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Abstract

A chromatic root is a root of the chromatic polynomial of some
graph G. E. Farrell conjectured in 1980 that no chromatic root can
lie in the left-half plane, and in 1991 Read and Royle showed by direct
computation that the chromatic polynomials of some graphs do have
a root there. These examples, though, yield only finitely many such
chromatic roots. Subsequent results by Shrock and Tsang show the
existence of chromatic roots of arbitrarily large negative real part.
We show that theta graphs with equal path lengths of size at least 8
have chromatic roots with negative real part

1 Introduction

The chromatic polynomial of a graph G = (V, E) is the number #(G, z) of
functions f : V — {1,...,z} such that uv € E implies f(u) # f(v). It is
well known that 7(G, z) is a monic polynomial in z of degree |V|, whose
coefficients are integers that alternate in sign. The roots of n(G,z) are
often called the chromatic roots of G, and by a chromatic root we mean a
root of some chromatic polynomial. Chromatic roots have been fairly well
studied [3, 5, 6, 7, 8, 13, 16], though there is still much that is not known.

It is obvious, from the fact that the coefficients alternate in sign, that no
real chromatic root is negative. Based on the chromatic roots of all graphs
on at most 8 vertices, the following was conjectured in 1980.

Conjecture 1.1 [10] There are no chromatic roots with negative real part.

In 1991 Read and Royle computed the chromatic polynomials of all 3-
regular graphs on at most 16 vertices, noting that graphs with high girth
appear to be contributing the roots with smallest real part. They proceeded
to plot the chromatic roots of all 3-regular graphs of girth at least 5 on
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18 vertices, and observed the following, thus providing the smallest known
counterexample to the above conjecture.

Proposition 1.2 [13] There are graphs of order 18 having a chromatic
root with negative real part.

They noted the same for the 3-regular graphs of girth at least 6 on 20
vertices, and girth at least 7 on 26 vertices. More recently, Shrock and
Tsang [14] have shown how badly the conjecture fails by showing that as
k — oo, the k-ary theta graphs (i.e. graphs formed from two vertices
joined by k internally disjoint paths) had chromatic roots whose real parts
tended to —oo. By different techniques (namely the Hermite-Biehler and
Sturm theorems on the roots of real polynomials), we show here that indeed
infinitely many chromatic roots of negative real part are achievable among
3-ary theta graphs themselves. These provide examples of the smallest
corank (i.e. with minimal |E| — |V|+1).

2 Background: The Hermite-Biehler and
Sturm Theorems

A polynomial f with real coefficients is Hurwitz quasi-stable (2, 15] if every
root of f has nonpositive real part. The statement of the Hermite-Biehler
Theorem proved in Gantmacher [11] is actually a criterion for deciding
whether every root of a real polynomial has strictly negative real part.
Wagner [15] deduced from this an analogous criterion for Hurwitz quasi-
stability. It is the latter which we shall call the Hermite-Biehler Theorem.
As in [15], a polynomial is standard if it is either identically zero or has
positive leading coefficient, and is said to have only nonpositive zeros if it is
either identically zero or has all of its roots real and nonpositive. Also, if &
is a field and z an indeterminate, then k{z] denotes the ring of polynomials
in z with coefficients from k.

Theorem 2.1 (Hermite-Biehler) Let P(z) € Riz] be standard, and write
P(x) = P.(z?) +zP,(z?). Sett = z2. Then P(z) is Hurwitz quasi-stable if
and only if both P.(t) and P,(t) are standard, have only nonpositive zeros,
and P,(t) < Pe(t).

Roughly speaking (and made precise in [15]), the notation P,(t) < Pe(t)
says that the roots of P,(t) ‘interlace’ the roots of P.(t), but we do not
concern ourselves with that here. In fact, we shall only need the following.

Corollary 2.2 If either P.(t) or Po(t) has a nonreal root (and is not iden-
tically zero), then P(z) is not Hurwitz quasi-stable.
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Now Sturm’s Theorem [12] gives rise to a useful test for deciding whether
a real polynomial has a nonreal root. We say that two consecutive terms
of a sequence s = (ap,a1,...,ar) of nonzero real numbers have a sign
variation if they have opposite signs, and denote by Vars the number of
sign variations of s. If s contains zero entries, then Vars is defined to be
the number of sign variations of the subsequence of nonzero terms of s.

The Sturm sequence of a real polynomial f(t) of positive degree is fo,
f1, f2, ..., where fo = f, fi = ', and, for ¢ > 2, f; = —rem(fi-1, fi-2),
where rem(g, k) denotes the remainder upon dividing g by h. The sequence
is terminated at the last nonzero f;, which is easily seen to be a constant
times the greatest common divisor of f and f’ (by carefully comparing the
process to the Euclidean Algorithm).

Theorem 2.3 (Sturm’s Theorem) Let f(t) € R[t] have positive degree,
and suppose (fo, f1, - .., fx) is its Sturm sequence. Let a < b be reals that
are not roots of f. Then the number of distinct roots of f in (a,b) is

V(a) — V(b), where V(c) = Var(fo(c), fa(c), ..., fr(c)).

A proof can be found in [12]. Now we say that the Sturm sequence
(fos f1y-..5 fk) of f(t) has gaps in degree if there is a j < k such that
deg f; < deg f;_1 — 1. If there is a j < k such that f; has negative leading
coefficient, then we say the Sturm sequence has a negative leading coeffi-
cient.

We shall need the following corollary to Sturm’s Theorem which is not
explicitly found in the literature (a similar statement, though stated incor-
rectly, is found in [1, p.176]).

Corollary 2.4 Let f(t) be a real polynomial whose degree and leading co-
efficient are positive. Then f(t) has all real roots if and only if its Sturm
sequence has no gaps in degree and no negative leading coefficients.

Proof Let us begin with a few observations. We write f = gh, where
g = ged(f, f'). Then the number of distinct roots of f is exactly degh, as
the roots of g are the multiple roots of f. Consider the Sturm sequence
S¢(t) = (fo, f1,---, fk) of f. Recall that fo = f and fi is a (nonzero)
constant times g. Then since deg f = degg + degh, we have that the
number of terms in Sy(t) is k 4+ 1 < degh + 1, with equality exactly when
it has no gaps in degree.

We define V(—o0) and V(co) to be, respectively, V(—M) and V (M),
where M > 0 is any number large enough that all real roots of each f;
(:=0,1,...,k) lie in (—M, M). It is clear that

V(—00) = Var ((—1)4¢8 folcoeff fo, (—1)38 /1 1coeff fi,. . ., (—1)%8 felcoeff fi)
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and
V' (00) = Var (Icoeff fo, lcoeft fi, .. ., lcoeff fi),

where lcoeff 1 denotes the leading coefficient of .

All real roots of f lie in (—M, M) as f = fo. Then Sturm’s Theorem
says that the number of distinct real roots of f is V(—o0) — V(o0).

With these observations, we prove the result. If S¢(t) has gaps in degree,
then it has k + 1 < degh + 1 terms, so in particular V(—o0) < k < degh ,
and so

# distinct real roots of f

V(—00) - V(00)
V(-o0)

degh

# distinct roots of f,

N IA

which implies that f has a nonreal root. If S¢(t) has no gaps in degree but
has a negative leading coefficient, then let j be the first ¢ such that lcoeff f; <
0. Then lcoeff f;—; > 0 (as lcoeff fq is), and since deg f; = deg f;—1 — 1, we
have that (—1)9¢8fi-1]coeff f;—; and (—1)9°€ filcoeff f; have the same sign,
so V(—c0) < k = degh, and again f has a nonreal root.

Conversely, if S¢(t) has no gaps in degree and no negative leading coef-
ficients, then k = degh, V(—o0) = k, and V(o0) =0, so

# distinct real roots of f = V(—o00) — V(00)
= degh
= # distinct roots of f,

which says f has all real roots. 0O

Now for ¢ any positive real number, it is easy to see that if, on obtain-
ing the term f; (0 < j < k) in the construction of the Sturm sequence
(fo, f1,- .., f&) of f(t), we were to change f; to cf; before continuing, then
the resulting sequence would differ from (fy, f1,...,fx) only in that some
fi's would now become cf;, and so clearly that sequence could be used in
place of (fo, f1,---,fk) when applying Theorem 2.3 or Corollary 2.4. In
fact, we may perform multiplications like this at any number of steps (by
repeatedly applying the above argument), and do not distinguish between
the sequences so obtained, in that we consider any to be a Sturm sequence
of f(t). We shall make use of this observation in Section 4.
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3 Generalized Theta Graphs

One of the very few infinite families of graphs whose chromatic polynomials
are known is the family of generalized theta graphs, ©, 4, which consists
exactly of two vertices u and v (called terminals) of degree 3 joined by three
distinct paths of (positive) lengths a, b, and ¢, where no more than one of
these lengths is 1 (more generally, ©,, ...,a, is the graph with two vertices,
v and v, joined by k internally disjoint paths of lengths a,...,ax). Thus
Og,b,c has a + b+ c — 1 vertices and a + b + ¢ edges.

Figure 1: The graph B, c.

Recall [4] that if e is an edge of a graph G, then #(G,z) = n(G —e,z) —
(G e e,z), where G — e is obtained by removing e from G, while Ge e is
obtained by identifying the ends of e. Another well known result [4] is that
if two graphs G and H intersect exactly on a complete graph of order p,
then n(G U H,z) = n(G,z)n(H,z)/n(Kp, z). These allow us to derive an
expression [4] for the chromatic polynomial of 6, 4 as follows:

- —
S Rl 2
N
ﬂ,(ea ber $) W(Ca+],$)7r(Cb+1,x)W(C¢+1,$) W(CG,ZB)‘IT(Cb, z)ﬂ'(cc, 1')

z?(z - 1)? z?

where C,, is the cycle of order n, whose chromatic polynomial is well known
[4] to be

T(Cnyz) = (z-1)"+(-1)*(z-1)
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Figure 2: Chromatic roots of O3 ,1<a<b<c <13,

= (-)"(-7) [1-2"" - 1),

Using this, we find

7"(ea,b.m 22) =

(1/(z*(z = 1?)(-1)*+***3(1 - 2)* (1 - 2)° - 1] -
(-2 -1)[1-2)F - +[1-2) - 1)+
(/211 = 2)* [(1 - 22 - 1] -

[A-z) ' -1][1-2)"1-1))

((_l)n+b+c(1 _ z))/z2) [_(1 - x)a+b+c - (1 - J:)c:_
(1-z)°—(1—2)°+ 14 (1 —z)otbte1 4

L=z + 1 —2)"! (1 -2)* - (1 - 2)?]
((=1)****e(1 — 2))/2?) [2(1 - 2)*+**7 = 2(1 - 2)°-
z(l-z)b—z(1-z)+

o7 — 12] ((_1)c+b+c(1 - z)/z) [(1 - z)a+b+c—l_
1-z)°-QQ-z-(1-2)°+(Q-z)+1]. (1)

With this expression, we obtain the plot of the chromatic roots of all gen-
eralized theta graphs whose paths have length at most 13.

The roots clearly display some interesting, very non-random behaviour.
In particular, there are zeros to the left of the imaginary axis.
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4 Theta Graphs with Chromatic Roots of
Negative Real Part

We restrict our attention now to the subfamily {©, 4,4 : a > 2} of general-
ized theta graphs whose u—v paths all have the same length. The smallest
such graph having a chromatic root with negative real part is found (by
direct calculation) to be ©gggs. We can say much more.

Theorem 4.1 The graph ©,0,.a has a chromatic root with negative real
part if and only ifa > 8 .

Proof From (1), we have

7(Qq,0,0:%) = (_—1)3%(1;“”2 [A-z)*1-3(1-z)*+2-2]. (2)

Then, for a > 8, we need to show that 7(©, 4,4, —z) has a root with positive
real part, i.e., that

Yo(z) = (1+2)% 1 =31 +2)%+2+z 3)

is not Hurwitz quasi-stable. So let @ > 8, and expand %,(z) into its even
and odd parts:

Ya(z) = P2(z?) + zP2(z2). (4)

Now set ¢t = 22 (as in Theorem 2.1). Several calculations suggested that
P2(t) always appears to have a nonreal root (for a > 8), and by Corollary
2.2, it is enough to show that this is indeed the case. To that end, it would
suffice (by Theorem 2.3) to show that its Sturm sequence contains either a
negative leading coefficient or gaps in degree. Our computations, however,
suggest that this does not occur until close to the end of its Sturm sequence.
So let us instead consider the polynomial

¢a(t) = 148 FCOPZ(1/1), (5)

which clearly has a nonreal root if and only if P2(t) does. Moreover, we
can establish the following.

Lemma 4.2 For a > 14, the Sturm sequence of ¢o(t) has as its fifth term
a polynomial with negative leading coefficient.

We shall see, also, that before the fifth term in the sequence, there are
neither gaps in degree nor any negative leading coefficients. However, since
Lemma 4.2 tells us the leading coefficient of the fifth term is negative, we
conclude that ¢,(t) has a nonreal root for a > 14, and in fact for a > 8
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upon verifying the cases 8 < a < 13 directly. Hence, to prove Theorem 4.1,
it remains only to prove Lemma 4.2. We assume that a > 14 is even (the
odd case is handled similarly). Then from (3), (4), and (5) we find that

de(t) = [(Sa—l) 3( )] 1 + [(3,,_ ) a)] it
+o+ [0 —3(a)]tza—2 3:_;2)t&;— + 3a—1)t2° —6
bk G,

3a—

Let us denote the first five terms of the Sturm sequence of ¢, by ¢2 (=
ba), B (= ¢L), 92, ¢2, and ¢4. Then it is clear, from the form of ¢, and
the division process, that lcoeff (¢2) is a real valued function of a, which we
shall show is always negative (for a > 14 even). We shall see that only the
first 7 terms of ¢, are needed. To begin, we have

$o=bt" +ct® 4 dt" 2 et" 34 ftr 4 gtm S AP

where b = (') = 3(3), c = (3“"1) 3, - k= (*17") = 3(3%), and
n= 3"2 4. Note that b,c,...,h and n are polynomlals in a with rational
coefﬁc1ents Now

d, = bnt" l4e(n—1t""2+dn—2)t" 3 +e(n—3)t" 1 +
fn—t" S+ gn—5)t" S+ h(n—6)t""" +---.

Dividing ¢, by ¢,, we find

(n—1) — 2bdn cd(n — 2) — 3ben

—rem(¢q, 95,) 2 "2 4 o t" 3 4
ce(n—3)—4bfn ,_4  cf(n—4)—>5bgn ,_
T "+ = "+
cg(n — 5) — 6bhn ,,_¢
3 "6 4.

Since bn? > 0, we can (by an observation made in Section 2) clear the
denominators by choosing ¢? = bn?. (—rem(¢q, ¢})). Now it turns out that
c(n — 1) — 2bdn is always positive (for a > 14 even). For note that it is a
polynomial in b, ¢, d, and n with integer coefficients, each of which (recall)
are themselves polynomials in a with rational coefficients. Carrying out the
substitutions in Maple, we obtain an exact expression for ¢2(n—1)—2bdn €
Qa, and find that it has positive leading coefficient, and so is positive
beyond its largest real root, a bound for which is obtained by applying
a standard result (c.f. [9, p.197]) to the polynomial. It is then verified
directly that the polynomial ¢2(n — 1) — 2bdn is also positive for those
(even) a between 14 and that bound.
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So moving on to the next term in the Sturm sequence, we divide ¢/, by
#2, and find

~ o3y u n—3 v R
rem(¢as ¢a) (CQ(n — 1) - 2bd’n)2 + (02(11, - 1) - 2bd‘n)2
w n-5

..
)

(c2(n — 1) — 2bdn)?
where
u = —(c(n—1)—2bdn) (d(n—2)((n—1) — 2bdn)

— bn(ce(n — 3) — 4bfn)) + (cd(n — 2) — 3ben) -
(e(n — 1) ((n — 1) — 2bdn) = bn (cd(n — 2) — 3ben)),

v = —(c*(n—1)—2bdn) (e(n - 3) (c*(n — 1) — 2bdn)
— bn(cf(n — 4) — 5bgn)) + (ce(n — 3) — 4bfn) -
(c(n —1) (*(n — 1) — 2bdn) — bn (cd(n — 2) — 3ben)) ,

and

w = —(c*(n—1)-2bdn) (f(n —4) (c*(n - 1) — 2bdn)
— bn(cg(n — 5) — 6bhn)) + (cf(n — 4) — 5bgn) -
+ (cf(n — 4) — 5bgn) (¢(n — 1) (c*(n — 1) — 2bdn)
—bn (cd(n — 2) — 3ben)).

Multiplying by the positive number (c2(n -1) - 2bdn)2, we choose
S =ut" P ut"t wt" S 4

Again, we have verified (with the aid of Maple) that indeed u is always
positive (for a > 14 even). So let us move on to the fifth term in the Sturm
sequence. Dividing ¢2 by ¢3, we find
_rem(¢2,¢8) = % (v((cd(n — 2) — 3ben) u — (A(n — 1) — 2bdn)v)—
u((ce(n — 3) —4bfn)u —
(*(n — 1) — 2bdn)w)) t" 4 + ...,
Multiplying by the positive number 42, we choose
d2 = (v((cd(n —2) — 3ben)u — (c*(n — 1) — 2bdn)v)—
u((ce(n — 3) — 4bfn)u — (*(n— 1) — 2bdn)w)) t" 4 +....
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We denote by lcoeff (¢2) the coefficient of £*~4 in ¢?2 (no confusion arises
in doing so, as we are about to see that this coefficient is never zero, and
so really is the leading coefficient of ¢2). So lcoeff (¢2) is a polynomial in
b,c,...,h, and n with integer coefficients. Substituting (once again) our
expressions for b,c, ...,k as polynomials in a with rational coefficients, we
obtain an exact expression for lcoeff (¢3) € Q[a], the first few terms of
which are approximately

—342.7311661a™ + 22877.2443505° — 718377.3180a%8 + . - -.

In particular, the first term is negative, and so lcoeff (¢3) is negative for a

sufficiently large, which is what we want. Applying a standard result (c.f.

[9, p.197)) to the polynomial lcoeff (¢3), we obtain 134 as a bound on its

largest real root, and so the proof of Lemma 4.2 for a even is completed by

verifying directly that lcoeff (¢2) is also negative for a = 14,16, 18,...,134.
‘We mentioned that the proof for ¢ odd is similar. There we find

lcoeff (%) ~ —342.7311661a"° + 21277.83225a%° — 617481.3554a% + - - -,
a

in which case an analysis like the previous paragraph is carried out.
This completes the proof of Lemma 4.2, and so of Theorem 4.1. a

We remark that the smallest generalized theta graphs having a chro-

matic root with negative real part are ©4555,5 and O5 6,6, each of order
21.
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