v1) € A(D) that (v.,v1) € A(D)
and so vy,v2,...,r,7 is a cycle. We show that r violates the inductive
hypothesis.

Note that since ¢ < s(p—2)+p, wehaver =¢—p+2< s(p—2)+2=
(s—1)(p—2)+p. Sinceg>(s—1)(p—2)+p, wehaver =g—p+2>
(s—1)(p—2)+2 = (s—2)(p—2)+p. This violates the induction hypothesis.
Q.E.D.

Corollary 3.5 A digraph satisfying condition C*(2) is acyclic.

Lemma 3.6 Let D be o digraph satisfying condition C*(p), G = C(D),
and q be the number of isolated vertices in G. Then:

1). The size of an independent set T of vertices none of which is isolated
in G is at most max{1l,p — q— 1}.

2). If G has an independent set T of ezactly p —q — 1 > 1 vertices that
are not isolated in G, then every vertex outside of T not isolated in G is
adjacent to every vertexr of T and every pair of vertices not isolated in G
other than vertices of T' are adjacent.

Proof.

1). Let T be an independent set of vertices none of which is isolated in G,
suppose T has more than one vertex, and suppose that T" has at least p—g¢
vertices. Let a set S of p vertices consist of T' plus up to g isolated vertices.
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By Proposition 3.2, H(S) = = cannot be isolated in G. However, there is
a second vertex y in S that is not isolated in G and is not adjacent to z,
which violates the first part of Proposition 3.2. Thus, C*(p) fails.

2). Let T be an independent set of p — ¢ — 1 vertices not isolated in G
and z be any vertex not in T that is not isolated in G. Then let S be
T U {z} together with g isolated vertices. Again by Proposition 3.2, the
only candidate for H(S) is z and therefore z is adjacent to all vertices in
T. If w is another vertex not in T that is not isolated in G, then let S’ be
T U {z,w} together with ¢ — 1 isolated vertices. It follows that either z or
w is H(S’) and thus z and w are adjacent. Q.E.D.

The lemma allows us to draw some simple conclusions in the next three
propositions.

Proposition 3.7 Let G be a graph. Then G is the competition graph of
a digraph satisfying condition C*(2) if and only if G = I; for ¢ > 0 or
G=K,Ul, forr>1,q>0.

Proof. By Corollary 3.5, if D satisfies C*(2), then D is acyclic. By acyclic-
ity, there is an isolated vertex. If G has any non-isolated vertices, then by
Lemma 3.6, part 1), the maximum-sized independent set of vertices non-
isolated in G has one element. Hence, every connected component of G is
a clique and there cannot be two nontrivial cliques. Conversely, suppose
G = K,UI,;,q > 0. Since g > 0, we can define D on V' by including all
arcs (z,a) for z € K, and a € I,. Q.E.D.

Proposition 3.8 Let G be a graph. Then G is the competition graph of
an acyclic digraph satisfying condition C*(3) if and only if G = I or
G=K,Ul, forr>1,¢q>0.

Proof. By acyclicity, there is an isolated vertex. By Lemma 3.6, part 1),
with p = 3,¢ > 1, the maximum-sized independent set of non-isolated ver-
tices of G has one element. Thus, the argument is as in the previous proof.

Q.E.D.

We note that acyclicity is needed as a hypothesis in Proposition 3.8. To see
why, define D as follows: V(D) = {z,y, z}, A(D) = {(z, 2), (2, z), (¥, %), (v, 2) }-
Then {z,y, 2z} has a head y, so C*(3) holds. However, C(D) = Ps.

Proposition 3.9 Let G be a graph. Then G is the competition graph of

an acyclic digraph satisfying condition C*(4) if and only if G = I or
G=K, Ul forr>1,¢>00rG=K;—eUI, forr>2.
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Proof. By acyclicity of D, there must be an isolated vertex in G. Let t be
the size of a maximum independent set of non-isolated vertices of G. Since
p = 4,9 > 1, Lemma 3.6, part 1), shows that ¢t < 2. If t = 1, then argue
as in the proof of Proposition 3.7. If t = 2, then ¢ = 1 and by Lemma 3.6,
part 2), there are two nonadjacent vertices z and y that are not isolated in
G and so that every non-isolated vertex in G other than z and y is adjacent
to £ and y and every pair of non-isolated vertices of G other than z and y
are adjacent. In this case, G = K, —eUI, forr >2o0r G = I,.

To prove the converse, note that if G = K, Ul for r > 1,q > 0, then the
construction of D in the proof of Proposition 3.7 gives the needed acyclic
digraph since C*(2) implies C*(4). Suppose that G = K, —eUI, for r > 2,
where the missing edge is {z,y}. Define D on the vertices of G by including
all arcs (v, a) for v € V(K,) — {y} and a the vertex of I, and also all arcs
(v,z) for v € V(K,) — {z}. To verify C*(4), note that every 4-element
subset S of vertices contains at least three vertices of K, —e and so at least
one of these is not z or y. This can serve as H(S). Q.E.D.

Theorem 3.10 Let G be a graph. Then G is the competition graph of
an acyclic digraph satisfying condition C*(5) if and only if G = I, or
G =K, Ul, forr>1,q>00rG = K,—eUl forr > 2, orG = K, —P3Ul;
forr>3o0rG=K,—-K3UI forr>3.

Proof. Suppose that G = C(D) for D = (V,A) acyclic and satisfy-
ing C*(5). By acyclicity, G has at least one isolated vertex. Hence, by
Lemma 3.6, part 1), with p = 5,9 > 1, a maximum-sized independent set
T of non-isolated vertices of G has at most three vertices. If T has at most
one vertex, then the argument is as in the proof of Proposition 3.7. If T" has
three vertices, then ¢ = 1 by Lemma 3.6, part 2). Thus, G =K, - KsU I,
for r > 3. The case r = 3 reduces to G = I,.

Next, suppose T has two vertices z and y. Since T has maximum size,
Lemma 3.6, part 1), implies that ¢ = 1 or ¢ = 2. Also, since T has
maximum size, every vertex not isolated in G is adjacent to z or y. Now
suppose that there are two vertices x; and x5 that are adjacent to z but not
to y. Then there are arcs (z, a), (z1,a), (z, b), (z2,b), (y,¢) in D. Since D is
acyclic, one can show that at least one of a,b,c is not in U = {z, z1, z2, y}.
To see why, suppose the contrary and note that b # z,zs. If b = 1, then
a # x2 because otherwise there is a cycle z;,z2,z;. Hence, a = y. Then
¢ € U gives us a cycle. A similar conclusion holds if & = x3. Thus, we
conclude that if a and b are both in U, each is y. But then ¢ € U again
gives us a cycle. We consider two cases,a € U and ¢ € U. (The case bg U
is analogous to the case a € U.) Let S be obtained from U by adding
either a or ¢. By Proposition 3.2, H(S) = a or ¢. However, in the former
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case, (z,a) € A implies (a,a) € A and in the latter case, (y,c) € A implies
(¢,¢) € A, both contradictions. We conclude that at most one vertex is
adjacent to z and not y. Similarly, at most one vertex is adjacent to y and
not zx.

Now suppose that ' is adjacent to z and not y and v’ is adjacent toy and
not z. Let a,b be chosen so that (z,a), (z',a), (y,b), (¥',b) € A. Acyclicity
implies that either a or b is not in U = {z,2',y,¥'}, say a without loss of
generality. Then S = U U {a} cannot have a head. We conclude that there
is at most one vertex adjacent to exactly one of z and y.

Now take a vertex v adjacent to both z and y and a vertex z adjacent
to exactly one of z and y. Arguing as above, we find a vertex ¢ so that
(z,c), (v,¢) € A or (y,¢),(v,¢) € A or (z,6),(2,¢) € Aor (y,¢),(2,¢) € A
and ¢ ¢ U = {z,y,v,2}. Then U U {c} must have a head and v is the
only candidate. In particular, this implies that v and z are adjacent. Next,
take vertices v; and ve adjacent to both = and y. We find a vertex d
so that (z,d),(v1,d) € A or (z,d),(v2,d) € A or (y,d),(v1,d) € A or
(y,d), (v3,d) € A and d ¢ U = {z,y,v1,v2}. Then U U {d} must have a
head and v; and v, are the only candidates. It follows that v; and v; are
adjacent in G. We have shown that any two vertices adjacent to both z and
y are adjacent and any such vertices are adjacent to any vertex adjacent to
exactly one of z and y.

We know tliat every vertex not isolated in G is adjacent to either z or
y. If there is no z adjacent to exactly one of = and y, then G must be
the graph K, — e U I, where the missing edge is {z,y}. The case r =2is
impossible since this implies that z is isolated in G. Suppose there is such
a z adjacent to exactly one of z and y. We have already shown that there
cannot be another w # z adjacent to exactly one of z and y. We conclude
that G is K, — P3 U I, where the missing edges are {z,y} and {z,z} or
{z,y}. We have already observed that ¢ =1 or ¢ = 2. The case 7 = 3 is
impossible since this implies that z or y is isolated in G. If r > 3, then
q = 1. For, if there are two vertices a and b in I,, then {z,y,2, a,b} can
have no head, which is a contradiction.

To prove the converse, we use the constructions in the proofs of Propo-
sitions 3.7 and 3.9 to take care of the cases K, UJ, and K, —eUI,. Suppose
next that G = K, — P3 U I;, where r > 3. Suppose that the two missing
edges in K, are {z,y}, {y,z}. Define digraph D on the vertex set of G by
including all arcs (v, a) for v € V(K,) — {z, 2}, where a is the vertex of I,
and all arcs (v, y) for v € V(K,)—{y}. Since every 5-element set of vertices
has at least 4 elements from K, — P, it has a vertex other than z,y, z and
this is its head. Finally, suppose that G = K, — K3UI,. Suppose the three
vertices whose pairwise edges are omitted are z,y, z. Define D on the vertex
set of G by taking arcs (v, a) for v € V(K;) —{y, z}, where a is the element
of I, (v,z) for v € V(K,) — {z,2} and (v,y) forv € V(K,)— {z,y}. Since

17



every 5-element set of vertices has at least 4 elements from K, — K3, it has
a vertex other than z,y, z and this is its head. Q.E.D.

4 Concluding Remarks

This paper has left often the problem of characterizing those graphs G for .
which G = C(D) for some digraph D satisfying condition C(p) without
requiring that D be acyclic. In particular, this is open in the case that the
union of nontrivial components of G has less than p vertices. The paper
has also left open in general the characterization of graphs G for which
G = C(D) for some acyclic digraph satisfying condition C*(p) for general
-
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