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ABSTRACT. In a graph G = (V, E), a set S of vertices (as well
as the subgraph induced by ) is said to be dominating if every
vertex in V\ S has at least one neighbor in S. For a given class
D of connected graphs, it is an interesting problem to charac-
terize the class Dom(D) of graphs G such that each connected
induced subgraph of G contains a dominating subgraph belong-
ing to D. Here we determine Dom(D) for D = {Py, P2, Ps},
D = {K: |t > 1} U {Ps}, and D = {connected graphs on at
most four vertices} (where P, and K; denote the path and the
complete graph on ¢ vertices, respectively). The third theorem
solves a problem raised by Cozzens and Kelleher [Discr. Math.
86 (1990), 101-116] It turns out that, in each case, a concise
characterization in terms of forbidden induced subgraphs can
be given.

1 Introduction

Though domination is a relatively young subfield of graph theory, it already
has an extensive literature. It is also impressive how many other areas are
related to it. For a detailed accout on the subject, we refer to the recent
book [17] and the earlier edited volume [21].

In this paper we investigate three classes of graphs with respect to the
following general problem, first studied in [4] and [5]. (Formal definitions
and notation will be listed in the next section.)
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Basic Problem. Given a (finite or infinite) class D of connected graphs,
characterize the class Dom(D) of those graphs in which every connected
induced subgraph contains a dominating induced subgraph isomorphic to
some D € D.

More specifically, for a given D, we wish to find a characterization of
Dom(D) in terms of forbidden induced subgraphs. In this setting, an already
classic result of Seinsche [20] on “trivially perfect” graphs (i.e., those having
a dominating vertex in each connected subgraph) can be formulated as the
following equation between graph classes:

Dom({K1 }) = FOTb(P4, Cq). (1)

Cozzens and Kelleher [12] and, independently and simultaneously, the present
authors [4] characterized the existence of dominating cliques as follows:

Dom({K | t 2 1}) = Forb(Ps, Cs). @)

Actually, one of the main motivations for the work [4] was the paper [9]
on an extremal problem, where dominating cliques of mazimum size played
an important role. As shown in [9}, such a clique can be found in every
non-triangle-free connected graph without induced matchings of two edges,
a subclass of graphs without induced Ps.

More generally, the class Diamq of graphs of diameter at most d admits
a concise description as well, as proved in [6]:

Dom(Diamgy) = Forb(Ps, Cs),

and, fort > 7,
Dom(Diam;_4) = Forb(P,).

There is also an intermediate problem between (1) and (2): When does a

graph contain some small dominating clique? This question was answered
both in [12] and [4]:

For s >2, Dom({K, |1 <t < s}) = Forb(Ps,Cs, F(Ks+1)),

where F(K,1) is the graph of order 2542 obtained from K by attaching
a pendant vertex to each vertex of the clique.

An interesting new point of view appears in a recent work of Penrice [19]:
the cligue covering number (6(D) = x(D)) of the dcminating subgraph.
With our notation, the result can be written in short s follows:

For t > 2, Dom({D is connected, P4-free, 8(D) <t —1}) = Forb(Ps, H),

where H; is the graph consisting of ¢ paths of length 2 starting from the
same vertex (i.e., the subdivision of the star K, ).
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Another approach, initiated by Liu and Zhou [18], is to find characteri-
zations in restricted (e.g., triangle-free) graph classes.

Some further similar problems are considered in [1], [15] and [2]. Those
results deal with subgraphs from which every vertex of the graph in question
is at most a given distance apart. In this more general setting, however,
most of the theorems provide sufficient conditions only. A positive excep-
tion is the paper [2] where a characterization is given for a subproblem of
“distance-2 domination.” One general method to attack structural domi-
nation problems has been given in [4, Lemma 7). In the terminology of the
present work, it claims:

Reduction Lemma. Let D be a class of connected graphs, and let G be
a minimal non-D-dominated graph. Then

1. either G has a cut-vertex,

2. or G has no star-cutset.

The Reduction Lemma already has several applications (see [19], [5]),
and we shall use it here as well.

As regards new methods, one main contribution of the present work is
formulated in the Cutpoint Lemma in Section 3 (proved in Section 4).
In some sense, it completely settles Case 1 of the Reduction Lemma, by
describing the non-2-connected minimal graphs G.

Applying this powerful tool, we shall solve three problems, giving a char-
acterization for Dom(D) where D = {P;, P2, P3}, D = {K; |t > 1} U {Ps},
and where D consists of the connected graphs on at most four vertices. The
latter was raised a decade ago in [12] as an open problem.

In addition to the Cutpoint Lemma, in the solution of the first prob-
lem we introduce a method which one may call “building non-dominating
subgraphs.” This means the following. We prove for an increasing collec-
tion of particular graphs that they cannot be dominating in the original
graph; and, along this way, we often use the fact that some other graphs
have already been proved to be non-dominating. This approach is useful
also in the second and third problems, but they need some more complex
arguments.

2 Definitions and notation

Throughout the definitions below, D means a nonempty class of connected
graphs. Moreover, as usual, we denote by V(G) and E(G) the vertex set
and the edge set of graph G, respectively.

We say that a graph is
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minimal non-D-dominated if it is connected, and has no dominating
induced subgraph belonging to D, but each of its proper connected
induced subgraphs does have one

minimal not in D if it is not in D, but all of its proper induced connected
subgraphs belong to D

hereditarily dominated by D if each of its connected induced subgraphs
is dominated by some graph in D; the class of graphs hereditarily
dominated by D is denoted by Dom(D)

F-free if it does not contain F as an induced subgraph; the class of F-free
graphs will be denoted by Forb(F). Similarly, for a given family F of
graphs, Forb(F) denotes the class of those graphs which are F-free
for all F' € F.

Furthermore, we shall use the following nonstandard terminology:

to put a leaf on a given vertex u of a graph means that we insert a new
vertex »’ and join it just to u (see Figure 1)

private dominated vertex: given a dominating induced subgraph D of
G, and a vertex u of D, we say that » has a private dominated vertez
— sometimes also called a private neighbor — if there exists some ' €
V(G)\V (D) such that u is the unique neighbor of «’ in V(D). In other
words, a leaf has been put on » in D. If we know that D — u is not
dominating in G, then, obviously, » must have a private dominated
vertex.

leaf-graph of a graph T, denoted F(T), is the graph obtained from T by
putting a leaf on each of its non-cutting vertices. Formally, this means
that F(T) has the vertex set V(T)U {u’ | T — u is connected}, while
the edge set of F(T) is E(T)U {uv’ | T — u is connected} (see Figure
2). Note that for any leaf-graph F = F(T'), the graph T is uniquely
determined.

For a family 7 of graphs, we use the shorthand F(7) to denote
{F(T)|TeT}.

partial leaf-graph of a graph T is obtained from T by putting leaves on
some of its vertices. Contrary to the case of leaf-graphs, in the present
situation one may put leaves on cutvertices, too; and some vertices
may get no leaf. (Even not putting any leaf is allowed.)

compact class of graphs: closed under connected induced subgraphs.

star-cutset: a vertex subset S C V(G) such that G — S is disconnected
and there is an s € S adjacent to all vertices of S\{s}.
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(The notion of star-cutset was introduced in connection with perfect
graphs, in (8].) '

)

u
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u
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Figure 1
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Graph T: vertices denoted by circles.

Figure 2
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Standard notation stands for particular types of graphs: K, P,, and C,
denotes the complete graph, the path, and the cycle on n vertices, respec-
tively. Moreover, some small graphs will be mentioned by name as follows.
The claw is a star on four vertices (denoted by K 3). The pawis a graph on
vertex set {a,b, c,d} with edges ab, ac, ad, bc (hence, a partial leaf-graph
of K3). The bull is another partial leaf-graph of the triangle, with leaves on
just two of its vertices. Finally, Y is a graph on the vertex set {a, b, ¢, d, €},
with edges ab, bc, cd, ce.

3 The results

We begin with an assertion that provides us with a general tool to handle

dominating subgraphs of a given type.

Cutpoint Lemma Let D be a compact class of connected graphs. A graph

F with at least one cutpoint is minimal non-D-dominated if and only if it

is isomorphic to a leaf-graph F(L) where L is a graph minimal not in D.
‘We shall apply this lemma for the following three collections of dominat-

ing subgraphs:

Dy = {Py, P, P}
Dy={K|t21}U{Ps}
D3 = {connected graphs on at most 4 vertices}

It is easily checked that the families £; of minimal connected graphs not
belonging to D; (i =1,2,3) are

‘Cl = {KS, C4) P41 Kl,s}
Ly = {K4—e, PW,Cy, P4, K13}
L3 = {connected graphs on 5 vertices}

According to the Cutpoint Lemma, a non-2-connected graph is a minimal
forbidden induced subgraph for the class Dom(D;) if and only if it has the
form F(L) for some L € £;. Interestingly enough, it turns out that in either
of the above three cases there exists precisely one further — 2-connected -
minimal graph to exclude, namely a cycle of length 6 or 7. Note that
cycles (of any length) are 2-connected and star-cutset-free, therefore they
are natural candidates in characterizations for any D.

Theorem 1. A graph is hereditarily dominated by D, if and only if, among
its induced subgraphs, there is no C¢ and no F(L) where L € L;.
That is,
Dom(D) = Forb(F(L1) U {Cs})

Theorem 2. A graph is hereditarily dominated hy D, if and only if, among
its induced subgraphs, there is no Ce¢ and no graph F(L) with L € L,.
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That is,
Dom(D2) = Forb(F(L2) U {Ce})

Theorem 8. In a graph G, each connected subgraph has some dominating
subgraph from Dg if and only if, among the induced subgraphs of G, there
is no C7 and no F(L) for any L € L3.
That is,
Dom(D3) = Forb(F(L3) U {Cr}).

The third theorem solves a problem raised by Cozzens and Kelleher [12],
while the second one strengthens the following result of Frdés and El-Zahar
(14]):

Theorem A. In every 2K.-free connected graph, there exists a dominating
P3 or a dominating clique.

Using our notation, this result can be written as
Forb(2K3) C Dom(Ds).

In [4], a generalization of Theorem A was proved, namely
Theorem B. Forb(Ps) C Dom(D,)

Along these lines, Theorem 2 above makes the description of Dom(D3)
complete.

4 Cutpoint Lemma

In this section we prove the Cutpoint Lemma:

Let D be a compact class of connected graphs. A graph F
with at least one cutpoint is minimal non-D-dominated if and
only if it is isomorphic to some F(L) where L is a graph minimal
not in D.

First we prove the “only if” part.

Claim 1. If F is a minimal non-D-dominated graph, c is a cutpoint of F,
d is a vertex of degree at least 2, and cd € E(F), then d is also a cutpoint.

Proof: If the assertion does not hold true, then H = F — d is connected
and, by the minimality of F', it has some dominating induced subgraph
D € D. Furthermore, ¢ € D because D cannot dominate the entire graph
F. Since D is connected, it is the subgraph of some component K in the
graph F —c. Let K’ be the component containing d. If K = K’, then some
other component remains undominated; and if K # K’, then the further
points of K’ remain undominated. (Such points exist, because of the degree
condition on d.) This contradiction completes the proof of the claim. [
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It is a well-known fact that any connected graph has some non-cutting
point.

(One can choose any leaf of any spanning tree.) This implies:

Both the set C of cutpoints and the set N of non-cutting
points are nonempty in F.

Let us consider all those vertices which are not in C but have some
neighbor in C. By Claim 1, they are leaves; we denote their (nonempty)
set by S. Let U = C U S. There is no vertex outside U, for otherwise we
would also have such a vertex adjacent to the set U, and then surely to
some point s € S, too. But s is a pendant vertex and we have obtained a
contradiction.

So, giving the name L to the graph induced by the set C, it can be easily
seen that F is isomorphic to the graph F(L).

Of course, L is not in D. To prove that it is minimal with respect to this
property, we first state a simple but interesting lemma without proof:

Lemma 1. If a connected graph Y is the subgraph of a connected graph
X, and Y contains every non-cutting point of X, then V(Y)=V(X). O

Now, concerning the minimality of L, suppose for a contradiction that L
has a proper induced connected subgraph P which is not in D. By Lemma
1, some non-cutting vertex ! of L does not belong to P. Consequently,
V(P) C V(L) — {l} and, by the compactness of D, H := L -l ¢ D.

Furthermore, denoting by I’ the leaf put on !, F —!’ has some dominating
subgraph D € D, because of the minimality of F'. Clearly, we may assume
V(D) C V(L).

From the definition of !, H is connected. We shall prove that D contains
all the non-cutting points of H. By Lemma 1, this will imply V(D) 2 V(H),
and the proof will be done since, by compactness, the contradiction H € D
follows.

Let v be any non-cutting point in H — D. If it is also non-cutting in L,
we are done since D, a dominating subgraph of F — !’ has to contain every
vertex which is different from ! and has some leaf. Otherwise, let v be a
cutpoint in L. Since v is not in D and V(D) C V(L), D is the part of
some component of L — v. But this is impossible because it is dominating
in F — !’ and consequently in L as well.

So we have deduced a contradiction from the assumption that some non-
cutting point of H exists which is not in D. As we have seen above, this
completes the proof for the minimality of L, and the whole “only if” part
is done.

The “if” part can be deduced from Lemma 1 more easily.
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Let us consider a connected graph L, minimal not in D. We have to show
that F = F(L) is a minimal non-D-dominated graph.

A graph D, dominating F(L), contains all the non-cutting vertices of L.
Thus, by Lemma 1, it contains L ¢ D. The compactness of D then implies
D¢gD.

Now, we prove the minimality of F(L) among the non-D-dominated
graphs. Let R be any proper induced connected subgraph of F(L). By
Lemma 1, necessarily we have some vertex ! € L with its leaf I’ missing
from R. The graph R — [ is connected. Omitting all the leaves from R — I,
we obtain a connected proper subgraph R’ of L which is in D, because
of the minimality of L. Furthermore, R’ is dominating in R. Hence, we
have shown that R is a D-dominated graph, and so the minimality of F (L)
follows. This completes the proof of the Cutpoint Lemma. O

Remark. Without the assumption of compactness for D, neither dlrectlon
of the Cutpoint Lemma is valid.

In both of the next examples, we take D = {Py, P3}.

Example 1. For M = P;,.M is a minimal non-D-dominated graph, but
M = F(Py) and P, is not minimal in the sense that P; ¢ D is its proper in-
duced connected subgraph. Consequently, the “only if” part of the stronger
version of the Cutpoint Lemma is not true.

Example 2. For L = P, Py = F(L) is dominated by D, although L is
a graph minimal not in D. So the “if” part of the stronger version is also
false.

On the other hand, the following statement is valid:

Let D be any class of graphs such that all D € D are con-
nected. If F is a minimal non-D-dominated graph and has at
least one cutpoint, then F = F(L) for some L ¢ D.

The proof is the same as that for the first part of the Cutpoint Lemma.

5 Short dominating paths
In this section we prove Theorem 1, which states:
A graph is hereditarily dominated by Dy = {P,, P;, Ps} if

and only if, among its induced subgraphs, there is no Cs and
no F(L) where L € £;.

(As described in the Introduction, £; consists of the four graphs K3, Cy,
Py, K13.)

The “only if” part is immediately seen as neither Cg nor any F(L) (L €
F(L,)) contains a dominating induced path of length at most two.
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For the “if” part, let us consider a minimal non-D;-dominated graph G.

If there is some cutpoint in G then, by the Cutpoint Lemma, G = F(L)
for some L € Ly, and the proof is done.

Otherwise, taking an arbitrary vertex z, the graph H := G — z is con-
nected. Obviously, by the minimality of G, it is enough to prove the fol-
lowing

Lemma 2. Suppose that G is a non-D,-dominated star-cutset-free graph
containing no induced F(Cy), F(P,), F(K,,3), and Cs. Omitting any ver-
tex z from G, the remaining graph H is also non-D;-dominated.

Remark. Let us emphasize that F(Kj3)-freeness is not assumed in the
lemma.

Proof of Lemma 2: Assume, on the contrary, that H has some dominat-
ing induced subgraph D € D.

First, suppose D is a cherry abc (a Ps, in other notation). Since G is
connected, z has some neighbor y in H, and y has some neighbor in the
dominating subgraph D of H. If y has only one neighbor in D and this
is a or ¢, then G has a dominating P,. Next, we prove a statement which
exludes this possibility and will be applicable later, too.

Claim 2. There is no dominating P, (in G).

Proof: Omitting any one of the two endpoints u, v of a dominating P; if
it exists, the remaining graph — namely a cherry — cannot be dominating.
Consequently, the endpoint considered has a private dominated vertex. So
we put leaves u’ and v’ on the endpoints and we get a Cs or a Pg, according
as uv’ is or is not an edge. Since Cg and Ps (= F(P,)) are forbidden, we
have got a contradiction proving the claim. O

Now, suppose y has two neighbors in D, and these are a and c. This
means that the Cj, induced by {a, b, c,y}, is dominating. We need some
observations, in order to exclude this case.

Claim 3. There is no dominating Ps.

Proof: By Claim 2, omitting one of the endpoints of such a P, say u, the
remaining Py is not dominating. Thus, u has a private dominated vertex,
and we get a P which is forbidden. a

Claim 4. The graph in Figure 7/L5 cannot foe dominating.

Proof: By Claim 3, omitting u, the remaining Ps iS not dominating and
u has a private dominated vertex. We have obtained an F(K,3) which is
forbidden. O

Claim 5. There is no dominating Y.

Proof: (See Figure 7/L4) The graph remaining after the deletion of u is
a P;. Consequently, by Claim 2, it is not dominating and u has a private
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dominated vertex. But in this way we obtain a dominating subgraph shown
in Figure 7/L5, contradicting Claim 4.

Now we are in a position to prove
Claim 6. There is no dominating Cjy.

Proof: Let us suppose for a contradiction that the Cy = abcy, as con-
structed above, is dominating. Due to the preceding observations, several
vertices will have private neighbors, as follows. There is some leaf on vertex
y, that we may denote by = without ambiguity. Then, there is a leaf on
¢ because of Claim 2, one on b because of Claim 5, and finally one on a
because of Claim 4. Hence, we have found an F(Cj) which is forbidden.
This contradiction proves Claim 6. m|

Thus, we have proved that whenever there exists some vertex y adjacent
to = but not adjacent to the midpoint b of the cherry, then the proof is
done. So, it can be easily seen that we shall be able to achieve the case
D = P3 if we prove

Lemma 3. Let z, b be two vertices at distance 2 in the star-cutset-free
graph G. If every neighbor of z is the neighbor of b, then all vertices
different from = and b are adjacent to both = and b.

Proof: If z has a non-neighbor different from b, then we get the contradic-
tion that b and its neighbors adjacent to = form a star-cutset. O

One may note that the situation described in Lemma 3 can occur, e.g.
in a Cj.

We are now very near to proving Lemma 2. By assumption, G is star-
cutset-free. Furthermore, there are at least three vertices nonadjacent to z
in G. Consequently, by Lemma 3, the case D = Pj is settled.

Next, let D be a P, with vertices a, b. We may assume that there is no
dominating induced P; in H, i.e., every vertex in H is adjacent to both a
and b. Then the two-element set {a,y} — inducing a P, — is dominating in
the whole graph G, which contradicts the definition of this graph. Thus,
the case of P; is done.

Finally, the case of P, can be completed in the same way, finishing the

proof of Lemma 2. O
As we have already seen, Lemma 2 makes the proof of Theorem 1 com-
plete. O

6 Dominating cliques and cherries

In this section we prove Theorem 2:

A graph is hereditarily dominated by Dy = {K. |t > 1} U
{Ps} if and only if among its induced subgraphs there is no Cg
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and no graph F(L) with L € £,

(All members of £ have four vertices; it consists of K4 —e, Cy, Py, K1 3,
and the paw.)

The “only if” part is immediately seen as neither Cs nor any F(L) (L €
F(L3)) contains a dominating subgraph from the given class.

Now we prove the “if” part.

We shall apply some parts from the proof of Theorem 1, too.

Let G be a minimal non-Ds-dominated graph which does not contain
the given subgraphs, and = some vertex of G. We know that G has no
cutpoint; what is more, it is star-cutset-free. Then the graph H := G — z
is connected. Also, z has some neighbor y in H, and y has some neighbor
in a dominating induced subgraph D € D of H.

Case I Dis a P; or P, or Ps.

In this case, the proof is done by Lemma. 2.

So, we may assume
Case II D is a clique of size at least 3.

We are going to formulate two assertions in incerasing strength, both
implying the impossibility of Case II. For this purpose, we need some pre-
liminaries:
Notation. For 0 < i < n, let G,; denote the graph obtained from the
complete graph K, by deleting i edges incident to the same vertex y.
The vertices nonadjacent to y will usually be called “non-neighbors.” We
also put G, 0 = K,,.
Proposition 1. There is no dominating G, ; in G.

It will be easier to prove

Proposition 2. Let n > 2, D be a partial leaf-graph of Gn; such that
D = G, ; or y has a leaf, and if there is any leaf on any neighbor of y then
all the non-neighbors have leaves. Such a D cannot be dominating in G.

Definition. In the situation described in Proposition 2, G, ; is called the
base of D.

Proof of Proposition 2: We apply induction on n. For n =2, D can be
one of the graphs exhibited in Figure 3/a-d (or D = K3, settled in Case I).
For these graphs we have already proved that they cannot be dominating
in G (see the proof of Lemma 2). Now we prove that the validity of the
proposition for 2,...,n — 1 implies its validity for n.

Let us pick some dominating graph D satisfying the conditions. Suppose
D has base G i, n 2 3.
Claim 7. We have i = 1.
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Proof: By the definition of G, Proposition 2 is valid for i = 0. Let us
suppose, for a contradiction, that ¢ > 2. We are able to put leaves on two
of the non-neighbors s, ¢ because, omitting one of them, say s, by the in-
duction hypothesis of Proposition 2 the remaining graph is not dominating,
therefore we can put a leaf on s; and the second leaf can be put similarly.
But then we obtain an F(PW) as an induced subgraph since y has at least
one neighbor in G, ;. This is a contradiction proving Claim 7.

Claim 8. We haven —i=1.

Proof: Since 1 < n — 1, it is enough to prove n — ¢ < 1. Let us suppose,
on the contrary, the existence of at least two neighbors. In this case, we
are able to put a leaf on y (if it does not have one yet) because D — y
is a clique and cannot be dominating. By Claim 7, there is exactly one
non-neighbor. Due to the induction hypothesis of Proposition 2, we may
put a leaf on it. Let us pick now some neighbor and delete it. Using the
induction hypothesis again, the remaining graph cannot be dominating.
(Observe that this is a graph investigated in Proposition 2 because we have
supposed n — i > 2).

So we may put a leaf also on this neighbor. Similarly, we may put a leaf
on some other neighbor. But in this way we have constructed an F(K, —e)
which is forbidden. This contradiction proves Claim 8. O

We have obtained i = 1 and n — ¢ = 1, thus n = 2, despite we have
assumed n > 3. Hence, Proposition 2 is proved, and so is Theorem 2 as
well. o

7 Connected dominating subgraphs of order 4

In this section we prove Theorem 3:

In a connected graph G, each connected subgraph has some
connected dominating subgraph with at most 4 vertices if and
only if, among the indiced subgraphs of G, there is no C7 and
no F(L) for any connected 5-vertex graph L.

First we introduce a notion:

Definition. A truncated leaf-graph of a graph T is a graph obtained from
F(T) by deleting some of the leaves. Deleting no leaf or delete all of them
is also allowed.

The “only if” part of Theorem 3 can be obtained essentially from Lemma
1. The “if” part will be proved by first reducing it to stronger and stronger
assertions in several steps and then proving the last version applying the
method of “building non-dominating subgraphs.”

Suppose, for a contradiction, that G is a minimal non-D3-dominated
graph. The notation for the beginning of the proof will be the same as that
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in the proofs of Theorems 1 and 2, except that the dominating subgraph
found in H will be denoted by T. This T is some connected four-vertex
graph. Obviously, the connected five-vertex graph G|y (ryu(y)} = D, induced
by the vertex subset V(T) U {y}, is dominating in G. Consequently, it is
enough to prove that no connected five-vertex dominating graph exists in G.
We shall prove more: no truncated leaf-graph of any connected five-vertex
graph can be dominating in G.

First, let us consider the following statement:

Lemma A. No partial leaf-graph of any connected four-vertex graph can
be dominating in G.

Now we prove that Theorem 3 can be reduced to Lemma-A. We show
this by induction on the number of leaves in decreasing order; namely, if
there does not exist any dominating truncated leaf-graph of a connected
five-vertex graph, with a given number of leaves, then there does not exist
any with one fewer leaf. The maximal truncated leaf-graph F(D) of D, of
course, cannot be dominating in G because it is excluded as an induced
subgraph. Consequently, we can begin the induction.

Let us consider some truncated leaf-graph and some missing leaf in it,
namely some non-cutting vertex u where we have not put any leaf. By
assumption, T' = D — u is connected and, by Lemma A, the given partial
leaf-graph of T cannot be dominating. Thus, » has a private dominated
vertex u'; i.e., the leaf u' can be put on u. Thus, using Lemma A, we
have obtained that a further leaf can be attached to the original (dominat-
ing) truncated leaf-graph. This proves that Theorem 3 can be reduced to
Lemma A.

Next, we need a definition.

Definition. A partial 2-leaf-graph of a graph T means a graph L which is
constructed from T by putting one “leaf of length 2” — that is, a pendant
P3 = uu/u” where v’ is a leaf on u and ©” is one on u' — and some leaves on
some other vertices; the latter ones are not obligatory. We may put leaves
on cutpoints, too! (See Figure 4.)
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Figure 4

Let us consider next the following statement:

Lemma B. No dominating induced subgraph can be a partial 2-leaf-graph
of a connected four-vertex graph.

We prove that Lemma B implies Lemma A. We apply induction on the
number of leaves, in increasing order. We can begin the induction because
the graph of Lemma A without leaves is a four-vertex graph that cannot
be dominating in G.

Let us take a partial leaf-graph of a connected four-vertex graph 7', and
some leaf v’ of it hanging on the vertex u. Omitting v/, we obtain a partial
leaf-graph with a smaller number of leaves; it is not dominating in G, by
the induction hypothesis. Thus, »' has a private dominated vertex and
we obtain a dominating partial 2-leaf-graph, contradicting Lemma B. The
reduction of Lemma A to Lemma B is done.

Finally, we consider the following assertion:

Lemma C. Let G be a 2-connected, minimal non-Ds-dominated graph,
and L a partial 2-leaf-graph of a connected three-vertex graph. Then L
cannot be dominating in G.

We prove that Lemma C implies Lemma B. Suppose that the latter is
false. If the partial 2-leaf-graph L of the connected four-vertex graph T' has
a leaf on every noncutting vertex, then the proof is done because L contains
an F(D) where D is the five-vertex graph obtained from T' by adding the
middle vertex of the 2-leaf. (See Figure 5.) Otherwise we have some non-
cutting vertex u of T, such that no leaf hangs on it. Omitting u, we get
a partial 2-leaf-graph of some connected three-vertex graph, contradicting
Lemma C. Hence, Lemma B is reduced to Lemma C.
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The rest of the paper is devoted to the

Proof of Lemma C: There are two possibilities for a connected three-
vertex graph, namely the triangle and the cherry. All their partial 2-leaf-
graphs are exhibited in Figures 6, 7, 8/L1-L10. We denote those graphs
by Li,...,L1p. We will prove, for all 1 < ¢ < 10 (though not in increasing
order of subscripts), that L; cannot be dominating in G.

u u

—— N

] u

L1 L2 L3

Figure 6
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Claim 9. No induced path can be dominating.

Proof: It is enough to prove that neither P; nor Ps can be dominating,
since P; is forbidden not only as a dominating but also as an induced
subgraph. In our list, Ps and Ps are the graphs L; and Lp.

Suppose that Ps is dominating, and let us pick one of its endpoints, say
u. Omitting u, we get a four-vertex graph. It is not dominating, thus v has
a private dominated vertex v’; and so does the other endpoint w, too, with
some vertex w’. We have obtained a C7 or a P7, depending on u’w’ being
an edge or non-edge. This is a contradiction, and the case of P is done.

Now the assertion follows for Pg as well, by considering just one endpoint,
because its removal cannot yield a dominating Ps. O

Claim 10. The graphs Lg and Lg are not dominating.

Proof: Let us consider an Lg first. Deleting the vertex u, we obtain a
Pg which cannot be dominating, by Claim 9, and thus u has a private
dominated vertex. But so we have found an F(Y) which is forbidden.

Let us consider next an Lg. The graph Lg — u is isomorphic to P, not
dominating, thus » has a private dominating vertex. We have got an Lg,
contradicting the first part of the proof. O

Claim 11. No Lg is dominating.

Proof: The set H = {qi, g2, g3, 94} induces a connected four-vertex graph
which is not dominating. Thus, there exists some vertex r not dominated
by H, and so it is dominated by {gs, g6, g7}. If it has only one neghbor in
this set, then we obtain an F(Y'), thus we may suppose it has at least two
neighbors. By symmetry reasons, it is enough to look at two cases. In the
first case, the neighbors of r are gg and ¢7. In the second case, all the three
vertices are adjacent to r.

In the first case, {gs, g3, g2, 91,96, 7, g7} induces a P;. In the second case
(Figure 10), {gs,7, g6, q1, 92, g1} induces a Ps which is not dominating, thus
there exists some vertex s which is adjacent only to g3 and/or g7. When
it is adjacent to exactly one of them, we get a P;. When it is adjacent to
both, we get a C7, by omitting g4 and gs. O

Claim 12. The graphs L4 and Ls cannot be dominating.

Proof: Let us pick an Ls first. Then Ls — u is isomorphic to Ps, not
dominating, so u has a private dominated vertex. We have obtained a
dominating Lg, contradicting Claim 11.

Let us pick now an L, (which is the graph Y). Then L4 — u is connected
and has four vertices, not dominating, thus u has a private dominated
vertex. We obtain a dominating Ls, contradicting the previous case. [
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Claim 13. No L; is dominating.

Proof: Since L; — u is not dominating, u has a private dominated vertex
w’. Denote M = V(L;) U {«'}. The subgraph induced by M — {w} is
isomorphic to Ps, not dominating, thus w has a private dominated vertex
w’. Then M U {w'} — {2} induces P, not dominating, so z has a private
dominated vertex. The resulting graph is an F(L;), a contradiction. O

Lemma 4. There is no dominating bull in G.

Proof: Let B be the bull (see Figure 9, on vertices s, ¢, u, w, z). Since B—u
is not dominating, v has a private dominated vertex u’. Let V(B)U {u'}
be denoted by M. Then M — {w} induces Ly, not dominating (by Claim
13), so w has a private dominated vertex w’. Furthermore, M U {w'} — {z}
induces Pg, not dominating, consequently z has a private dominated vertex.
The new graph is F(B) where B is a bull, a contradiction. O

Claim 14. No L, is dominating.

Proof: The subgraph Ly — u is isomorphic to the bull, which is not dom-
inating by Lemma 4. So u has a private dominated vertex u’. Denote
M = V(L) U {v'}. Then M — {w} induces Ps, not dominating, conse-
quently w has a private dominated vertex. So we have got an F(L;). O
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Claim 15. No L3 is dominating.

Proof: The subgraph L3 —u is isomorphic to Ly, not dominating, so u has
a private dominated vertex. An F(B) has been constructed where B is a

bull. O

Thus, we have proved Lemma C that completes the proof of Theorem 3,
too. O
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