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ABSTRACT. We introduce the notion of premature partial latin
squares; these cannot be completed, but if any of the entries is
deleted, a completion is possible. We study their spectrum, i.e.,
the set of integers ¢ such that there exists a premature partial
latin square of order n with exactly ¢ nonempty cells.

1 Introduction

A partial latin square of order n, PLS(n), is an n x n array whose cells are
either empty, or contain an element of N = {1,2,...,n} such that (1) each
element occurs in at most one cell in each row and each column.

Recently, there has been some interest in maximal PLSs, and in critical
PLSs. A PLS is mazimal if no nonempty cell can be filled without violating
(1) above.

If one can fill the empty cells of a PLS(n) with symbols of N so that a
latin square of order n results, then the PLS is said to be completable, or
to have a completion. Clearly, not every PLS is completable.

A PLS is critical if it has a unique completion but removing any of its
entries destroys this property (i.e., there is then more than one completion).

In [HR], the second and the fourth author dealt with the problem of
determining the spectrum of maximal PLSs, i.e., the set

ML(n) = {t: there exists a maximal PLS(n) with exactly ¢ nonempty
cells}.

Similarly, there are several papers devoted to the determination of the
spectrum for critical PLSs, i.e., the set
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CL(n) = {t: there exists a critical PLS(n) with exactly ¢ nonempty
cells}

(see, e.g., [CR], [DC], [DH])).

In this paper we introduce and study so-called premature PLSs. A
PLS(n) is premature if it cannot be completed but removing any of its
entries destroys this property (i.e., there is then at least one completion).

The spectrum of premature PLSs is the set

P(n) = {t: there exists a premature PLS(n) with exactly ¢ nonempty
cells}.

The similarity in spirit of the critical and premature PLSs is readily
apparent. In fact, if one defines a PLS(n) to be a-completable if it has
exactly a distinct completions but after removing any of its entries it has
(strictly) more than a distinct completions, then the premature PLSs and
the critical PLSs are precisely the a-completable PLSs fora =0and a =1,
respectively. The similarity between maximal and premature PLSs is also
apparent.

However, notwithstanding these similarities, it appears that the methods
of attacking the respective spectra problems are quite different, and that the
methods that have been employed so far in studying the spectrum problem
of maximal and critical PLSs cannot be used for the present problem of
studying P(n), the spectrum for premature PLSs. Thus premature PLSs
are not just a “variation on a theme”.

Let us observe that if one were to drop the minimality condition (i.e.,
that after removing an arbitrary entry of the PLS, there is a completion)
and require only that the PLS be not completable, the spectrum problem
for such PLSs becomes trivial: a noncompletable PLS(n) with ¢ nonempty
cells exists for all ¢ in the interval [n,n? —2].

2 An upper bound

The truth of the Evans’ conjecture (see, e.g., [S], [AH]) implies that every
PLS(n) with at most n — 1 cells filled can be completed. It is also well
known that there exist PLS(n) with exactly n cells filled which cannot be
completed (see, e.g., [AH]; for example, put symbol z in all but one cell of
the main diagonal, and a different symbol y in its single remaining cell).
Thus min P(n) = n.

On the other hand, how large can the maximum M, of P(n) be? We
show in the next section that M, is asymptotic to n2. We now proceed to
obtain an upper bound on M,,.

First we observe that no premature PLS can have a line (= row or col-
umn) in which all cells are occupied; indeed, even if we deleted the entry
from one cell of such a line, the same entry would still have to occupy
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the same cell in any completion which contradicts the prematurity. Equiv-
alently (by employing conjugacy), no premature PLS(n) can contain an
element occurring n times.

Similarly, we observe that one can fill the empty cells of any premature
PLS until only two empty cells remain. Indeed, if & is the entry in the (3, 7)
cell of a premature PLS(n), delete this entry. Then, by definition, this new
PLS can be completed to an n x n latin square. In the latter, the element
k occurs in the cells (z,1), (m,j) where ! # j, m # i; simply remove these
two occurrences of k.

Lemma 2.1. Let L be a premature PLS(n) (n > 4) which contains a line
having exactly n—1 cells occupied. Then L contains at least 3n. — 3 empty
cells.

Proof: W.l.o.g., let the cells (1,7), 4 =1,...,n—1 of the first row of L be
occupied (and the cell (1,7) be empty). Since L is premature, L* obtained
by deleting the entry in the cell (1,7) can be completed, and thus no cell
of the nth column of L can contain the entry in the cell (1, 7) of L, for
j=1,...,n—1 (since in the completion of L* the entry in the cell (1, 7)
of L must be placed in the cell (1,7)). Let n be the element not occurring
in the first row of L. Then either (i) the last column contains only the
element n; but then L contains a total of n elements, or (ii) the last column
is empty; but then in the completion L*, the element n must occur in the
cell (1,7) (and the element from the cell (1,5) of L must occur in the cell
(1,n) of L*). Thus n does not occur at all in L. Thus each of the first n —1
columns of L has at least one empty cell. It is easy to see that there is a set
S of n empty cells so that each row and each column contains one empty
cell of S. If the jth column (j = 1,...,n — 1) contained only one empty
cell, say, the cell (k,7), then arguing as before we get that the entire kth
row is empty, and in total there are at least 3n — 3 empty cells. Otherwise,
if for each 7 = 1,...,n — 1, the jth column contains at least two empty
cells, then we have in total at least 3n — 2 empty cells. O

Theorem 2.2. Any premature PLS(n) contains at least 3n —4 empty cells.

Proof: Let L be a premature PLS(n), and let ¢ be the minimum number
such that each line of L has at least ¢ empty cells, and that there is a line
of L with exactly ¢ empty cells. If £ = 1 then L has at least 3n — 3 empty
cells by Lemma 2.1. If ¢t > 3 then L has at least 3n empty cells. Thus it
remains to consider the case ¢ = 2. W.l.o.g. assume that the cells (1, 5),
j=1,...,n—2 are occupied (and the cells (1,n — 1), (1,n) are empty).
Then by the same argument as above, each of the elements in the cells (1, 7),
j=1,...,mn—2 does not occur in at least one of the last two columns. Thus
there are at least n empty cells in the last two columns. Since each of the
first n — 2 columns contains at least two empty cells, there are in total at
least 3n — 4 empty cells. O

177



It follows that M,, < n? — 3n + 4. However, we feel that the following is
true.

Conjecture. M, <n2 —ni.
We can show:

Theorem 2.3. Each premature PLS(n) contains a row and a column with
at least \/n empty cells.

Proof: We prove the statement only for columns.

By the same type of argument as in the proof of Lemma 2.1 we get: Let
C; be the set of columns of a premature PLS(n), L, which have an empty
cell in the ith row of L. Then the total number of empty cells in columns
of C; is at least n.

For j = 1,...,n, we denote by d; the number of empty cells in the jth
column of L. Using this notation, for i = 1,...,n, the previous statement
can be written in the form ) j @i 2 n where the sum runs over all columns
from C;. Summing over all rows yields

DD di2nt (*)
i J

For a fixed index j the number d; occurs exactly d; times on the left side
of (*) (each empty cell in the jth column contributes one to the number of
occurrences of d; in (*)). Thus (*) can be written as

df+--+di 2n?

which in turn implies that there exists an index j (a column) so that d; >
V. 0O

Let E(n) = {n,n+1,...,n% — 3n +4}. Then P(n) C E(n). In the next
section we attempt to determine the values in E(n) which belong to P(n).

3 Constructions

In this section, we present some fairly general constructions of premature
PLS(n), both for “small” and for “large” values within the set E(n). We
rely heavily on Ryser’s theorem which deals with completing partial latin
squares which are latin rectangles.

Theorem 3.1. (Ryser [R]). An r x s latin rectangle L can be completed
to a latin square of order n if and only if each element occurs in L at least
T+ s —n times.

We also need the following simple observation:

(A) If an element of a PLS(n), L, which occurs in r rows (columns) of
L can be placed in (unoccupied cells) of at most n — r — 1 further rows
(columns) then L cannot be completed.
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Our first construction is especially simple.

Construction A. Let n, r, s be positive integers such that 2 < r < 8 <
n—r. Thenrs+n—r—s+1¢€ P(n).

Proof: Let R be an r x s latin rectangle based on {1, ..., s} occupying the
first = rows and the first s columns of L, a PLS(r). Furthermore, let the
cells (r+6,s+6),6=1,...,n—r—s+1, of L be occupied by the symbol
s+1, and let all other cells of L be empty. Then L is a premature PLS(n)
with exactly rs 4+ n — r — s + 1 nonempty cells.

Indeed, the symbol s+1 occurs in exactly n—r—s+1 cells of L. If L is to
be completed, s+ 1 must be placed in each of the first » rows but there are
only r —1 columns (the last » —1 columns) in which it can be placed. Thus,
by (A), L is not completable. Clearly, deleting any entry of L (whether in
R, or from among the cells (r + §, s + J)) renders L completable.

Construction A’. Let n, 7, s be positive integers such that2 <r < s < 3.
Then n(r —1) —r2+r+s+1¢€ P(n).

Proof: Let C; be a circulant latin square of order s on {1,..., s}, with
elements of the first column in natural order, and let Cs be a circulant
(n— s) x s latin rectangle on {s+1,...,n}, again with elements of the first
column in natural order. Let R; be obtained from C; by deleting all its
entries in the first » — 2 columns and all its entries in the last s — r rows,
and R; from C; by deleting all its entries in the last s —r +2 columns. Let
now L be a PLS(n) with R, in its upper left corner and R; in its lower left
corner. The only other nonempty cells of L occur in the (s + 1)st column
where the cells (,s+1),j=r+1,7+2,...,n—s+1containn—r —s+1
elements of {s +1,...,n}, and any such element differs from all elements
occurring in its row in Cs. Since any (n — s) x s latin rectangle with s < 3
can be extended by one column, the cells in the (s+1)st column can always
be filled in this manner.

Clearly, L cannot be completed, as the first r cells of the (s + 1)st col-
umn can contain only elements of {s+ 1,...,n} but there are only r — 1
such elements available. On the other hand, if any entry of L is deleted,
completion is possible. To see this, consider three cases.

Case 1. Suppose we delete an element ¢ from the cell (4,s + 1). Then
je{r+1,...,n—s+1}and t € {s+1,...,n}. The first r cells of the
(s +1)st column can now be filled with the r — 1 elements of {s+1,...,n}
that do not occur in the cells of the (s + 1)st column of L, together with
the “freed” element ¢. Complete now R; back to C; and Ry back to C; to
obtain L. There are still s unfilled cells of the (s+1)st column to be filled,
namely the cell (7,s+1) and thelast s—1 cells. If j € {s+1,...,n—s+1},
we can fill these cells arbitrarily with the s elements of {1, ..., s} to obtain
an n X (s + 1) latin rectangle L” on {1,...,n}. Otherwise, i.e. when
je{r+1,...,s}let d (d € {1,...,s}) be the element in the cell (5, s) of
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L’ and let (k, s) be the cell containing the element ¢. Create now from L’ an
n X (s+1) latin rectangle L” by replacing d in the cell (5, s) with ¢, placing
d in the cells (4,s + 1) and (k, 8), and filling the remaining s — 1 cells of
the (s + 1)st column arbitrarily with the s — 1 elements of {1,..., s} other
than d. To show that L” is indeed a latin rectangle, that is, that no row
or column of L” contains more that one occurence of the same element (or
that all rows and columns in L” are ‘latin’), we only need to examine those
rows and columns in L” which are different from the corresponding rows and
columns in L’. In particular, we need to examine rows j and k and columns
s and s+ 1. Row j and column s are obtained from the corresponding row
and column in L’ by swapping two entries, and thus are latin. Row k is
latin if the cell (k, s+ 1) does not contain the element d. If the cell (k, s+1)
is occupied in L', then it contains an element d’ € {s+1,...,n}; if the cell
(k,s+1) is empty in L', then in L” it contains the element d’ € {1,..., s},
d’ # d. Finally, column s + 1 is obviously latin.

Case 2. Suppose we delete now an element ¢ from the cell (4, k) where
ke{r—1,r,...,s8}. Thenje {l,...,7r} and t € {1,...,s}. Complete R,
back to C; and R; back to C» to obtain L'. Suppose q (g € {s+1,...,n})is
the element in the cell (s+41, k) of L’ (say). Create now L” by replacing ¢ in
the cell (4, k) with g, replacing g in the cell (s+1, k) with ¢, and also placing
t in the cell (5,s + 1); fill the cells (i,s+ 1), i =1,...,r; i # j, with the
r—1 elements of {s+1,...,n} that do not occur in the cells of the (s+1)st
column of L. Fill the last s —1 cells of the (s+ 1)st column arbitrarily with
the s — 1 elements of {1,..., s} other than ¢. Arguing similarly as in Case
1, L” is an n x (s + 1) latin rectangle on {1,...,n}.

Case 3. Finally, suppose we delete an element ¢ from the cell (4, k) where
ke{l,...,r=2}. Thenje€ {s+1,...,n}andt € {s+1,...,n}. Complete
R; back to C; and R; to C3 to obtain L’. Suppose g is the element in the
cell (1,k) of L’ (say). Create L” from L’ by replacing ¢ in the cell (4, k)
with ¢, (g € {1,...,s}), and also placing g in the cell (1, s+ 1), and placing
t in the cell (1, k). Proceed now as in Case 2.

In all cases, we obtain an nx (s+1) latin rectangle on {1,...,n} which can
be completed to a latin square of order n by Theorem 3.1. This completes
the proof that L is a premature PLS(n). 0

Construction A”. Let n, r, s be positive integerssuch that1 <r < s < 5.
Then n(r +1)—r2 —r —s+1 € P(n).

Proof: Let D; be a circulant (s — 1) x s latin rectangle on {1,..., s}, and
let D, be a circulant (n — s+ 1) x s latin rectangle on {s+1,...,n,n+1},
with both D;, D, having elements of the first column in natural order. Let
S; be obtained from D; by deleting its entries in the first » columns and
the last s — r — 1 rows, and let S» be obtained from D, by deleting all
entries in the last s — r columns, and all entries equal n + 1.
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Let L be a PLS(n) with S; in its upper left corner and S; in its lower left
corner. The only other nonempty cells of L occur in the (s + 1)st column.
Let D} be a circulant (n—s+1) x (n—s+1) latin square on {s+1,...,n+1}
having the first column in natural order, where all entries equal to n + 1
are deleted. Then entries (r+1,s+1),(r+2,s+1),...,(n—s+2,8+1)
in L are equal to the entries (1,7+2),(2,7+2),...,(n—s—r+2,7r+2) in
D), respectively. Note that the cell (n — 8,38+ 1) in L is empty, and thus
there are n —r — s+ 1 occupied cells in the column s +1. Again, L cannot
be completed but if any entry of L is deleted, completion is possible.

Case 1. Suppose we delete an element ¢ from the cell (7, s+ 1). Then
t € {s+1,...,n}, and the first r cells of the (s 4+ 1)st column can now be
filled with the r —1 elements of {s+1,...,n} that do not occur in the cells
of the (s+41)st column of L, together with the “freed” element ¢. Complete
now S; back to D; and S back to Ds; replace now element n+1 in column
1 with s, in column 2 with 1, ..., in column s with s—1, to obtain L’. Note
that in L’ a row n — j, j € [0, s — 1], contains only one element from the
set {1,...,s}, namely the element j if 5 > 0, and the element s if j = 0.
Also note that rows n — j, j € [s,n — s] do not contain any of the first s
elements; whatever the value of s, row s in L’ will never contain any of the
first s elements.

There are still s unfilled cells of the (s + 1)st column to be filled, namely
the cells (j,s+ 1) and (n — 3,5+ 1), and the last s — 2 cells.

If j € {s,...,n—s+2}, we can always fill these cells with the s elements
of {1,...,s} to obtain an n x (s + 1) latin rectangle L” on {1,...,n}; to
see this, recall that each of the last n — s+ 1 rows in L’ contains at most
one element d’ € {1,...,s}, and that s > 2.

Otherwise, i.e. when j € {r+1,...,s—1}, create from L’ an n x (s+1)
latin rectangle L” by replacing the element j in the cell (j,1) with s+ 1,
placing 7 in the cells (7,8 + 1) and (s,1) and filling the remaining empty
cells of the (s + 1)st column with the s — 1 elements of {1,...,s} other
than j. Note that we have in fact swapped the entries in the cells (j,1) and
(s,1), and thus column 1 is latin; also, row s is latin, as it originally did
not contain any of the first s elements.

Case 2. Suppose we delete now an element ¢ from the cell (4, k) where
ke{r+1,r+2,...,5}. Thenje{l,...,7r} and t € {1,...,s}. Complete
now S back to D; and S; back to Ds; replace all entries equal to n + 1,
as in Case 1, to obtain L’. Create now L” by placing ¢ in the cell (4,s+1),
and swapping elements in the cells (4, k) and (s, k). Fill the cells (¢, s + 1),
i=1,...,7; ¢ # j, with the » — 1 elements of {s+1,...,n} that do not
occur in the cells of the (s + 1)st column of L. Fill the remaining empty
cells in (s+ 1)st column with the s — 1 elements of {1,...,s} other than ¢.
Then L” is an n x (s + 1) latin rectangle on {1,...,n}.
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Case 3. Finally, suppose we delete an element ¢ from the cell (j, k) where
ke{l,...,r}. Thenje {s,...,n} and t € {s+1,...,n}. Complete now
Sy back to D, and S; back to Do; replace now all entries equal to n + 1,
as in Case 1, to obtain L',

Suppose ¢ is the element in the cell (p, k) of L', where p < s and ¢ does
not occur in the row j of L’. Thatis,p<sandg#n—-jifn—s<j<n,
and g # sif j=n. If s > 2 or n— j # 1, such p always exists. Create L”
from L' by replacing ¢ in the cell (4, k) with ¢, (g € {1,...,s}), and placing
q in the cell (p,s+ 1), and ¢ in the cell (p, k). Proceed now as in Case 2.

However, if s = 2 and n — j = 1, then we replace q in the cell (1,1) by
t, we place 2 in the cell (n —1,1), and 1 in the cells (n,1) and (1,s + 1).
(Note that r =k =1.)

In either case, we see that L is a PLS(n). O

Corollary 3.2. [n+1, "72 +4] C P(n) where § =1 if n is even, and § =
if n is odd.

Proof: Due to Construction A’ and A” it suffices to show that the sets
{n(r—1)=r?4r+s541:2<r<s< 2}and {n(r+1)-r2—r—s+1:1<
r < s < 2} cover the interval [n + 1, "Tz + 1] for n even, and the interval
[n+1, #] for nodd. For any fixed r, let f(r) = {n(r—1)—r2+r+s+1: 2 <
r<s<Zhandletg(r)={n(r+1)-r2—r—s+1:1<r<s< 2}
Clearly, both f(r) and g(r) are intervals, so f(r) = [f(r)m, f(r)um], g(r) =
[9(")m,g(T)m]. A routine calculation yields f(r) = [n(r — 1) — 72 + 2r +
1,n(r—3)~r®+r] and g(r—1) = [n(r—4)—r24+r+1,nr —r2+1] for n even
(thatis, f(r)m+1 = g(r—1)m), and f(r) = [n(r—l)—r2+2r+l,n(r—-%)—
r2+r+4]and g(r—1) = [n(r—3)—r2 +7+3,nr —r2+41] for n odd (that is,
J(r)m+1=g(r—1)m). In order to complete the proof, now one only needs
to observe that f(r+1)m = g(r—1)m+1,9(3 -2 = g(3 —1)m—1forn
even, f(2)m =n+1,and g(3 —1)m = ';—a +1 for n even, g(253)y = %’ﬁ
for n odd. O
Construction B. Let n, r, s, z, o be positive integers such that r+s—n =
a>0,2<r<s<n-z z <r, and, moreover,

lw

(i) za —1 < (z — 1)r [equivalently,r < z(n — s) + 1]
(ii) rs — (xa—1) > (a+ 1)(n — z).

Then rs —za+ 1 € P(n).
It follows that either z > 1,orz=1and a=1.

Proof: We construct a PLS(n), L, all of whose nonempty cells are con-
tained within an r x s rectangle R in the upper left corner of L. However,
not all cells of R are filled; in fact, exactly o — 1 of these are empty (we
refer to these empty cells as “holes”).
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Let R be an r x s latin rectangle based on elements {1,...,n — z} with
exactly za—1 entries deleted in such a way that no line contains more than
z — 1 holes (thus condition (i) must be satisfied). There are = elements
n—z+1,...,n that do not occur in R at all. Now if R contains each of
1,...,n—z at least a+1 times, (thus condition (ii) must be satisfied), then
if we delete another entry to obtain R’ with za holes, each of the elements
1,...,n —x will still occur in R’ at least o times. If we now fill the za
holes of R’ (so that each of the z missing elements is placed in exactly o
holes, and no element is placed in two holes in the same row or column)
to obtain R* then R* satisfies the conditions of Ryser’s theorem, and thus
can be completed. Since R is clearly not completable, R is a premature
PLS(n) with exactly rs — za + 1 nonempty cells.

Thus all that is needed is an r x s latin rectangle R as above. We
may start, for example, with an equitable r x s latin rectangle based on
1,...,n -z (which always exists; see, e.g., [M], [W]) and delete from it the
entries of no more than z — 1 disjoint (partial) transversals. 0O

Corollary 3.3. The maximum M,, of P(n) is asymptotic to n2.

Proof: Assume for simplicity of calculations that n is a perfect square
(when it is not, the argument is similar). In Construction B, choose r =
s=n—ynandz=+n Thena=n-2y/n;za-1=n% —2n—1, and
conditions (i) and (ii) are satisfied. Thus t, = (n — /n)? —n? +2n+1 =
n? —3n3 + 3n+1 € P(n). But t, ~ n? — o(n?), and since M, > t,, the
corollary follows. O

Example. Let n =16, r = s =12, £ = 4. Then o = 8, zaa — 1 = 31.
Let L be any latin square of order 12 with three disjoint transversals, and
let T, T3, T5 be three disjoint transversals of L. Delete all entries in the
cells of T} and T5 from L as well as any 7 entries from the cells of T3. The
resulting PLS(12) L’ has 113 nonempty cells, and considered as a PLS(16),
is clearly premature. Thus 113 € P(16).

Construction B is quite general, and covers many values in the “upper
part” of E(n). For example, we get:

Corollary 3.4. For n even, ["T2 +1, 1‘41 +n-2] C P(n).

Proof: In Construction B, choose & € {1,2}, r < 5, s—7r < 3,z €
{a,a+1,...,n—s}. O

Combining Constructions A and B, we get for small values of n:
{4,5,6} c P4), {5,6,7,8} C P(5),
[6,13] C P(6), [7,17) C P(7);
(8,25]\{23,24} C P(8),
[9,31]\ {26, 29, 30} C P(9),
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[10,42]\ {36, 39,40} C P(10),
[11,49]\{42,46,47,48} C P(11),
[12, 63)\ {47, 50,54, 55, 59, 60, 62} C P(12).

4 Conclusion

While several further corollaries similar to Corollary 3.4 can be obtained
from Construction B, it is also clear that Constructions A’, A” and B alone
leave many values of F(n) uncovered.
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