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Abstract
We use the results on 5-GDDs to obtain optimal packings with

block size five and index one. In particular, we prove that if v =
2,6,10 (mod 20), there exists an optimal packing with block size
five on v points with at most 32 possible exceptions. Furthermore, if
v =14,18 (mod 20), there exists an optimal packing with block size

five on v points with a finite (large) number of possible exceptions.

1 Introduction

A (v,k, ) packing design (henceforth, packing) is a pair (X, B) where X
is a v-set, B is a collection of some k-subsets (called blocks) of X such
that every pair {z,y} C X is contained in at most A blocks of B. The
packing number D(v, k, A) is defined to be the maximum number of blocks
in a (v,k, ) packing. A (v, k, \) packing with D(v, k, A) blocks is called a
maximum packing.

The function D(v, k, 1) is important in coding theory because the block
incidence vectors of a (v, k, 1) packing form the codewords of a binary code
of length v with minimum distance 2(k — 1) and constant weight k. Thus,
D(v, k,1) is the maximum number of codewords in such a code.

Schoenheim [9] has shown that

D,k ) < 220D

J) = B(v,k,A)
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Other upper bounds on the function D(v, k, 1) have been given by Johnson
[7] and Best et al. [3]. Lower bounds on the function D(v, k, \) are generally
given by the construction of (v, k, A) packings. The values of D(v, 3, ) for
all v and A have been determined by Schoenheim [9], and Hanani [6]. The
values of D(v,4,1) have been determined for all v by Brouwer [5]. In this
paper, we discuss the function for D(v,5,1) when v =2 (mod 4).

We proceed with some definitions.

A group divisible design (GDD) is a triple (X, G, B) which satisfies the
following properties:

(1) G is a partition of a set X (of points) into subsets called groups,

(2) Bis aset of subsets of X (called dlocks) such that a group and a block
contain at most one common point,

(3) every pair of points from distinct groups occurs in a unique block.

The group-type (type) of the GDD is the multiset {|G|: G € G}. We
usually use an “exponential” notation to describe group-type. For example,
the group-type 17273% ... denotes 7 occurrences of 1, r occurrences of 2, etc.

If K is a set of positive integers, each of which is no less than 2, then
we say that a GDD (X, G, B) is a K-GDD if |B| € K for every block B in
B.

We also require Wilson’s “Fundamental Construction” [11]. A brief
description is presented below.

Lemma 1.1 Let (X,G,B) be a GDD, and let w : X - Zt+U {0} be a
weight function on X. Suppose that for every block B € B there exists
a k-GDD of type {w(z) : = € B}. Then there exists a k-GDD of type

{Xeequ(z): GG}

A transversal design (TD), denoted TD(k, m), is a k-GDD of group type
m*. A GDD is a transversal design if and only if each block meets every
group in exactly one point. It is well-known that a TD(k,n) is equivalent
to k — 2 mutually orthogonal Latin squares (MOLS). For the existence of
TDs, see [1].

A parallel class in a design is a set of blocks that partition the point set.
If the blocks of a design can be partitioned into parallel classes, then they
are said to be resolvable. Henceforth, we shall write RTD and RGDD with
the appropriate parameters to denote resolvable TD and GDD, respectively.
The existence of a resolvable TD(k,n) is equivalent to the existence of a
TD(k + 1,n). The following is well-known.

Lemma 1.2 For every prime power q, there ezists a RTD(q,q).

The following construction is simple but useful.
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Lemma 1.3 Suppose that there ezists a k-GDD of type {s; : 1 <i < r}.
Let a > 0 be an integer. If, for each i that satisfies 1 < i < 1 — 1, there
eists a k-GDD of type {sij : 1 < j < k(i)} U {a} where s; = 3_; < ;<) Sis»
and there erist a k-GDD of type {srj : 1 < j < k(r)} where s, +a =
2153'53(:’) 8rj, then there is a k-GDD of type {s;; : 1 < j < k(i),1<i<r}.

2 v=2,6,10 (mod 20)
We recall some known results on 5-GDDs. References can be found in [2].

Theorem 2.1 1. There ezists ¢ 5-GDD of type 4™ for all n = 0,1
(mod 5).

2. There exists a 5-GDD of type 4"8! for alln = 0,2 (mod 5), n > 7
except possibly when n = 10.

3. There ezists a 5-GDD of type 412! for alln = 0 (mod 5) and
n > 10.

4. There exists a 5-GDD of type 4"16! for alln = 0,3 (mod 5), n > 13
except possibly when n € {15,18,30}.

5. There exists a 5-GDD of type 420! for alln = 0,1 (mod 5), n > 16.
6. There ezists a 5-GDD of type 4724 for alln = 0,4 (mod 5), n > 19.

We need the following results from [12].

Theorem 2.2 There ezists a 5-GDD of type 2" for alln =1,5 (mod 10)
except whenn = 11 and possibly whenn € {15,35, 71,75, 85,95, 111, 115,135,
195,215,335}

Lemma 2.3 There exists a 5-GDD of type 2%5.

Proof: Shen [10] has constructed a 4-RGDD of type 2'®. Extend the
parallel classes to obtain a 5-GDD of type 2!610'. Take a TD(5,32) and
apply Lemma 1.3, using a 5-GDD of type 2!610! for 4 groups and a 5-GDD
of type 22! for the last group. This yields a 5-GDD of type 2% (=]

Theorem 2.4 There exists a 5-GDD of type (20g)" for all (g9,n) where
n>5.

Theorem 2.5 There exists a 5-GDD of type (4g)" for all (g,n) whenn =
0,1 (mod 5).

The following lemma. relates uniform GDDs to optimal packings.
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Lemma 2.6 If there ezists a 5-GDD of type 2™, then D(2n,5,1) = B(2n,5,1).

Proof: A simple computation reveals that the blocks of a 5-GDD of type
2" form an optimal packing on 2n points. ]
As a corollary, we obtain the following result.

Theorem 2.7 Ifv = 2,10 (mod 20), v # 10, 22, 30, 70, 142, 150, 190, 222,
230,270, 390, 430, 670, then D(v,5,1) = B(v,5,1).

In the remaining of the section, we focus on the case when v = 6
(mod 20).
The following lemma can be obtained by a simple counting argument.

Lemma 2.8 If there exists a 5-GDD of type 26!, then n =0 (mod 10).
We need some direct constructions.
Lemma 2.9 There ezists a 5-GDD of type 2496!.

Proof: Let V = Z4 x {0,1}. The groups are {(¢,7),(20 + 7,5)} for
1=0,1,2,...,19 and j = 0,1. The starter blocks are

{(0,0),(2,0),(3,0),(2,1), (7, 1)}, {(0,1), (2, 1), (3,1), (6,0), (27, 0)},
{(0,0), (4,0),(12,0),(30,0),(23,1)}, {(0,0), (16,0), (23,0), (29,0), (14, 1)},
{(0,1),(4,1), (10,1),(28,1), (18,0)}, {(0, 1), (8, 1), (15, 1), (29, 1), (20, 0)},

{(0,0), (5,0, (6,1), (29, 1)}, {(0,0),(9,0), (30,1), (17,1)},
{(0,0),(15,0),(18,1),(27,1)}.

The last three blocks of size four generate six parallel classes on V.
Attach an infinite point to each of the six parallel classes, and the group of
six infinite points gives a 5-GDD of type 2406!. o

Lemma 2.10 There ezxists a 5-GDD of type 2°06!.

Proof: Let V = Zg x {0,1}. The groups are {(,j),(30 + ¢,5)} for
1=0,1,2,...,29 and j = 0,1. The starter blocks are

{(0,0),(1,0), (3,0), (7,0),(12,0)},{(0,0),(8,0),(18,0),(31,0),(0, D},
{(0,0), (14,0),(33,0), (1,1), (3, 1)}, {(0, 0), (16, 0), (36, 0), (2, 1), (7, 1)},
{(0,0),(17,0), (5,1), (11 1), (14, 1)}, {(0,0), (22,0), (20, 1), (35, 1), (45, 1)},
{(0,0),(26,0),(25,1),(41,1),(53,1)},{(0,0), (28,0), (4, 1), (8,1), (44, 1)},
{(0,0),(6,1),(24,1),(32,1), (43,1)},{(0,0), (12,1),(19, 1), (33, 1), (50, 1)},
{(0,0), (15,0), (10,1), (37, 1)}, {(0,0), (21,0), (38, 1), (39, 1)},
{(0,0),(25,0),(21,1), (34, 1)}-
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The last three blocks of size four generate six parallel classes on V.
Attach an infinite point to each of the six parallel classes, and the group of
six infinite points gives a 5-GDD of type 2606!. m]

Lemma 2.11 If there ezists a 5-GDD of type 2" and a TD(5,2n—1), then
there ezists a 5-GDD of type 25(—1)6!,

Proof: Take a TD(5,2n — 1) which contains a block of size five, say
{a,b,¢,d,e}, and a new point z. For each group, we put a 5-GDD of
type 2™ on the 2n — 1 points together with the new point . We identify
the point z and y, which are in the same group in the 5-GDD, and where
y is one of the {a,b,c,d,e}. This gives a 5-GDD of type 25(»~1)6!. 0

Lemma 2.12 There ezists a 5-GDD of type 21°"6! for n = 4,6,10,12, 15.

Proof: When n = 4,6, a 5-GDD of type 2!°"6! is constructed in Lemmas
2.9 and 2.10. When n = 10,12,15, a2 5-GDD of type 21976! is constructed
by Lemma 2.11, using a 5-GDD of type 29 where ¢ = 21, 25, 31, respectively.
m]

Lemma 2.13 There exists a 5-GDD of type 2'°"6! forn = 26,29, 31, 34, 38,
47,49, 58,69, 71,79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 105, 107.

Proof: Take a TD(6, k) and truncate a group to m points to obtain a {5,6}-
GDD of type k®m!. Give weight four to the GDD to obtain a 5-GDD of
type (4k)3(4m)'. If there exist a 5-GDD of type 22**! and a 5-GDD of
type 22m~261, then there exists a 5-GDD of type 219%%+2m-26! by Lemma
1.3. The following table gives the applications of the above construction.
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k |m|10k+2m—2
22|21 260
25 | 21 290
27 21 310
30 | 21 340
32 |31 380
45 | 21 470
45 | 31 490
52 | 31 580
65 | 21 690
65 | 31 710
75 | 21 790
75 | 31 810
77 | 31 830
75 | 51 850
75 | 61 870
77 | 61 890
87 | 21 910
87 | 31 930
80 | 76 950
82 | 76 950
87 | 51 970
87 | 61 990
95 | 31 1010
95 | 51 1050
95 | 61 1070

(]

Lemma 2.14 There ezists a 5-GDD of type 21°"6! for n = 55,57,61,63,67,
73,75,103.

Proof: If d is a prime power of at least 15, then a 5-GDD of type 60%(w +
4a+12b)! exists, whenever there exists a 5-GDD of type 4%w! and a+b < d—
1 (Construction 3.11 in [12]). If there exists a 5-GDD of type 2% +2a+6b—2¢1
Lemma 1.3 gives a 5-GDD of type 2304+ % +2a+66—-261  Applications are as
follows:

228



d|w|a|bdb|w+4a+4+12b | 30d+ ¥ + 2a+ 6b— 2
171 8 | 1] 6 84 550
171 8 (2] 9 124 570
19|14 (2] 6 84 610
19| 4 (0] 10 124 630
19124015 204 670
23116 (2| 5 84 730
231160 9 124 750
311 00|17 204 1030

Lemma 2.15 Let Q = {4,6,10,12,15} U {4r : r > 5}. If there ezists a
GDD on n points with group sizes in ) and block sizes at least five, then
there exists a 5-GDD of type 2'0761.

Proof: We first show that if ¢ € @, then there exists a 5-GDD of type
210961 1f g = 4,6,10,12,15, a 5-GDD of type 29 is obtained in Lemma
2.12. Suppose ¢ = 4k and k > 5, a 5-GDD of type 80* is constructed in
[12]. A 5-GDD of type 2%°%6! can be constructed by applying Lemma 1.3
to a 5-GDD of type 80F using a 5-GDD of type 24061.

Finally, if there exists a 5-GDD on n points with group sizes in @, then
we give weight 20 and apply Lemma 1.3 to obtain the resulting GDD. O

Lemma 2.16 Ifn is even andn ¢ {2,8,10, 14,16, 18,22}, then there ezists
a 5-GDD of type 2'°"61.

Proof: We take a TD(g+ 1, q) and remove one block in the TD. This gives
a GDD of type (g — 1)?*! with block sizes g. We truncate the points in
all but six groups to sizes either 0,4,6,10,12 or a multiple of 4 at least
20. By Lemma 2.15, we can obtain a 5-GDD of type 2!976! where n is the
number of points in the GDD. The following table gives the application of
the above construction. Note that n is always even in this construction.

g neven
11 64-116
13  76-168
25 170-500

Finally, take a TD(6,4n) for n > 21 and truncate in one group to size
g where 64 < g < 84 and g is even. Give weight 20 and apply Lemma
1.3 to obtain a 5-GDD of type 210(207+9)6! for n > 21. This proves that
there exists a 5-GDD of type 21°"6! for alln > 64 and » = 0 (mod 2).
When n = 30,42,54, a 5-GDD of type 2!°"6! can be constructed by using
a 5-GDD of type 1208 and Lemma 1.3. When n = 46, take a 7-GDD
of type 6% which can be obtained from a TD(7,7). Delete two points in
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a group to obtain a {6,7}-GDD of type 674' and apply Lemma 2.15. If
n = 50,62, a 5-GDD of type 21976' can be constructed by Lemma 2.11. If
n = 26,34, 38,58, a 5-GDD of type 2!°76! is constructed in Lemma 2.13.
a
Next, we deal with the case when n is odd.

Lemma 2.17 Ifn is odd, then there eists a 5-GDD of type 2'°"6" for all
n > 109.

Proof: We take a TD(q + 1,g) and remove one block to obtain a g¢-
GDD of type (¢ — 1)?t!. We truncate in all but seven groups to either
0,4,6,10,12,15 or a multiple of 4 at least 20. By Lemma 2.15, we obtain
a 5-GDD of type 21°"6! where n is the number of points in the GDD.

q | odd n
16 | 1 | 109-239
251 1 159-591
20 [ 1] 183-799
37 (1| 231-1311
41 | 1 [ 255-1615
49 | 1| 303-2319
53 | 1| 327- 2719

Take a TD(6,4n + 1) for n > 40. Truncate a group to at least 109 points
and give weight 20. Applying Lemma 1.3 inductively yields the following
result: If £ > 109 and k =1 (mod 2), then there exists a 5-GDD of type
210k61. O

Lemma 2.18 Ifn is odd, then there ezists a 5-GDD of type 2'°"6" for alln
except possibly whenn € {1,3,5,7,9,11,13,17,19, 23, 33, 35, 39,41, 43, 51, 53,
50}.

Proof: If n > 109, then there exists a 5-GDD of type 2!9"6' by Lem-
ma 2.17. If n = 21, a 5-GDD of type 604! is constructed in [12] (Lem-
ma 4.10). We add two infinite points, fill in the each group of size 60
with a 5-GDD of type 23! to obtain a 5-GDD of type 22!96'. When
n = 25,27,45,65,77, we obtain a 5-GDD of type 2!°"6' by Lemma 2.11
with a 5-GDD of type 2¢ for ¢ = 51,55,91,131, 155, respectively. When
n = 29,31,47,49, 69,71, 79,81, 83, 85,87, 89, 91,93, 95,99, 101, 105, 107, a 5-
GDD of type 2'°"6! is constructed in Lemma 2.13. When n = 37, take a
TD(6,11) and truncate four points in a group to obtain a {5,6}-GDD of
type 11571, Use one of the truncated point to define a {5,6,11}-GDD of
type 5!17!. Give weight 12 to obtain a 5-GDD of type 60'!84'. Apply Lem-
ma 1.3 with two infinite points to obtain a 5-GDD of type 2°7°6!. When
n = 55,57,61,63,67,73,75,103, a 5-GDD of type 2!°76' is constructed in
Lemma 2.14. a
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Lemma 2.19 If there ezists a 5 — GDD of type 21°76!, then D(20n +
6,5,1) = B(20n +6,5,1).

Proof: In a group of size six, we add an additional block of size five. The
result follows by a simple counting argument. ]
As a corollary, we have

Theorem 2.20 D(20n+6,5,1) = B(20n+6,5,1) for all n but possibly n €
{2,8,10, 14,16, 18,22}u{1, 3,5, 7,9, 11, 13, 17, 19, 23, 33, 35, 39, 41, 43, 51, 53,
59}.

3 v=14,18 (mod 20)

In this section, we discuss the asymptotic behavior of D(v,5,1) when v =
14,18 (mod 20).

Before we proceed, we need a result on 5 — GDD of type 2!°"14! and
2107181,

Lemma 3.1 If there exists a 5 — GDD of type 2" and a TD(6, "T‘l), then
there exists a 5-GDD of type 25("~Va! for a = 14,18.

Proof: Take a TD(6, 25*) and truncate the points in a group to three or

four points. Give weight four and apply Wilson’s Fundamental Construc-

tion to obtain a 5-GDD of type (2(n — 1))®12! or (2(n — 1))°16'. Add two

infinite points and fill in each of the group by a 5-GDD of type 2™. ]
The following lemma is a simple application of Lemma 3.1.

Lemma 3.2 There exists a 5-GDD of type 2'°*a! for n = 12,15,20,22,25
and a = 14, 18.

Lemma 3.3 There ezists a 5-GDD of type 2!°"a! for a = 14,18 and n >
181 or n = 137.

Proof: Take a TD(26,25) and truncate 21 groups to sizes {0, 12, 15, 20,22, 25}.
Give weight 20 and fill in each group with a 5-GDD of type 2"a! for some

n € {120,150, 200, 220,

250} and a € {14,18} to obtain a 5-GDD of type 2!%%a! for a = 14,18
and 181 < n < 500. It is not too hard to show that there exists a 5-GDD

of type 21°%g! for all a = 14,18 and n > 181, using a similar argument
but with a larger TD and the method of induction. For n = 137, we use a
TD(6, 25), truncate the group to 12, and give weight 20. ]

Lemma 3.4 D(2574,5,1) = B(2574,5,1) and D(2078,5,1) = B(2078,5,1).
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Proof: 1In [10], a 4-RGDD of type 32 is known to exist. By completing all
parallel classes, we obtain a 5-GDD of type 387. Give weight 67 to obtain
a 5-GDD of type 2018469'. Add a point at infinity and fill in each group by
a 5-GDD of type 210! or a 5-GDD of type 22%5. It is easy to verify that it is
an optimal packing on 2078 points. Next, we give weight 83 to the 5-GDD
of type 337!. It becomes a 5-GDD of type 2498581'. Add one point and fill
in each of the group by a 5-GDD of type 2!2% or a 5-GDD of type 5-GDD
of type 2291, This gives an optimal packing on 2574 points. u)

Theorem 3.5 D(20n + 2574,5,1) = B(20n + 2574,5,1) and D(20n +
2078,5,1) = B(20n + 2078,5,1) for all n > 751.

Proof: Take a TD(138,137), truncate one group to size 128 or 103, and 132
groups to sizes {0, 12, 15, 20, 22, 25, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130}.
Give weight 20 and fill in each of the groups with 14 or 18 infinite points
corresponding to the case when the one group has size 128 or 103, respec-
tively. Fill in all other groups by a 5-GDD of type 2"a! for some n and
a = 14,18. (Such a 5-GDD is known to exist by Lemma 3.1). This gives a
5-GDD of type 2!°7b! for 751 < n < 10000 and b € {2078,2574}. Simple
induction proves that there exists a 5-GDD of type 2!1°"b! for all n > 751.
Fill in the group of size 2078 or 2574 with an optimal packing on the same
number of points. The result then follows easily by simple computing. O

In this paper, we show that if v = 2,6,10 (mod 20) then there ex-
ists an optimal packing on v points with block size five with few possible
exceptions. Also, we have established an asymptotic existence of optimal
packings in the case when v = 14,18 (mod 20). In this particular instance,
however, much work remains to be done in order to reduce the number of
possible exceptions. A main challenge is to construct an optimal packing
with a small number of points. Our result for v = 14,18 (mod 20) can
likely be improved easily by a more careful analysis of the existence of cer-
tain 5-GDDs. Yet, any substantial improvement is unlikely unless a smaller
optimal packing can be obtained.
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