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Abstract

De Bruijn sequences had been well investigated in 70s-80s. In the past,
most of the approaches used to generate de Bruijn sequences were based upon
either finite field theory or combinatorial theory. This paper describes a simple
approach for generating de Bruijn sequences as “seeds”, and then based upon the
“seeds”, a simple procedure is presented to reproduce a class of de Bruijn
sequences. Numerical results of the distribution of reproduced sequences are
provided. Additionally, this paper also reports some recent applications of de
Bruijn sequences in psychology and engineering.

1. De Bruijn sequences

Given m symbols which, without loss of generality, it is assumed that
1,2,...,m-1,m, with the nature order 1<2< ‘- < m-1<m. An m-symbol n-tuple de
Bruijn sequence (or (m,n) de Bruijn sequence), is a string of m” symbols
5o5y-..S,_, such that each substring of length n,

Si+lsi+2"'sl+n’ (1)
is unique with subscripts in (1) taken modulo m". For example, sequence
123133221 is a (3,2) de Bruijn sequence produced by the symbol set {1,2,3},
since each substring of length 2, namely, 12, 23, 31, 13, 33, 32, 22, 21, 11, is
unique over the symbol set {1,2,3}. For m22 and n22, according to
Fredricksen’s account that there are N=[(m-1)J""" .m""'- of (m,n) de Bruijn
sequences (Fredricksen [3]).

ARS COMBINATORIA 63(2002), pp. 257-272



In the 70s-80s, de Bruijn sequences had been well studied and several
algorithms had been proposed for generating such sequences, e.g., Fredricksen
and Kessler [4], Fredricksen and Maiorana [5], and Ralston [9] etc. However,
most of the proposed algorithms are based upon either finite field theory or
combinatorial theory to generate a single (m,n) de Bruijn sequence rather than a
class of sequences. An excellent survey is referred to Fredricksen [3].

The purpose of this paper is multiple. Firstly, a simple algorithm directly
based upon de Bruijn digraphs is described for generating (m,n) de Bruijn
sequences as “seeds” for m>2 and #>2. As shown, this algorithm is much
simpler than the other aforementioned approaches. Secondly, using the
generated “seeds”, a simple procedure is proposed to generate a class of (m,n) de
Bruijn sequences. Numerical results are reported to show the distribution of the
class of de Bruijn sequences. Finally, two recent applications of de Bruijn
sequences in reaction time experiment problems (psychology) and 3D pattern
recognition problems (engineering) are presented.

2. The generation of de Bruijn sequences

It is well known that each (m,n) de Bruijn sequence corresponds to an
Eulerian circuit in the so-called de Bruijn digraph D,,, in which the vertex set of
Dn» is the set of all distinct m™' words of length n-1 over the symbol set
{1,2,...,m} (Chartrand and Oellermann [1]). Given m and n, generating an (m,n)
de Bruijn sequence is equivalent to finding an Eulerian circuit in its
corresponding digraph D,,,. Based upon the set of vertices and the set of arcs,
one may represent the de Bruijn digraph D, , by an m™' xm™" square adjacency
matrix 4. Next, throughout the paper, it is defined that the value of arc (i) in
Dpn is ry=1+([(m-1)+ mod m™'] mod m).

Example 1. For (m,n)=(3,3), the de Bruijn digraph Ds; is shown in Figure 1,
and its corresponding adjacency matrix A is shown in Figure 2.

In the adjacency matrix 4, 4;=! indicates that there is an arc (i,j) from the ith
vertex to the jth vertex and its arc value is r; (see Figure 1 and Figure 2).
Generally, for an (m,n) de Bruijn sequence, its corresponding adjacency matrix
Ais given by :
P 1< j-[i-mmodm™!]<m i jet12,.,m} @)
* |0 otherwise
Thus, for this example, finding an Eulerian circuit in the de Bruijn digraph D;

is equivalent to assigning numbers of 1,2,..., 3% (=m") into 27 cells (ij)e®={(iy)
| A;=1} of the adjacency matrix 4, where 1,2,...,3* indicating the ordering of arcs
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Figure 1. The de Bruijn digraph for Ds ;.
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Figure 2. The adjacency matrix 4 for the de Bruijn digraph D; ;.
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to be traveled in the de Bruijn digraph D;; in Figure 1. In general, if ¢ is
assigned to cell (i), then the next positive integer /+1 must be assigned to an
unassigned cell of row j. For this example, one possible ordering of assignments
for an Eulerian circuit is shown in Figure 3.

arcvaluerb:123l23 1 2 3
vertex = 33 32 31 23 22 21 13 12 11

iy 1 2 3 4 5 6 7 8 9
33 1 (27 20 1
32 2 25 21 17
31 3 15 9 2
23 412 24 14
22 5 23 22 11
21 6 18 12 6
13 7119 16 8
12 8 13 10 5
11 9 7 4 3

Figure 3. One possible assignment of Eulerian circuit for the de Bruijn digraph
D3'3.

In Figure 3, following the ordering of arcs to be traveled and appending its
corresponding arc values r; a (3,3) de Bruijn sequence is given by 33323 31322
3213123112 22121 11.

Based upon the same idea of this example, Hsieh [7] proposed the following
simple algorithm for generating an (m,n) de Bruijn sequence. In the algorithm,
L(S) denotes the length of sequence S.

Algorithm A4: (input = (m,n) : output : S=an (m,n) de Bruijn sequence)

0. i1, ] «(m,m,...,m) e R, and S is an empty sequence.
1. While L(5)<m" do .

begin
J il+[(i=1ym mod m"'] (3a)
Append 1+ ([(m -1+ j)mod m""]mod m) toS (3b)
1[i]« I1i]-1 (30)
iej (3d)
end (while)
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Noted that this algorithm is much simpler to implement than those typical
approaches by Fredricksen and Kessler [4], Fredricksen and Maiorana [5], and
Ralston [9]; and it has several computational advantages over those typical

approaches, such as : (i) this algorithm does not require to generate additional
necklaces (substrings), (ii) this algorithm does not require to test whether
additional necklaces had been previously generated or not, and (iii) this
algorithm does not require to test that additional necklaces are periodic or
aperiodic

3. The reproduction of de Bruijn sequences

In this section, we will present a simple procedure to generate a class of de
Bruijn sequences by using the “seed” sequence generated by Algorithm A.
Firstly, we note that each de Bruijn sequence S can be represented by a
sequence C (or C-sequence) which is constructed by the coordinates of orderings
in the adjacency matrix 4. Consider Example 1. The de Bruijn sequence is
S$=33323 31322 32131 23112 22121 11, and its corresponding C-sequence is
C=(1)39986 97385 68437 26712 55424 11 (the preamble within parentheses is
identical to the final integer of the sequence). Since, in Figure 3, the first
substring of C, i.e., (1,3), corresponds to the first integer 3 (=ry3) in S, and the
second substring in C, i.e., (3,9), corresponds to the second integer 3 (=rq) in S.
Similarly, the fourth substring of C, i.e., (9,8), corresponds to the fourth integer 2
(=res) in S and so on. For a C-sequence, one observes that :
(i) L(O)=L(S), i.e., the length of C-sequence is equal to that of de Bruijn
sequence;
(ii) for any n, it only requires a substring of length 3 to identify two adjacent
vertices in a C-sequence, while it requires n+1 for de Bruijn sequence S; and
(iii) any de Bruijn sequence can be converted to a C-sequence by the above
process in the example, and vice versa.
By (i) there is no additional storage required, by (ii), for a given C-sequence, we
may easily generate the other new C-sequence (Theorem 2, see below), and by
(iii) we may convert the new C-sequence to a new de Bruijn sequence. Next we
will introduce the main result for the reproduction of de Bruijn sequences. For
simplicity, we omit the preamble in the parentheses of C-sequence throughout
the paper.
Let = u;'f," @, be the set of substrings of length 2 in C, where @, is the set

of coordinates of orderings (i,/))€®, 1< j<m"'. For example, in Figure 2 we
have @, = {(L)(1,2)(13)}, @, = {(2,4)(2,5)(2,6)}> and @, = {(9,7)9.8)(9.9)}-

Lemma 1. Suppose that ¢ = 5 _ gi — ks — aj — e is @ C-sequence, i.e., there
exists an leading element s between two coordinates (a,i) e ®, and (a, ) €D,.
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Then , '——W
=s-—)a@@e

Theorem 2. For each given C-sequence, Lemma 1 can be used to generate a
distinct C-sequence for m>2 and n22.
Proof. The proof is based upon the following procedure.

is a new C-sequence.

Procedure (Input: a C-sequence; Output: a new C-sequence)
1. Choose ae{12, . m"'} randomly, and select any two distinct substrings

p,=(a,i,) and p, =(a,i,) from the given C-sequence, p\, p,€©.

2. If there is no element between these two chosen substrings, then go to Step 1,
otherwise, randomly choose b (b=a) between p, and p,.

3. IF b appears exactly » times between p; and p,, THEN choose any two
substrings p, = (b, ;) and p, = (b, j,), and then go to Step 2;
ELSE there must exist at least one 5 which is not included between p, and p-,
and the C-sequence would appear as :

where s is the leading element and e is the ending element.
4. Shifting the sequence such that b is the leading element. The C-sequence
appears as
either (b...ai...b...ai...es...) Of (b...es...ai...b...aj...)-
Thus one may directly apply Lemma 1 to obtain a new C-sequence.
Note that because the length of each C-sequence is finite, the procedure is valid.

Example 2. Consider Example 1 again.
(i) Suppose that p;=(a,i)=(5,6) and p,=(a,)}=(5,4) are selected in Step 1, and
3(=b=s) is randomly selected in Step 2 of the above procedure. Thus

(C=3998697385)(684372671255)(42411
s a i ks a j e

where “)(” indicates the position of the selected substrings. Directly using
Lemma 1, we obtain a new C’=39986 97385 42411 37267 12556 84 which
corresponds to the new distinct de Bruijn sequence $’=33323 3 1322 12111
31231 12223 21.

(ii) Suppose that substrings (2,6) and (2,4) are chosen in Step 1, and 7 is
randomly selected in Step 2 of the procedure, then the C-sequence is *

C=3998697385684372)(67125542)(411
s b aib aje
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Thus, by the shifting of Step 3 we have

7385684372)(67125542)(411399869.
b a ib a jes

By Lemma 1, the new C’'=73856 84372)(4113998697125542)(6 which
corresponds to the new distinct de Bruijn sequence $’=13223 21312 11133
32331 12221 23.

(iii) Suppose substrings (3,9) and (3,7) are chosen in Step 1 and 8 is randomly

0]

(i)

selected in the Step 2 of the procedure. The C-sequence is as 3)(9986

97385 6843)(7 26712 55424 11. Since element 8 appears 3 times (=n)

between these two chosen substrings, one may randomly choose (8,6) and

(8,4) as the new chosen substrings in Step 3 and then go to Step 2. Suppose

element 7 is selected in Step 2, the C-sequence is now as *
3998)(69738568)(437267125542411.

Similarly, by the shifting of Step 3, we have :
71255424113998)(69738568)(43726.

By Lemma 1 again, the new C’=71255 42411 39984 37267 38568 69 which

corresponds to the new distinct de Bruijn sequence $’=11222 12111 33321

31231 32232 33.

Therefore, given a “seed” sequence, one may repeat this similar
procedure to reproduce a class of de Bruijn sequences. To evaluate the
quality (distribution) of sequences generated by the proposed procedure, we
perform the following experiments.

If N<500, where N=the total number of distinct (m,») de Bruijn sequences,
we use Algorithm A4 to generate a “seed” sequence. Using the seed
sequence, 100N continuous (m,#) de Bruijn sequences are reproduced by the
proposed procedure. And then these generated sequences are classified into
these N cells and the counts are recorded.

If N>500, then based upon the “seed” sequence by Algorithm 4, 500
continuous (m,n) de Bruijn sequences are reproduced by the proposed
procedure. And then we compute the percentage of different (m,n) de
Bruijn sequences. Of course, if the percentage is higher, then it might be
assured that this procedure can reproduce (m,»n) de Bruijn sequences
efficiently.

Since N=1 for (m,n)=(2,2) and N=2 for (m,n)=(2,3), the experiments for these

two cases are omitted. For (m,n)=(2,4) and (3,2), we have N=16 and N=24,
respectively. Thus experiment (i) is executed for these two cases. For more
accuracy, 20 experiments are performed for each case and each experiment
generates 100N de Bruijn sequences. Since the length of (m,n) de Bruijn
sequence increases drastically, experiment (ii) only tests cases of (m,n)=(2,5),
(3.,3), 3,9), 3,5), (4,2), (4,4), (4,5), (5,2), (5,3), (5,4), and (5,5). Similarly, 20
experiments are performed for each case. The results of experiment (i) are given
in Table 1 and Table 2, and the results of experiment (ii) are shown in Table 5.
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Table 1. Results of frequencies for 1600 continuous generated sequences for (m,n)=(2,4). (20 experiments)

No. Sequence 1 2 3 4 5 6 7 8 9 10 | 11 12 13 4 15 16 | 17 | 18 | 19 | 20
| 211112112212122| 81 [ 75 [ 60 [ 90 | 65 | 70 | 71 | 65 | 82 | 61 71 78 | 18| 75| 79| 74169 | 65| 73 | 84
2 2n2121122122| 68 | 75 [ 69 | 82 |90 | 79 | 73 | 64 | 73 | 57 | 73 69 | 74|70 | 77 | 87 | 68 | 69 | 73 | 78
3 211112122120122 ) s [ 1371134 [ 120 | 144 | 128 | 128 | 134 | 120 | 126 | 124 1271127 | 136 | 124 { 129 | 116 | 134 | 120 | 129
4 2211112212112122] 140 | 141 [ 120 | 131 | 120 | 117 | 110 | 143 | 130 1t 132|118 134|129 127136 | 139 | 123 | 128 | 109
5 niznn2i2i2l sz |7 |70})7 | 58|77]78 7 64 | 85 | 78 | 69 | 64 | 76 | 84 | 75 | 8l 73
6 1212111122122 63 | 82 | 82 |75 [ 67 | 66 | 70 | 79 | 74 | 74 | 84 79 | 75|66 | 68 | 70 | 92 | 64 | 75 | 67
7 ni2122121 0122 132122 [ 115 | 126 | 122 | 119 | 122 { 144 | 132 | 131 129 115|120 f 118 | 120 | 125 | 130 | 129 | 128 | 129
8 21221212122 13 [ 1aa [ 3 | 30| 128 [ 131 | 125 | 135 [ 123 | 125 | 144 131 [ 144 | 125 | 114 | 155 | 136 | 123 | 116 | 132
9 2212111121221122 | 127 | 114 119 121 | 112 [ 123 ] 111 | 116 | 120 | 136 114 | 116 [ 123 | 122 | 128 | 111 | 128 | 119 { 138 | 134
10 1221211122112122 | 132 | 116 | 124 [ 133 [ 129 [ 153 | 127 | 118 | 127 | 132 | 140 [ 128 | 125 | 123 | 125 128 1 123 | 125 | 138 | 140
1 2212212222 136 [ 121 J 143 | 1is { 116 | 119 1 133 | 129 | 128 143 [ 134 [ 118 [ 109 | 120 | 124 | 110 ] 121 ] 124 | 129 | 125
12 |2212112211112122] 133 [ 128 [ 118 | 130 [ 146 | 132 | 127 | 115 [ 112 | 111 } 125 147 | 126 [ 143 | 134 { 117 | 125 | 135 | 105 | 124
13 |2212122111121122] 73 | 80 | 81 | 64 | 65 | 78 | 102 | 65 | 72 90 | 71 84 | 71 87 | 82 | 56| 70 | 83 | 84 | 59
12 12212122112111122] 68 | 68 | 98 | 57 | 81 | 70 | 87 [ 71 | 71 [ 79 | 59 | 63 | 64 | 73 77 | 78 1 65 | 8 | 71 | 75
15 |2212211112121122] 77 [ 61 | 85| 76 | 72 | 62 | 80 | 68 | 64 65 | 61 74 | 84 | 74 | 84 | 75 | 64 | 68 | 72 | 59
16 12212211212111122] 82 1 66 | 66 | 78 | 73 | 83 | 76 | 77 | 94 88 | 75 | 68| 68170 | 73 | 73 | 70 | 79 | 69 | 83
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Table 3. The probability distribution based upon 20 experiments for (m,n)=(2,4).
(1600 generations for each experiment)

Sequence No. Probability
1 0.045625
2 0.045625
3 0.080000
4 0.079375
5 0.045000
6 0.046250
7 0.078125
8 0.080625
9 0.076250
10 0.080625
I 0.078125
12 0.079375
13 0.047500
14 0.047500
15 0.044375
16 0.047500
Interchange Probability
1,16 0.093125
2,14 0.093125
3,11 0.158125
4,7 0.157500
5,6 0.091250
8,10 0.161250
9,12 0.155625
13,15 0.091875
Interchange+Reverse Probability
1,2,14,16 0.186250
3.4,7,11 0.315625
5,6,13,15 0.183125
8,9,10,12 0.316875
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Table 4. The probability distribution based upon 20 experiments for (m,7)=(3,2).
(2400 generations for each experiment)

Sequence No. Probability

1 0.037083

2 0.035416

3 0.037083

4 0.049583

5 0.034583

6 0.044583

7 0.050833

8 0.049166

9 0.044583

10 0.037500

11 0.037083

12 0.045833

13 0.049166

14 0.045000

15 0.048333

16 0.035000

17 0.035833

18 0.037083

19 0.036666

20 0.050416

21 0.045416

22 0.034583

23 0.044583

24 0.035416
Interchange Probability

1,3,11,18,19,24 0.220414

2,5,10,16,17,22 0.212915
4,7,8,13,15,20 0.297497
6,9,12,14,21,23 0.269998
Interchange+Reverse Probability

1,2,3,5,10,11,16,17,18,19,22 24 043
4,6,7,8,9,12,13,14,15,20,21,23 0.57
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Table 1 and Table 2 count the frequencies of observations for each possible
de Bruijn sequence. The mean probability of distribution for each possible
sequence is reported in Table 3 and Table 4, receptively. Table 3 indicates that
these 16 possible sequences are not equally generated. For example, sequences
3,4,7,8,9,10,11,12 have higher probabilities to appear than sequences
1,2,5,6,13,14,15,16. Moreover, if the interchange of elements 1 and 2 are
allowed for each sequence, one can classify these 16 sequences into only 8
sequences. For example , interchanging 1 and 2 in sequence 1 (=22111 12112
21212 2), we have 11222 21221 12121 1. And after a simple shift, we have
22122 11212 11112 2 which is exactly the same as sequence 16. Thus, it means
that sequence 1 and sequence 16 are indeed identical if interchange is allowed.
Similar results are also shown in Table 3. Furthermore, if reverse is also allowed
for each possible sequence, these 8 sequences can be reduced to only 4
sequences. For example, reversing sequence 1, we have 22121 22112 11112 2
which is exactly identical to sequence 14. It means that if both interchange and
reverse are allowed, there are only 4 basic de Bruijn sequences for (m,n)=(2,4).
Table 3 presents the distribution of reproduction for these 4 basic sequences.
Similar results are reported in Table 4 for (3,2) de Bruijn sequences. In general,
if both interchange and reverse are allowed, there are

[on =0 - fo(my = [ =D 2
basic de Bruijn sequences. Though the probabilities are not even for each cell of
possible de Bruijn sequence, the proposed procedure still has certain large
probability to generate all possible de bruijn sequences.

Table 5 shows the percentages of different de Bruijn sequences among 500
continuos reproductions for 20 experiments with various (m,n). The results are
summarized in Table 6. We observe that :

1. when m is fixed, the percentage increases with the increase of n.
2. when n is fixed, the percentage increases with the increase of m.
3. except for the case of (m,n)=(2,5), the percentages are all above 95%.

Especially, for the cases of m+r>7, the percentage is 100%.

Limited numerical results indicate that the proposed procedure seems
efficient to generate a class of distinct (m,n) de Bruijn sequences, especially
when m and r» are large.

4. Recent applications of de Bruijn sequences
In this section we will present two recent practical app ications of de Bruijn
sequences in psychology and engineering. Owing to the special properties of de

Bruijn sequences, it is expected that they will be widely applied to various fields
in the future.
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Table 5. The percentage of different de Bruijn sequences for 20 experiments with various (m,n).
(500 de Bruijn sequences for each experiment)

mn) [ @) ]|GH|CH[GCY|@)| @)@ | @) |[GCH|GH]| CA| G
1 0.856 | 0.984 1 1.000] 1.000 [ 0.974 | 0.996 | 1.000 | 1.600 | 0.994 | 1.000 | 1.000 | 1.000
2 0.8480.992 | 1.000 | 1.000 { 0.948 | 1.000 | 1.000 | 1.600 | 0.998 | 1.000 | 1.000 | 1.000
3 0.868 | 0.992 | 0.998 | 1.060 [ 0.952  0.998 | 1.000 ] 1.000 | 0.994 | 1.000 | 1.060 | 1.000
4 0.818 | 0.9820.998 | 1.000 { 0.958 | 1.000 | 1.000 | 1.000 | 0.994 | 1.000 | 1.000 | 1.000
5 0.8240.982].1.000 | 1.000 | 0.964 | 0.998 | 1.000 | 1.000 | 0.998 | 1.600 | 1.000 | 1.000
6 0.846 10.992 | 1.000 | 1.000 | 0.958 | 0.998 { 1.660 | 1.000 | 0.998 | 1.000 | 1.060 | 1.000
7 0.84410.990 | 1.000 | 1.000 | 0.958 | 1.000 | 1.600 | 1.000 | 0.994 | 1.000 | 1.000 | 1.000
8 0.8580.98810.998 | 1.000 | 0.954 ] 0.998 | 1.600 | 1.000 | 0.990 | 1.060 | 1.000 | 1.000
9 0.856 | 0.996 | 1.000 | 1.000 { 0.952 | 1.600 | 1.600 | 1.000 | 0.994 | 1.060 | 1.000 | 1.000
10 |0.854|0.980|0.998 | 1.000 | 0.958 | 1.000 | 1.060 | 1.000 | 0.998 | 1.600 | 1.060 | 1.000
11 0.84810.992 } 1.000 | 1.000  0.954 { 0.998 | 1.000 | 1.000 { 0.998 | 1.060 | 1.000 | 1.000
12 |0.8580.988 | 1.000 | 1.000 | 0.974 [ 0.998 | 1.000 | 1.000 | 0.990 | 1.000 | 1.000 | 1.000
13 0.832}0.988 | 1.000 | 1.000 | 0.956 | 0.998 | 1.000 | 1.000 | 0.994 | 1.060 | 1.000 | 1.060
14 ]0.870(0.9781.000| 1.000 | 0.958 | 1.060 | 1.000 | 1.000 | 0.994 | 1.000 | 1.000 | 1.000
15 0.860 ( 0.99410.998 | 1.000 | 0.952 | 1.060 | 1.000 { 1.000 { 0.998 | 1.000 | 1.060 | 1.600
16 ]0.854]0.982|1.000 | 1.000 [0.964 | 1.000 | 1.000 | 1.000 § 0.998 | 1.000 | 1.000 | 1.000
17 }0.852(0.988|0.998 | 1.000 { 0.958 | 0.998 | 1.000 | 1.000 | 0.994 | 1.000 | 1.060 | 1.000
18 |0.8580.980|1.000 | 1.600 | 0.974 | 1.000 | 1.000 | 1.000 | 0.994 | 1.000 | 1.000 | 1.000
19 0.844(0.973 | 0.998 | 1.000 | 0.952 | 0.998 | 1.000 { 1.000 | 0.998 | 1.000 | 1.060 | 1.000
20 |0.832]0.994|1.000 | 1.000 | 0.958 | 0.998 | 1.000 | 1.600 | 0.990 | 1.000 | 1.000 | 1.000

mean |0.849|0.9870.999 | 1.600 | 0.959 | 0.999 | 1.000 | 1.600 | 0.995 { 1.000 | 1.000 | 1.000
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Table 6. The mean percentage of different de Bruijn sequences for 20

experiments with various (m,n).
(500 de Bruijn sequences for each experiment)

m\n 2 3 4 5
2 — - * 0.849
3 * 0.987 0.999 1.000
4 0.959 0.999 1.000 1.000
5 0.995 1.000 1.000 1.000

* 1 results of experiment (i) are shown in Tables 1-4.

1. Reaction time experiment problems (Emerson and Tobias [2] and Sohn et al.
(10)).

In Psychology, a so-called reaction time experiment is made to evaluate
the effects of various stimuli. In a reaction time experiment, various stimuli
are typically presented a number of times to subjects following a
predetermined or randomly generated sequence. Then, the mean/median,
variance, and error rates etc. of reaction times for each of various stimuli can
be computed for further analysis (Sohn et al. [10]). To reduce the potential
possible noises (e.g., learning effects) in reaction time experiments,
experimenters generally present each stimulus equally often in a sequence of
trials. Recently, Emerson and Tobias [2] presented a computer code (C
program) to generate random sequences of trials such that each stimulus
appears equally often and is preceded equally often by itself and by other
stimulus. For example, sequence 332312211 is a valid 3-stimulus sequence
of trials, where 1, 2 and 3 represent three distinct stimuli. It is clear that this
sequence is one of (3,2) de Bruijn sequences.

2. 3D pattern recognition problems (Griffin et al. [6], Yee and Griffin [11], Yee
[12] and Hsieh [7 ~ 8]).

3-Dimensional range data is a set of points (x,y,z) for surface points of an
object. Range data can be used to 3D matching, object recognition, and
dimensional/geometric measurement (Yee and Griffin [11]). Recently, Yee
and Griffin [11] developed a new system that acquires 3D range data using a
single camera with a structured light pattern. The structured light pattern (see
Figure 4) is encoded to provide unique correspondence with a single image
and, hence, the approach is applicable in dynamic environments such as in
robot guidance, manufacturing, or medical imaging. Note that Figure 4 is
constructed by S;=a (4,3) de Bruijn sequence and S,=a (4,2) de Bruijn
sequence using the following procedure. (i) The first row of W is S, and (ii)
for 2< i <4*+1 and i< j <64, W, ~([Wi1,+S,[i-1] mod 4]). It should be noted
that (4 mode 4) is defined to 4 here. Thus, each 5-tuple word, e.g., (2,1,4,1,3),
is unique in Figure 4.
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4443442441433432431423422421413412411333233132232131231122212111
4443442441433432431423422421413412411333233132232131231122212111
4443442441433432431423422421413412411333233132232131231122212111
3332331334322321324312311314342341344222122421121424124411141444
3332331334322321324312311314342341344222122421121424124411141444
1114113112144143142134133132124123122444344243343242342233323222
1114113112144143142134133132124123122444344243343242342233323222
2221224223211214213241244243231234233111411314414313413344434333
1114113112144143142134133132124123122444344243343242342233323222
4443442441433432431423422421413412411333233132232131231122212111
2221224223211214213241244243231234233111411314414313413344434333
1114113112144143142134133132124123122444344243343242342233323222
2221224223211214213241244243231234233111411314414313413344414333
4443442441433432431423422421413412411333233132232131231122232111
2221224223211214213241244243231234233111411314414313413344434333
3332331334322321324312311314342341344222122421121424124411141444
4443442441433432431423422421413412411333233132232131231122212111

Figure 4. The structured light pattern W.

5. Conclusions

In this paper *

1. we have studied the generation, reproduction and applications of (m,n) de
Bruijn sequences. The algorithm is both simpler and more efficient than the
other typical approaches.

2. we have proposed a simple procedure to reproduce a class of (m,n) de Bruijn
sequences. Numerical results show the performance of the distribution of the

reproduced de Bruijn sequences.
3. we have provided two recent applications of de Bruijn sequences.

Owing to the special properties of de Bruijn sequences, it is expected that
(m,n) de Bruijn sequences can be widely applied to various fields in the future.
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Taiwan, under grant No. NSC 89-2213-C-150-001 and NSC 89-2213-C-150-023.

271



1.

2.

8.

9.

REFERENCES

G. Chartrand and O.R. Oellermann, Applied and algorithmic graph theory,
McGraw-Hill, Singapore (1993).

P.L. Emerson and R.D. Tobias, Computer program for quasi-random stimulus
sequences with equal transition frequencies. Behavior Research Methods,
Instruments, & Computers 27, 88-98 (1995)

. H. Fredricksen, A survey of full length nonlinear shift reglster cycle algorithms,

SIAM Review, 24(2), 63-76 (1981) .

. H. Fredricksen and I. Kessler, Lexicographic compositions and de Bruijn

sequences, Journal of Combinatorial Theory, 2, 63-76 (1981).

. H. Fredricksen and J. Maiorana, Necklaces of beads in & colors and k-ary de

Bruijn sequences, Discrete Mathematics 23, 207-210 (1978).

. P.M. Griffin, L.S. Narasimhan, and S.R. Yee, Generation of uniquely encoded

light patterns for ranges data acquisition, Pattern Recognition, 25, 609-616
(1992).

. Y.C. Hsieh, A note on the structured light of three-dimensional imaging systems,

Pattern Recognition Letters, 19(3-4), 315-318 (1998).

Y.C. Hsieh, Decoding structured light patterns for three-dimensional imaging
systems, Pattern Recognition, To appear (Accepted), (1999).

A. Ralston, A new memoryless algorithm for de Bruijn sequences, Journal of
Algorithms 2, 50-62 (1981).

10. H.S. Sohn, D.L. Bricker, J.R. Simon and Y.C. Hsieh, Optimal sequences of trials

for balancing practice and repetition effects, Behavior Research Methods,
Instruments, & Computers, 29(4), 574-581 (1997)

11. SR. Yee and P.M. Griffin, Three-dimensional imaging system, Optical

Engineering., 33, 2070-2075 (1994).

12. S.R. Yee, Interlocking number string and code matrix, Computers and Industrial

Engineering., 31, 929-932 (1996).

272



