A note on the spatiality degree of graphs
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ABSTRACT. We introduce the notion of BP-spatial representa-
tion of a biconnected graph G = (V, E). We show that the spa-
tiality degree of a BP-spatial representable graph is 2(|E| - [V]).
From this result, we derive the spatiality degree for planar and
hamiltonian graphs.

1 Introduction

A spatial representation (in R3) [1] of a (undirected, simple, and connected)
graph G is a collection of faces where: (1) each face is a finite simple surface
whose boundary corresponds to a simple cycle of G, (2) no two faces can
be bounded by the same cycle, (3) each edge belonging to a cycle is on the
boundary of at least one face, (4) any two faces do not intersect but along
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the common edges, and (5) the union of all the faces is a set S on which
any closed line can be continuously shrunk to a point always remaining on
S (that is, such union is a simply connected topological space).

In Figure 1 a planar graph of eight vertices, ten edges, and four faces is
shown while in Figure 2 a spatial representation of this graph with six faces
is shown: three faces are bounded by cycles of four vertices and are plane,
the fourth one is bounded by the cycle ABCFGH, the fifth one is bounded
by the outer cycle, and the sixth one is bounded by the cycle BCDEFG
and is drawn below the plane of the graph.

H G F E
[ 2 ® ® ]
AN U W—
A B C D

Figure 1: A planar graph

Observe that in the above example the faces identify four “cells”, i.e.,
simple regions such that any two points inside the region can be connected
with a line entirely contained into it. One of these cells is the infinite one.

In [1] it is shown that any graph admits a spatial representation. Such a
representation has exactly one cell (i.e., the infinite one) and is also called a
“tree-representation”. For a biconnected and planar graph another spatial
representation is the one obtained by drawing the graph onto the sphere.
Such a representation has exactly two cells. However, graphs exist for which
a tree-representation is the only one possible, that is, they do not admit
a spatial representation with more than one cell (e.g. a chain of 3-vertex
cycles joined by exactly one vertex). It thus seems reasonable to distinguish
graphs according to the maximum number of cells that can be formed by
spatial representations. In [1] this number is called the spatiality degree of
a graph and it is denoted by s(G).

The notion of spatial representation is strictly related to that of regular
CW-complex (cell complex) [2]. In other words, it is essentially a regular
2-cell complex in a three-dimensional Euclidean space on a given graph
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Figure 2: An example of a spatial representation of the graph of Figure 1

G = (V,E). For some set of simple cycles, an open disk can be sewed
on each so that every non-cut-edge is on a face and so that the resulting
topological space is simply connected. The goal is to maximize the number
of 3-cells. We conjecture that this number is 2(|E| — |V|) (each 3-cell is
delimited by exactly three faces) if G is biconnected and is not an edge or
a simple cycle. We prove it for planar and hamiltonian graphs. In section
2 we introduce the notion of BP-spatial representation of a biconnected
graph G = (V, E). We show that the spatiality degree of a BP-spatial rep-
resentable graph is 2(|E| — |V|). We also prove that the spatiality degree
of any G is equal to the sum of the spatiality degrees of the biconnected
components minus the number of these components plus one. In section 3,
from these results the spatiality degree for planar and hamiltonian graphs
is derived.

2 General Results
A BP-spatial representation of a graph G is a spatial representation such
that (1) any face belongs to exactly two cells and (2) the subgraph of G

corresponding to the boundary of any cell is a biconnected planar subgraph
of G. A graph is BP-spatial representable if it admits a BP-spatial rep-
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resentation. In this section we show how a set of faces can be added to
a BP-spatial representation so that any cell of the new representation is
delimited by exactly three faces. The following two lemmas are needed to
define such a suitable set of faces.

Let F be a face of a planar graph G drawn onto a sphere. An ear of F
is another face F’ such that the intersection between the boundaries of F
and F' is a simple path of at least one edge.

Lemma 1.1. For any biconnected planar graph G with at least 3 faces,
any face has two ears.

Proof: Let us assign to any face with non-empty edge-intersection with F
a distinct color. Let us then color the edges of the boundary of F' according
to the color of the face they belong to. A subpath of the boundary of F
is then said to be a “segment” if all its edges have the same color and no
adjacent edge has the same color. A segment is said to be “single” if it is
the only one with that color. Since G is biconnected, the boundary of any
face is a simple cycle. Given that there are at least 3 faces, it follows that
F has at least two segments. In fact, if there were only one segment the
boundary of F would be part of the boundary of another face F’. Then, the
boundary of F’ would not be a simple cycle. If all segments have different
colors, then there are at least two single segments. Otherwise, let 5; and
s2 be two segments of the same color. Consider the two paths obtained
by removing the edges of 51 and s; from the boundary of F. Since pairs
of equally-colored segments with distinct colors cannot interleave, both of
those paths must contain single segments. O

Lemma 1.2. Let G be a biconnected planar graph. Let G’ be the graph
obtained by deleting in G the internal vertices of the intersection of the
boundary of a face with the the boundary of one of its ears. Then, G’ is a
biconnected planar graph.

Proof: Clearly, G’ is planar since it has been obtained from G by deleting
a path. Let v be any vertex of G'. We show that G’ — v is connected.
Let u; and us; be any two vertices of G' — v. In G — v there is a path p
between u; and u,. Let ¢; and ¢5 be the endpoints of the path deleted from
G. If one of the deleted edges belongs to p, then t; and {2 must belong to
p. This follows from the fact that the internal vertices of the deleted path
have degree two. W.l.o.g., u; and uy are connected by subpaths of p to
t; and ¢, respectively in G’ — v. Moreover, since t; and t; belong to the
boundary of a face of G’ they are connected in G' — v. m}

For any spatial representation of a graph G = (V, E), the following
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equality holds:
V- IEl+ f=c.

where f and ¢ are the number of faces and the number of cells of the spatial
representation, respectively [1]. Observing that any face may delimit at
most two cells and that, if ¢ > 2, each cell must be delimited by at least
three faces, it follows that, for any graph G,

s(G)=1 or 1<s(G)<2(E|-|V).
Now, we can state the following theorem.

Theorem 2.1. If G = (V, E) is BP-spatial representable then s(G) =
2(121 - IVD)-

Proof: Let F be a face of a planar graph and let F’ be an ear of F.
Let B and B’ be the boundaries of F' and F’ respectively. The sum of B
and B’, denoted as B + B', is a cycle determined by the symmetric edge-
difference between B and B’. It suffices to show that, for any cell delimited
by more than three faces, it is possible to “split” the cell adding a new face.
Indeed, select any face F' of the graph corresponding to the boundary of
the cell (which is biconnected and planar). From Lemma 2.1 it follows that
F has two ears Fy and F,. Let B, By, and By be the boundary of F, F,
and F; respectively. Either B+ B; or B+ B; is not the boundary of a face
of the spatial representation. In fact, since the cell is delimited by more
than three faces neither B + B; nor B+ B; may be a boundary of a face of
the cell. It follows that they cannot be both boundaries of faces, otherwise
they would intersect. Thus we can add a new face with this boundary and
then split the cell. From Lemma 2.2 the representation obtained is still a
BP-spatial representation. Then, by iterating this operation the statement
of the theorem follows. v o

The next result relates the spatiality degree of a graph to the spatiality
degrees of its biconnected components.

Theorem 2.2. For any graph G,

k
s(G) =) s(Bi)~k+1
i=1
where By,..., By are the biconnected components of G.

Proof: We prove that s(G) = Y+, s(B;) — k + 1 by induction on the
number & of the biconnected components of G. If k = 1, it is trivially
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true. Suppose that G has k > 1 biconnected components By,...,Bx. Bi
is connected to the other part of the graph by a single vertex v. Let G’ be
the graph obtained by deleting from G all the vertices of By but v. By the
inductive hypothesis, G’ a.dxmts a spatial representation with a maximum
number of cells equal to E ! s(B;) = (k — 1) + 1. Let C be a cell of this
representation such that v belongs to it. Consider a spatial representation
of By with s(By) cells and such that v belongs to the infinite cell. Then
there exists a representation of G where the spatial representation of Bj
is inside C. Such a represent.atlon has E, —1 5(Bi) — k + 1 cells. This is
the maximum number of cells since any cycle of G is included in some
biconnected component. a

3 The Spatiality Degree of Planar and Hamiltonian Graphs

From the general results shown in the previous section, we derive the fol-
lowing theorems.

Theorem 3.1. Let Gy = (W, E1),...,Gr = (Vi, Ex) be the biconnected
components of a planar graph G, which are not edges or simple cycles.
Then,

h
s(G) =2 (B - Vi) - h+1.
i=1

Proof: Clearly, G; is BP-spatial representable. It follows from Theorem
2.1 that s(G;) = 2(|Ei| — [Vi]). Then the statement follows from Theorem
2.2 u}

Theorem 3.2. For any hamiltonian graph G = (V, E) which is not a sim-
ple cycle, s(G) = 2(|E| - |V]).

Proof: Let v, v, ...y, v; be the sequence of nodes visited on a hamil-
tonian cycle, where |V| = n and let such cycle be a face of the spatial
representation we are constructing. Consider any edge, say (v;,v;), which
does not belong to the hamiltonian cycle, with ¢ < j. Then, add as
faces of the spatial representation the cycles vy,...,v;,v;,v;_1,...,v1 and
Vi, ..y Uny Un—1, ..., Vj, ¥i. Obviously, these three faces can be seen as the
boundary of a cell. Observe that another edge which is not in the hamilto-
nian cycle can provide another pair of faces, as in the previous case. This
new pair of faces can form a new cell with the two previously added faces.
Since all the vertices are still on the boundary of the infinite cell, we can
iterate this operation for each edge which is not in the hamiltonian cycle.
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Hence, we obtain a BP-spatial representation and the statement follows
from Theorem 2.1. (]
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