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Abstract

The skewness of a graph G is the minimum number of edges that
need to be deleted from G to produce a planar graph. The splitting
number of a graph G is the minimum number of splitting steps needed
to turn G into a planar graph; where each step replaces some of the
edges {u,v} incident to a selected vertex u by edges {', v}, where '
is a new vertex. We show that the splitting number of the toroidal
grid graph Cp x Cr, is min{n, m} — 26n,30m,3 — 0n,40m,3 — 6n,30m,4
and its skewness is min{n, m} — 6,,30m,3 — 6n,40m,3 — 0rn,30m 4. Here,
§ is the Kronecker symbol, i.e., &;j is 1 if i = j, and 0 if ¢ # j.

Keywords: topological graph theory, graph drawing, toroidal mesh,
planarity.
AMS Subject Classification: 05C10, 57M15, 05C62

1 Introduction

The skewness sk(G) and splitting number sp(G), defined below, are two
natural measures of the non-planarity of a graph G. These topological
invariants play important roles in automatic graph drawing and circuit
design (8,9, 15, 18,22,23].
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sp sk
3 4 5 6 7 3 4 5 6 7
3(1 2 3 3 3 312 2 3 3 3
4(2 4 4 4 4 412 4 4 4 4
5(3 4 5 5 5 5(3 4 5 &5 &
6|3 4 5 6 6 63 4 5 6 6
713 4 5 6 7 713 4 5 6 7

Table 1: Values of sp and sk for small values of n and m

In this paper, we determine exact values for the skewness and splitting
number of the graphs Cy, X Cr,, where Cj, is the chordless cycle on n vertices.
These graphs can be drawn as regular latitude-longitude grids on the torus,
and thus are also known as ‘toroidal rectangular grids’ or similar names.
They occur often as interconnection diagrams of multiprocessor computers
and cellular automata [15, 18], and so our results are relevant to the physical
design of such machines.

It turns out that the obvious upper bound min{n,m} is always tight
except for C3 x C3 and C3 x Cy. Specifically, we show that

5p(Cr x Cpy)
sk(Cp X Cin)

where 4 is the Kronecker identity symbol, i.e., &;; is 1 if 2 = j, and O if
i # .

Table 1 shows these bounds explicitly for small values of n and m.

Our strategy to prove these results is as follows. In section 4, we prove
that sp(G) < sk(G), for any graph G. In section 5, we show that formula (1)
is a lower bound for the splitting number sp, and in section 6, we prove that
formula (2) is an upper bound for the skewness sk. It follows that the two
invariants coincide except for C3 x C3. To complete the proof we show in
sections 5 and 6 that sp(C3 x C3) = 1 and sk(C3 x C3) = 2, respectively.

min{n, m} - 2(53,n63,m - 53,1164,111 - 64,7163."! (1)
min{n,m} — 63 n03,m — 03,n04,m — O4.nd3,m, (2)

2 Notation and definitions

For basic concepts—graph, path, cycle, complete graph, etc.—we borrow the
definitions and nomenclature from Bondy and Murty [4].

Two graphs G and H are said to be isomorphic if there is a bijection
a:V(G) = V(H), such that {u,v} € E(G) if and only if {a(u),a(v)} €
E(H). The bijection « is called an isomorphism from G to H. An auto-
morphism of a graph is an isomorphism from the graph to itself.

Additionally, we define an open arc as a bounded subset of the plane
R? homeomorphic to the real line R in the standard topology. A drawing
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of a graph G is a mapping ¢ of the vertices of G' to points of the plane,
and of the edges of G to open arcs—the vertices and edges of the drawing,
respectively—such that (1) the vertices of the drawing are pairwise distinct,
and disjoint from all its edges; (2) any two edges of the drawing are either
disjoint, or cross at a single point; (3) for every edge e = {u,v} of G,
the external frontier of ¢(e) is {¢(u), #(v)}; and (4) no three edges of the
drawing go through the same point.

We say that a graph is planar if it has a drawing without crossing edges.

We denote by K, the complete graph on n vertices, and by Kp n the
complete bipartite graph between m vertices and n vertices. In our proofs,
we rely heavily on Kuratowski’s theorem [21], which says that a graph is
planar if and only if it does not contain a subdivision of K5 or K33 as a
subgraph. In fact, we always prove that a graph is not planar by showing
that it contains a subdivision of K3 3, shown in figure 1.

Figure 1

We also make use of the fact that a planar graph remains planar if an
edge is deleted or contracted.

The skewness sk(G) is the minimum number of edges that must be
removed from G to produce a planar graph.

A vertez splitting operation, or splitting for short, consists in replacing
some of the edges {u,v} incident to a selected vertex u by edges {u',v},
where ' is a single new vertex. The (vertez) splitting number sp(G) is the
minimum number of splittings needed to turn G into a planar graph.

Note that, for any sequence of splittings, there is a sequence of the same
length that produces the same graph, and is such that the vertex u affected
by each splitting is always an original vertex of G, not one of the vertices
introduced by previous steps.

For n > 3, we denote by C, the chordless cycle with n vertices and n
edges. The nxm toroidal grid Cy, X Cr, is the graph-theoretic product of C,
and Cp,; that is, the graph with nm vertices {v;; : 0 <éi<n, 0<j<m},
and 2nm edges {{vij, V(i+1) mod n,j }» {Vij Vi,(j+1) mod m} : 0 L2 < m, 0 <
j<m}.

In our drawings of C, x Cy,, vertex v;; is represented by a point on
the plane with coordinates (i, 7). Based on this convention, we call the two
families of edges above horizontal and vertical, respectively.
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A cycle of C,, x Cy, is called a meridian if it uses only vertical edges,
and a parallel if it uses only horizontal ones. Thus the n x m toroidal grid
has n meridians isomorphic to Cy,, and m parallels isomorphic to C,,.

Let F be a family of isomorphic subgraphs of a graph G. We say
that G is F-transitive if for any two elements F' and H of F there is an
automorphism of G that takes F' to H. Note that C,, x C, is meridian-
transitive, and parallel-transitive.

3 Previous results

The problems of verifying and computing the invariants sk and sp for general
graphs have been shown to be respectively NP-complete [11,14] and MAX
SNP-hard [6,10], even for cubic graphs. However, it can be checked in
polynomial time whether the skewness sk is equal to a fixed &k [13]. We
have shown [6] that the same holds for the splitting number sp, by the
results of Robertson and Seymour [26].

The difficulty in computing the invariants sk and sp for general graphs
justifies their analysis for special families of graphs. Exact explicit formulas
have been found for the splitting number of complete graphs and complete
bipartite graphs [17,19], and for the skewness of the n-cube @, [5].

For the toroidal grid Cr, X Cy, in particular, there are only a few partial
results concerning these invariants. The upper bounds sk(C, x Cp,) <
min{n,m} and sp(C, X Cp) < min{n,m} are fairly obvious, too (see
lemma 19).

The splitting number sp(C,, X Cr;) was determined exactly by Schaffer
in his 1981 thesis [28], but not published elsewhere. The special case of
Cy x C4, which is isomorphic to the 4-cube @4, was proved by Faria et
al. [12]. In this article we give a new proof of Schaffer’s result, and also an
exact formula for the skewness sk(C,, x Cy,).

There are many partial results about the crossing number c¢r(G) (the
minimum number of edge crossings in any drawing of G) for G = C,, x Cy,.
Harary et al. [16) conjectured that c¢r(Cp x Cp) = (n — 2)m, for all n,m
satisfying 3 < n < m. This has been proved only for n, m satisfying m > n,
and n < 5 [3,7,20,24,25], and for the special cases n = m = 6 [1], and
n=m =7 [2]. A recent result [27] based on the asymptotic behaviour of
the minimum crossing numbers of wide classes of drawings for C,, X C},, also
supports the conjecture. The general conjecture ¢r{C,, X Cp) = (n — 2)m
remains open for all but a finite number of values of n. It can be shown
that cr(G) is always an upper bound for sk(G) and sp(G) [12]. However,
for C,, x Cy, this bound is not tight, and so the results above cited are not
directly useful for our problem.
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4 Skewness versus splitting

The following general properties of skewness and splitting numbers are
easily proved:

Lemma 1 If H is a subgraph of G, then sp(H) < sp(G) and sk(H) <
sk(G).

Lemma 2 If H is a subdivision of G, then sp(H) = sp(G) and sk(H) =
sk(G).

Lemma 3 If a verter v of a graph G has at most one neighbor, then
sp(G) = sp(G — v).

Proof. Consider a minimum sequence of splittings that turns G' = G — v
into a planar graph H’. Since these splittings do not affect the edge {u,v},
if we apply the same splittings to G, then we will get a graph H equal to H'
with the extra vertex v and extra edge {u,v}; which is obviously planar
like H'. Thus sp(G) < sp(G — v). The claim then follows by lemma 1. O

We also need the following inequality between the invariants:
Lemma 4 For every graph G, we have sp(G) < sk(G).

Proof. We prove the lemma by induction on sk(G). If sk(G) = 0, then G is
planar and therefore sp(G) = 0. Otherwise, there is some edge e = {u,v}
such that sk(G — e) = sk(G) — 1. Now let H be the result of adding
a vertex u' to G and replacing the edge e by ¢ = {u/,v}, as shown in
figure 2. This is a splitting step, so sp(G) < sp(H) + 1. By lemma 3,
sp(H) = sp(H — u') = sp(G — e). Since sp(G — e) < sk(G — e) by the
induction hypothesis, we conclude that sp(G) < (sk(G) — 1) + 1 = sk(G).
O

Figure 2
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5 A lower bound for the splitting number

Lemma 5 The splitting number of C3 x C3 is 1.

Proof. The graph C3 x C3 has a subdivision of the K33 as shown in fig-
ure 3(a), where the edges belonging to the subdivision of the K33 are thicker
and vertices are emphasized. It follows that sp(C3 x C3) > 1. On the other
hand, we can obtain a planar graph from C3 x C3 with a single splitting
as shown in figure 3(b) which implies that sp(C3 x C3) < 1. Therefore,
sp(C3 x C3)=1. a

7
N

7w ®
Figure 3

Lemma 6 The splitting number of Cs x Cy is at least 2.

Proof. Let H be the graph obtained from C3 x C4 by a single vertex
splitting. Without loss of generality, we may assume that the split vertex
is va,o (indicated by x in figure 4). That splitting leaves untouched the
subdivision of K3 3 shown in figure 4. It follows that sp(C3 x C4) > 2. O

L_ + ;

Figure 4

Lemma 7 If G can be obtained from C3 x Cs by two splittings on the same
vertez u, then sp(G) > 1.

Proof. As in the proof of lemma 6, the two splittings in the vertex vz, will
not destroy the copy of K3 3 shown in figure 5. Therefore G is not planar,
and sp(G) > 1. O
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Lemma 8 If G can be obtained from C3 x Cj by two splittings on distinct
vertices of C3 x Cs, which belong to the same parallel or to adjacent parallels,
then sp(G) > 1.

Proof. If the two vertices are on the same parallel {C3), then without loss of
generality we may assume that they are vy o and v2 0. In that case the copy
of K3 3 shown in figure 5 is not affected by the splittings. The same is true
if u and v belong to consecutive parallels: we can always map them by an
automorphism to two of the vertices marked x figure 5, which can be split
without destroying the K3 3. Therefore G is not planar, and sp(G) > 1. O

Figure 5

As shown in figure 6, there are at most seven different ways to split a
vertex of C, x Cy, (assuming we do not care which of the two resulting
vertices is the new one). We need this fact to prove the next two lemmas.

+ 10 §?L
e 54 [ 7t

Figure 6

Lemma 9 If G is obtained from Cs x Cys by splitting two non-adjacent
vertices on the same meridian of C3 x Cs, then sp(G) > 1.

Proof. Without loss of generality, we may assume that the two vertices
are vg,0 and v; 2. Figure 7 shows all 7 x 7 = 49 possible ways to split these
two vertices, grouped into five cases. In each case there is a subdivision
of K3 3, shown in figure 7, that is contained in C3 x C5 and is not destroyed
by the splits. Therefore G is not planar, and sp(G) > 1. ]
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Figure 7

Lemma 10 If G is the result of splitting two vertices of C3 x Cs that lie
at distance 3 from each other, then sp(G) > 1.

Proof. Without loss of generality, we may assume that one of the vertices
is v1,2. There are four vertices at distance 3 from v 2, namely vo,0, v2,0,
Vo4, and vg 4. Without loss of generality, we may assume the other split
vertex is v 0. Figure 8 shows all 7 x 7 = 49 possible ways to split these two
vertices, grouped into five cases. In each case there is a subdivision of K33
contained in C3 x Cy that is not destroyed by the splittings. Therefore G
is not planar, and sp(G) > 1. O

Lemma 11 The splitting number of C3 x Cs is at least 3.

Proof. Consider a sequence of splittings that turns Cs x Cs into a planar
graph. We may assume that all splittings are applied to vertices of C3 x Cs.
By lemma 6, the sequence has at least two steps; let v and v be the affected
vertices, and d their distance in C3 x Cs. If d = 0, then v = v, and lemma 7
applies. If d = 1, then u and v lie on the same parallel or on adjacent
parallels, and lemma 8 applies. If d = 2, then they either lie on adjacent
parallels, or are non-adjacent vertices of the same meridian, and either
lemma 8 or lemma 9 applies. Finally, if d = 3, then lemma 10 applies.
Since there are no pairs of vertices with d > 3, we conclude that two
splittings are not enough to turn C3 x Cs into a planar graph. 0
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Figure 8

Lemma 12 The splitting number of C3 X Cp, for m > 5, is at least 3.

Proof. This result follows from lemmas 1, 2 and 11, since Cs x C,, contains
a subgraph that is isomorphic to a subdivision of C3 x Cs. ]

Lemma 13 The splitting number of Cy x Cy is 4.

Proof. The graph Cy x Cjy is isomorphic to the 4-cube Q4; the result
sp(Q4) = 4 was proved by Faria, Figueiredo, and Mendonga [12]. O

Lemma 14 The splitting number of Ci X Cx, for k > 4, is at least k.

Proof. We prove this assertion by induction on k. The induction basis is
the case k = 4, proved by lemma 13.

Now let k& be greater than 4, and let Z be any sequence of splittings
that turns G = Cx x Cj into a planar graph H. We may assume that all
splittings in Z are applied to vertices of G. Let v be one of the vertices
split by Z, and let G’ be the graph G — v. It is easy to see that the graph
G' contains a subgraph that is isomorphic to a subdivision of Cr-1 X Cr-1;
hence, by induction, sp(G’) > k — 1. It follows that the sequence Z has at
least kK — 1 + 1 = k steps. O

Lemma 15 The splitting number of Cp X Cr, for n,m > 4, is at least
min{n,m}.
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Proof. Without loss of generality suppose that n < m. The assertion
follows from the fact that C,, x Cy,, contains a subgraph that is isomorphic
to a subdivision of C,, x Cp,, which has splitting number at least n. a

Lemma 16 The splitting number of C, x Cp, is at least min{n,m} —
20,30m,3 — 0n,40m,3 — 6n,30m 4.

Proof. The assertion follows from lemmas 5-15. m]

6 An upper bound for the skewness
Lemma 17 The skewness of C3 x C3 is 2.

Proof. Let e be any edge of C3 x C3; without loss of generality, we may
assume that e is the vertical edge {vo 1,v0,2}, marked with x in figure 9(a).
Deleting e from C3 x C3 does not affect the subdivision of K3 3 indicated
in the figure; therefore C3 x C3 — e is not planar, and sk(C3 x C3) > 1.

On the other hand, the removal of the two edges marked x in figure 9(b)
results in a planar graph, as shown in figure 9(c). Therefore sk(C3xCj3) = 2.
O

@ ®)

Figure 9

Lemma 18 The skewness of C3 x Cy is at most 2.

Proof. Figure 10 exhibits two edges of C3 x Cy whose removal results in a
planar graph. m]

Lemma 19 The skewness of Cn, x Cp, is at most min{n,m}.

Proof. Suppose without loss of generality that n < m. Figure 11 exhibits
a set of n edges of C,, x C,, whose removal obtains a planar graph. a

202



Figure 11

Theorem 1 The splitting number and the skewness of Cp, x Cp, are:

sp(Cn x Cr) = min{n,m} — 263 ,03,m — 03,n04,m — a,n03,m (3)
sk(Cp x Crn) = min{n,m} — 03,n03,m — 63,n04,m — 04,nd3,m  (4)

Proof. For all cases except n = m = 3, formulas (3) and (4) follow from
the inequality sp(G) < sk(G) (lemma 4) and from the fact that the lower
bound for sp (lemma 16) equals the upper bound for sk (lemma 19).

For the case n = m = 3, the formulas are shown valid by lemmas 5
and 17. ]
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