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Abstract

A graph G(V, E) is a mod sum graph if there is a labelling of the
vertices with distinct positive integers so that an edge is present if
and only if the sum of the labels of the vertices incident on the edge,
modulo some positive integer, is the label of a vertex of the graph. It
is known that wheels are not mod sum graphs. The mod sum number
of a graph is the minimum number of isolates that, together with the
given graph, form a mod sum graph. The mod sum number is known
for just a few classes of graphs. In this paper we show that the mod
sum number of the n spoked wheel, p(W,)), n > 5, is n when n is odd
and 2 when = is even.

1 Introduction

A graph G = (V, E) is a sum graph if there exists a labelling, ), of the vertices
of G with distinct positive integers so that uv € E if and only if the sum of the
labels assigned to u and v is the label of a vertex of G. A sum graph cannot
be connected. There must always be at least one isolated vertex; the vertex
with the largest label. The sum number o(H) of a connected graph H is the
least number, 7, of isolated vertices, Ky, so that G = HUK, is a sum graph.
For more information about sum graphs see [1], [5], 8], [9], (10], (11] and [15].

Mod sum graph labelling was introduced by Bolland, Laskar, Turner and
Domke (2] as a generalisation of sum graph labelling. A graph G = (V, E) is
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a mod sum graph if there exists a positive integer z and a labelling, A, of the
vertices of G with distinct elements from {1,2,3,...,z— 1} sothat uww € E
if and only if the sum, modulo z, of the labels assigned to u and v is the
label of a vertex of G. Since all labels are distinct and zero is not allowed as
a label we have z > V| + 1. Any sum graph labelling can be considered as
a mod sum graph labelling by choosing a sufficiently large modulus z. The
converse is obviously not true.

A mod sum graph is related to a k-sum graph introduced by Chung (4],
however k-sum labellings allow more than one vertex to have the same label.
A mod sum graph is also related to sum graphs over Z,,, introduced by Harary
[7], however labellings of these graphs allow zcro as a label. ' ‘
Unlike in the case of sum graphs, there do exist mod sum graphs that are
connected. For example, paths on n > 3 vertices, trees on n > 3 vertices,
cycles on n > 4 vertices, cocktail party graphs, Hyn, and some complete
bipartite and multi-partite graphs have been shown to be mod sum graphs
2, [16].

On the other hand, there are connected graphs that are not mod sum graphs,
for example, complete graphs K, for n > 2 [2], wheels W, for n > 5 [13] and
Hpmn for n>m >3 [14].

The mod sum number, p(H), of a connected graph, H, is the least number,
r, of isolated vertices, Ky, so that G = H UK, is a mod sum graph.

The sum number of n spoked wheels was dealt with in {10], [11] and [15]. In
this paper we determine the mod sum number of n spoked wheels: we show
that p(W,) = 2 for n > 6 and n even and p(W,) =nforn 25 and n odd.

_ There are some interesting aspects to these results. Even wheels have a con-
stant mod sum number whereas odd wheels have an O(n) mod sum number.
Furthermore, when comparing the more general mod sum graph labellings to
sum graph labellings for wheels, we find that when the number of spokes is
cven p(W,) is a constant value whereas o(117,) is O(n) but when the number
of spokes is odd there is no difference whatsocver as p(Wy) = a(W,) =n.

2 The Mod Sum Number of Wheels

We follow the graph theoretic notation and terminology of (7]

An n spoked wheel W, is a graph G = (V| E) with a vertex set vV
{vey V1, Vg, .y Un} SO that vy € E for i = L2,on, vivip € E for i =
1,2,....,n—1and vyu; € E.
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The vertex v, of degree n is called cenire, and the other n vertices vy, va, . .., Un,
each of degree 3, are called the rim vertices. An edge incident on the centre
and a rim vertex is called a spoke, and an edge incident on two rim vertices
is called a rim edge.

We shall use the label of each vertex to denote the vertex itself so that rather
than refer to a vertex v and its corresponding label a = A(v) we shall simply
use the label @ to denote the vertex. This is possible since the definition of a
mod sum graph guarantees that the label assigned to each vertex is distinct.
The label ¢ is reserved for the centre so that ¢ = A(v.). We shall use the
term edge sum, written as {a,b} to mean the sum of the labels of the two
vertices incident on the edge so that {a,b} € V is the samc asa+b € VV
(since all arithmetic is performed modulo 2, strictly speaking we should say
a + b mod z € V). Traditionally, the same notation {a,b} is used to denote
an edge joining vertices @ and b. Consequently, for mod sum graphs. the
statemeuts {a,b} € E and {a,b} = a +b € V both indicate the same fact:
there is an edge joining the vertices a and b.

For convenience, we will assume from now on that the equation a +b = d
means @ + b = d mod z, where z is the modulus.

We say that a vertex d of the connected component H is a working vertex if,
for some distinct a,b,d € V(H),{a,b} € E(H) and d = ¢ + ).
We say that two edges are adjacent if there is a vertex common to both cdges.

There are no wheels with less than 3 spokes. The mod sum number of the 3
spoked wheel p(W3) = p(K,) = 4 (14]. The mod sum number of the 4 spoked
wheel p(1¥,) = 0 [6]. From now on we consider n spoked wheels where n 2> 5.
For n > 5 it is known that p(W,) > 1 [13].

We first establish a few basic lemmas that will be used to determine the mod
sutn number.

Lemma 1 [n a mod sum graph labelling of W, UK, n > 5. s > r. the
centre is not a working vertexz.

Proof. The centre, ¢, cannot be the edge sum of a spoke, {c,a} say, as
this would imply that ¢ = a + ¢ but, by definition, no vertex of the graph
has a label of zero. To show that the centre cannot be the sum of two
vertices incident on a rim edge, we assume the contrary so that a and b are
two adjacent rim vertices and ¢ = a + b is the centre. Let d be the second
rim vertex adjacent to b and f be the second rim vertex adjacent to « so
that f,a.b,d are four consecutive rim vertices. The edge sum of the spoke
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{¢,d} = {a+b,d} = a + b+d, shows that a + b + d must be a vertex of the
graph. Since the vertex a and the rim edge {b,d} = b + d are both vertices
of the graph, we deduce that one of the following two conditions must hold.

i) Vertices a and b + d are distinct (a # b+ d) so that the edge {a,b+ d}
exists.

ii) Vertex a is the same vertex as b+ d (a = b+ d) and no additional edge
is implied.

Similarly the spoke {c, f} = {a+b, f} = a+b+ f implies that either {b,a+ [}
existsorb=a + f.

Allowing for symmetry, there are three cases to consider:-

Case 1. Both {a,b + d} and {b,a + f} exist.
Case2. a=b+dand b=a+ f.
Case 3. {a,b+ d} existsand b=a + f.

Case 1. When {a,b + d} exists, the vertex b + d must be identical to one
of the three vertices adjacent to a. Clearly b+d #bandb+d #a+bso
that b+d = f. Similarlya+ f =d. Butnow f =b+d=b+(a+ f) =
a+b+ f = a+b=0, a contradiction since a + b is a label of the graph.

Case 2. When ¢ = b+d and b = a+ f, we note that a = b+d = (a+f)+d =
d+ f = 0. The four consccutive rim vertices may be written as f,a,a + f,d
and the centre as 2a + f. The spoke {¢,a} = {2a + f,a} = 3a + f and the
spoke {c,d} = {2a + f,d} = 2a + f + d = 2a imply that either {2a,a + f}
exists or 2a = ¢« + f. Now, 2a = a + f = a = f, which is not true, and
so 2a must be one of the three vertices adjacent to a + f. Clearly 2a # «
and 2a # 2a + f so that 2a = d. But now the centre, 2a + f implies
{2a, f} = {d, f}, a contradiction when n > 5.

Case 3. AsinCasc 1,b+d = fand wenote thatb=a+ f =a+(b+d) =
a+d =0. Since f = b+d = (a+ f)+d = f, the four consecutive rim vertices
may be written as f, a,a+ f,d and the centre as 2a + f. The spoke {c, f} =
{2a+f, f} = 2a+2f and the spoke {c¢,a+f} = {2a+f,a+f} = 3a+2f imply
that either {a,2a + 2f} exists or a = 2a + 2f. Now 2a + 2f # f otherwise
2a + f = 0 which is not true since 2a + f is a label of the graph. Similarly
20+2f #2a+ fand2a+2f #a+ fsothata =2a+4+2f =>a+2f=0.

The spoke {c,a} = {2a+ f,a} = 3a+ f and the spoke {c,a+ f} = {2a+f,a+
f} = 3a+2f = 2a now imply that either {2a, a+ f} exists or 2a = a+f. Now
2a # a+ f otherwise @ = f which is not true. Clearly 2a # a and 2a # 2a+ f
so that 2a = d. DBut now the centre, 2a + f implies {2q, f} = {d,f}, a
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contradiction when n > 5.
0O

Remark 1 From Lemma 1 il is obvious that, if v is the edge sum of a spoke
or v is the edge sum of a rim edge, v # c. Consequently, from now on, we
need only consider the possibility that any working vertez is a rim vertez.

Lemma 2 If, in a mod sum labelling of W, U K,, s> r, n >4, the edge
sum of a spoke is an isolate then the rim edges adjacent to the spoke are also
tsolates.

Proof. Assume the contrary so that a and b are adjacent rim vertices, the
spoke {c,a} = a + ¢ is an isolate and rim edge {a,b} = a + b is a working
vertex.

The spoke {c,a + b} = a + b + ¢ implies that either {a + ¢,b} exists or
b = a + ¢. Neither case can happen since b is a vertex of the connected
component whereas a + ¢ is an isolate.

a

Corollary 1 If, in a mod sum labelling of W, UK, n > 4, s > 1, the edge
sum of any spoke is an isolate then there are at least three isolates.

Lemma 3 p(W,) > 2 forn > 3.

Proof. For n > 5, it was proved in [13] that W, is not a mod sum graph,
that is, at least one isolate is required, so that p(W,) > 1. We assume that
p(W,) = 1 and show that this assumption leads to a contradiction. Let z
be the only isolate. It is clear that 2 is not the edge sum of any spoke since
Corollary 1 of Lemma 2 tells us that this can only be true if p(W,) > 3 so
that z is the edge sum of one or more rim edges.

Let a,b and d be consecutive rim vertices and let z = {b,d} = b+d. Clearly
{a,b} = a+b # r and so @ + b must be a rim vertex. Both the spokes
{c,a} = a+cand {c,b} = b+ cexist so that the spoke {c,a+b} =a+b+c
implies that both of the following conditions hold.

i) Either {a,b + ¢} exists ov ¢ = b + ¢,
and
ii) either {b,a + c} existsor b =a +c.

Case 1. Eithera#b+corb#a+c.
The rim vertices a + ¢ and b + ¢ can only be adjacent when n > 5 if both
a=b+cand b=a+csothatifa#b+candfor b#a+cthen a+cand
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b + ¢ are not adjacent. The spoke {c,a + b} = a + b+ ¢ must be an isolate
otherwise the spoke {c,a +b+c} = a + b + 2c implies {a + ¢,b+ c}. By
Corollary 1 of Lemma 2, p(W,) > 3 when any spoke is an isolate.

Case 2. a=b+cmod z and b = a + c mod z.

The equations a = b+ ¢ mod z and b = a + ¢ mod z are both true only when
c=%,b=a+%and a=>b+ 35 This results in a configuration with a centre
c= %, two adjacent rim vertices a,b = a + % and a third, distinct, rim vertex
a +b=2a+ ;. We retain the label ¢ for the second rim vertex adjacent to
b=a+% even though d and e + b = 2a + § may not be distinct. The isolate
z—b+d—a+d+z

The spoke {c,d} = {z d} = d+ § must be a rim vertex since d implies
{c.d+%} = {2,d+ 2} The isolate a + d +2 1mphes that either {a,d + £}
existsora=d+% Nowa#d+} othel\use a+3=(d+3%)+% =d, which
is not true since b =ae+%andd aw distinct. Clearly, d+ § # a+ % so that
d + % must be the second rim vertex adjacent to a. When n > 5, there is a
second rim vertex e # a adjacent to d + 3. Using similar arguments to those
just given, it is easy to show that the spoke {c,e} = {3, e} = e+ £ is a sixth,
distinct, rim vertex adjacent to d. The rim edge {e.d + 3} = d+e + § must
be an isolate, otherwise the spoke {¢,d +c+ 3} = {{,d+e+ i} =d+e
implies {d, e} which is not possible when n > 6. Clearly, the isolates a+d+ 2
and d + e + § are distinct.

]

2.1 Mod Sum Number of Even Wheels
Labelling 1 The following is a labelling of W, U Ky for n even, n > 6.

Let the centre ¢ be £ where z is the modulus.
Denote n by 2t where ¢t > 3 when n > 6. Now, let z = 10n = 20t, leading to

¢ = % = 5n = 10t. Furthermore, let the following be the values of by,. .., b:.
=1 10+6,=10+1

b,=1+20 10+b,=10+1+20

by =1+2x20 10+b3=10+1+2x20

. so that .

by =1+ (t-2)x20 10+by=10+1+(t-2)x20
by=14+(—-1)x20 10+6,=10+1+(t-1)x20

The b; ’s form an arithmetic progression with initial term b, = 1 and common
difference d = 20, satisfying b; = b;-, + 20 for j = 2,3,...,{. Notice also
that b, + 20 = b,.
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Label the rim as the cycle, C), given by
C = {bl, 10 + by, by, 10 + by—1, b3, 10 + b5, ..., 10 + by, by, 10 + bl}

Note that (b, 10 + b;) is the only rim edge of the form (b, 10 + by).
Label the two isolates 12 and —8.

Lemma 4 Labelling I is a mod sum graph labelling of W, U I, for n even,
n>6.

Proof. We must ensure that all sums of the form u+v, where {u, v} € E, are
labels of the graph and that when {u,v} ¢ E, u+v does not appear as a label.
Since ¢ = 3 = 10t, c+b; = bjyyy2 forn =0mod 4 and c+b; = 10 + by (i—1)2
for n = 2 mod 4. Both of these are labels in V. Similarly ¢ + (10 + b;) € V
for all 5 = 1,2,...,¢t so that all sums arising from the spokes are present.

The rim, on the other hand, consists of the cycle, C, given by
Cy = {b1,10 + b, by, 10 + by—1, b3, 10 + b3, ..., 10 + by, b,. 10 + by }

Apart from {b;,10 + b;}, each edge sum is of the form b, 10 + b; where,
alternately, i+ j = t+1 and i +j = t + 2. This leads to alternate edge sums
of 12+ (¢t —1) x 20 and 12 + ¢ x 20 which equal —8 and 12 respectively since
= = 20L. These are the labels of the two isolates. The edge sum {b;,10 +b,}
is also equal to 12 so that all rim edges are accounted for.

We note that all rim vertices are equivalent to 1 mod 10, the two isolates are
both equivalent to 2 mod 10 and the centre and modulus are both equivalent
to 0 mod 10. No cdges are implied between the isolates and the rim vertices
since there is no label equivalent to 3 mod 10. Similarly, {+12, —8} is not
implied since there is no label equivalent to 4 mod 10. To sce that {c, 12}
and {c, -8} are not implied we note that {c,12} = {%,12} = 3 + 2 and
{e, -8} = {3, -8} = % — 8, both of which are equivalent to 2 mod 10. The
only labels equivalent to 2 mod 10 are the two isolates and when n > 6 we
have ¢ = § > 30 so that it is easy to see that neither 5 + 2 nor 5 — 8 are
cqual to either 12 or —8.

The only other possibility is an implied edge of the form {b;,b;} where i+j #
t+1,t+2. But b;+b; =2 mod z = b;+b; = 12 or b; +b; = —8 which is true
onlyifi+j=t+1ori+j=1t+2, acontradiction. Thus, no “unwanted”
edges are present and the claim holds.

a

Theorem 1 p(W,) = 2 for n even, n > 6.

Proof. Lemma 3 shows that at least 2 isolates are necessary and, by Lemma
4, for all n > 6 when n is even, Labelling 1 is a mod sum graph labelling of
W, using ounly 2 isolates.

0
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2.2 Mod Sum Number of Odd Wheels

Lemma 5 If, in a mod sum graph labelling of W, UK,, n > 5, s>, the
edge sum of a spoke is an isolate then the rim vertices adjacent to this spoke
are not the edge sums of spokes.

Proof. Assume that a and b are adjacent rim vertices and the spoke {c,a} =
a+cis an isolate. Let d be a third rim vertex so that a, b and d are all distinct.
Clearly, b # {c,a} = a+cas a+cis an isolate and b # {c,b} = b+casc #0.
Now, b # {c,d} = d + ¢ otherwise the rim edge {a,b} = {a,d+c} =a+d+c
would imply that cither {d,« + ¢} exists or d = a + c¢. Neither case can
be true since d is a vertex of the connected component whereas a + ¢ is an
isolate.

a

Lemma 6 In a mod sum graph labelling of W, UK, n odd, n > 5, s > r,
the spokes are either all working or all non-working.

Proof. Recall that a spoke {¢,a} = a + c is working if a + ¢ is a rim vertex
and non-working if « + ¢ is an isolate since the centre, ¢, is not working
(Lemma 1).

All rim vertices are distinct and, hence, the edge sums of all spokes are
distinct modulo z. It follows that the size of the set of all working spokes
is the same as the size of the set of all rim vertices that are the edge sums
of spokes. (We note here that there may be additional rim vertices that are
working but represent rim cdges and not spokes). Conversely, the size of the
set of all spokes that are not working is the same as the size of the set of all
rim vertices that arc not the edge sums of spokes.

Assume that we have a valid mod sum graph labelling of W, U K, where
s>randn>3.

If all the spokes arc working then we are finished. If any of the spokes are
not working (isolates) then we distinguish between two different situations.

Case 1. At least one non-working spoke is incident on a rim vertex that is
not the edge sum of a spoke.

Case 2. Every non-working spoke is incident on a rim vertex that is the edge
sum of a spoke.

Case 1.

Consider a non-working spoke incident on a rim vertex that is not the edge
sum of a spoke. The two rim vertices adjacent to this non-working spoke are
not themselves the edge sum of a spoke (Lemma 5) so that three consecutive
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rim vertices are not the edge sum of a spoke. If there are three rim vertices
that are not the edge sum of a spoke then there must also be three non-
working spokes. Each additional non-working spoke contributes at least one
extra rim vertex that is not the edge sum of a spoke (Lemma 5) so that,
unless all spokes are not working, there must be fewer spokes that are not
working than rim vertices that are not the edge sum of some spoke.

Case 2.

When a non-working spoke is incident on a rim vertex that is the edge sum
of a spoke, there are two vertices adjacent to the non-working spoke that are
not the edge sum of a spoke (Lemma 5). This implies that two non-working
spokes cannot be adjacent to each other since, by hypothesis, all non-working
spokes are incident on a rim vertex that is the edge sum of a spoke. The
simple counting argument used in Case 1 now climinates all configurations
except one. This configuration is where non-working spokes alternate with
working spokes and there are exactly half of each type. Clearly, this is not
possible when n is odd.

a

Theorem 2 p(W,) =n forn > 5 and n odd.

Proof. All the spokes are working or all the spokes are isolates (Lemma 6)
and we assume for the moment that all the spokes are isolates.

The mod sum number must be at least n since the edge sums of the n spokes
are all distinct modulo z. The mod sum number cannot be greater than n
since the sum number of the n spoked wheel is known to be n [11] and we
can always convert a sum graph labelling to a mod sum graph labelling by
selecting a large enough modulus so that p(W,) < o(W,) = n. The sum
graph labelling for the odd wheels given in [11] may also be used as a mod
sum graph labelling given a suitably high modulus.

It remains to show that the spokes cannot all be working.

Assume the contrary so that all spokes are working. Recall that all rim
vertices are distinct and, hence, the edge sums of all spokes are distinct so
that the set of all rim vertices is the same as the set of labels generated by
the edge sums of all spokes. It is now clear that the rim vertices must be
partitioned into sets of equal size, ¢, so that the clements of each set are closed
under addition of ¢ modulo z. There are only two possible configurations to
consider.

Case 1. € = n, all rim vertices are of the forma+ic, i=0..n-1, a <¢
and the modulus is nc.
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Case 2. ¢ < n, ¢ divides n and the modulus is £e. The rim vertices belong to
one of ¥ sets each of size £. Each set is of the form a+ic, i =0...¢-1
where a < ¢ and each set has a different value for a.

Case 1. All rim vertices are of the forma+ic, i=0...n—-1, a<c
Assume that vertex o is adjacent to vertex a + ic and vertex a + jc. This
results in two labels, {a,a + ic} = 2a + ic and {a,a + jc} = 2a + jc that
must be isolates since 2a +ic # a +tc, t € {0...n — 1}. There cannot
be a third, distinct isolate due to a rim edge, 2a + kc say, otherwisc the
edge {a,a + kc} is implied and a can only be adjacent to two rim vertices.
Now, two consecutive rim edges cannot have the same edge sum since if, for
example, p, ¢, r are consecutive rim vertices and the edge sum {p,q} =p+¢
is the same as the edge sum {q,7} = ¢ + r then p = r which is contrary to
the definition of a mod sum graph. Clearly, when = is odd, it is not possible
to avoid having two consecutive edge sums that are the same when only two
different edge sums are present.

Case 2. All rim vertices belong to one of 7 sets each of size £ and of the
form a +ic. i =0...¢ — 1. Each set has a different value for a, the smallest
element, and we can label the members of each set so that each ¢ < ¢. For
convenicnce. we use the smallest label of each set to characterise the entire
set and simply call {a,a +¢,a + 2¢,...,a+ (€ — 1)c} the set a.

We now make two obscrvations.

Qur first observation is:- An edge between any vertez belonging to one sct and
any vertex belonging to another set implies a matching between the vertices
of the first set and the vertices of the second set.

Assume there is an edge between vertex a + ic from set a and vertex b + jc
from set b where i, j € 0...¢—1. The edge sum {a+ic, b+jc} = a+b+(i+))c
also implies the edge {a + (i = 1)¢, b+ (§ + 1)c} since the vertices are from
two different sets and so a + (i — 1)c # b+ (§ + 1)c. In fact, the edge sum
{a+ic,b+ jc} = a+b+ (i+ j)c joins every vertex of the a set with a unique
vertex of the b sct because the edge sum a + b + (i + j)c not only implies
{a+ic,b+ jc} and {a+ (i — 1)e,b+ (j +1)c} but also {a + (1 — 2)¢, b+ (j +
2)c}, {a+ (i = 3)e,b+ (j +3)c},..., {a+ (E+1)e,b+ (5 = L)c}.

Our second observation is:- It is not possible for a rim vertez to be adjacent
to any vertexr that belongs to the same set.

Assutne the contrary so that vertices a+ic and a+jc arc adjacent rim vertices
belonging to set a where i,7 € 0...¢—1and ¢ # j. Using a similar argument
to that used in the first observation, we see that {a + ic,a + jc} € V" also
implies edges {a + (i — V)e,a+ (5 + 1)}, {a+ (i = 2)c,a + (§ + 2)c} and so
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on. A total of (£ — 1) edges is implied between different pairs of vertices
belonging to the set a but one vertex is left unpaired since ¢, the size of the
set, is odd. This unpaired vertex is a + 3(i + j)c when i + j is even and
a+ (£ +1i+ j)c when i+ j is odd.

Consider the two rim vertices adjacent to this unpaired vertex.

If ¢ = 3 and both vertices are also from the set a then a cycle of size 3 is
formed, a contradiction when n > 5.

For any other situation, the extra edges implied ensure that at least one rim
vertex from the set a is adjacent to three other rim vertices, a contradiction.

We are now ready to show that all the spokes cannot be working. -

Find a pair of adjacent vertices from different sets (such a pair must always
exist). As we have seen in our first observation, once we have found such
a pair we have also found a total of £ pairs each with the same edge sum.
Without loss of generality, assuine the first pair of vertices to be a + ic and
b + jc, where 4,7 € 0...¢ — 1. Consider the second rim vertex adjacent
to b + jc. It cannot be another vertex of the set a since this would join
every vertex of the set b to a second vertex of the set @, forming a cycle of
maximum length 2¢, however 2¢ < n since n is odd and ¢ divides n. The
second rim vertex adjacent to b+ jc cannot be another vertex from the set b
and we conclude that it must belong to a third sct, and assume, without loss
of generality, that it is d + k¢ where k € 0...¢ — 1. This also adds a third
vertex from the set d to each of our § chains.

It is clear that this argument may be repeated until one member of each set
is added to each chain of vertices. At cach stage we cannot join the terminal
vertex to another member of the same set, we cannot join the terminal vertex
to the starting vertex of another chain (from the set a) without forming a
cycle of length less than n, and we cannot join the terminal vertex to any
non-terminal chain vertex, one from the set b, say, as each is already adjacent
to two rim vertices.

When all the % chains are fully formed, we need to join them end to end to
form the C, rim vertices. Our second observation tells us that we cannot
join vertices from the same set and, without loss of generality, we assume
that a + ic, the first vertex of the chain a +ic,b+ pe,. .., g + rc, is adjacent
to g + sc, the terminal vertex of the chain a + jc, b+ ¢c,..., g + sc. Also
assume, again without loss of generality, that i = j + k.

Because the vertices of each chain have the same pairwise sums, the vertices of
the first chain are alternately kc larger and k¢ smaller than the corresponding
vertex of the sccond chain. As an example, consider the first two vertices of
cach chain. Now (a +ic) — (a + j¢) = k¢, by hypothesis, and since (a + ic) +
(b+pc) = (a+jc)+(b+qc) we have immediately that (b+pc) —(b+qc) = —ke.
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Since each chain is of odd length we deduce that (g + rc) — (g + st) = ke.
But now (a + ic) — (@ + j¢) = kc = (g + r¢c) — (g + st) which rearranges to
(a+ic) + (g + st) = (a+jc) + (g +rc). This immediately implies that a + jc
is adjacent to g + rc, thus forming a cycle of length 2¢, which is less than n.
0O

Remark 2 Mod sum graphs are a generalisation of sum graphs and, intu-
tltively, it seems “obuvious” that there should always be at least one more isolate
required in a minimal mod sum graph labelling compared to the number of iso-
lates required in a minimal sum graph labelling of the same graph. Looked
at another way, since every sum graph labelling has at lcast one isolate, that
is, the largest label, it is “obuvious” that we can convert a given sum graph
labelling into a (not necessarily minimal) mod sum graph labelling with one
less isolate by choosing the modulus so that this largest label maps onto an-
other label of the graph. This approach does work for some classes of graphs,
for example, for trees, so that p(T,) = 0 while o(T,,) = 1.

However, in this paper we have proved that for odd wheels with at least 5
spokes, the mod sum number and the sum number arc cractly the same with
p(W,) = n and o(W,) = n. This is the first known instance of a cluss of
graphs where the mod sum number is the same as the swn number.

Interestingly, the situation is very different for even wheels. As we proved
in this paper, for even wheels with at least siz spokes the difference between
mod sum number and sum number is even more striking, with p(W,) = 2
and a(W,,) = 5 + 2, a difference in the order of magnilude.

Open Problem 1 Are there any classes of graph, apart from the odd wheels,
for which p(G) = o(G)?

The following table is a summary of the current state of knowledge of mod
sum numbers.
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Graph Class, H Restrictions p(H) | Citation
Trees, T n>3 0 [2]
Cycles, C, n>4 0 (2]

Kpiig g>landp>rg+re—1° 0 2]
Kap p21 0 (2]
Kn\ngvoim if 3n; and nj s.t. n; <mj <2n; | >0 (16
Wy 0 6], [13]
W, n > 6, n even 2 This paper
W, n > 5, nodd n | This paper
Hap n>0 0 2]
Hyn n>m2>3 >0 (14]
K, 1 [14]
K 1 (14]
K, n>4 n [14]

* ;= f;21 — L where {f;} is the Fibonacci sequence with fi=1, fo=2.

3 Open Problems

The wheel is very close to another type of graph, the fan F,, = P, + K on
n + 1 vertices. A labelling is enough to provide an upper bound for the mod
sumn number of fans.

Theorem 3 For n odd, n > 5, the mod sum number p(F,) < n.

The Fibonacci sequence can be used to construct a mod sum labelling of
F, UK,. Let the modulus be z = (Sp41 — 1)a where a > 4 and label the
center vertex with 1; next, label v, vs, ..., v, € V(F) with 1+a,1+2¢,1 +
3a,...,1 + S,a where S, is the nth Fibonacci number (Sp = 1, S = 1).
Therefore, v; receives 1 + S;a as a label. Consequently, the isolated vertices
are labeled 2 + «,2 + 2a,...,2 + Spa. It is left to the rcader to verify that
the given labelling is, in fact, a mod sum labelling.

It is still an open problem to show the exact mod sum number for the fan.

Open Problem 2 What is the mod sum number of the fan F,?

As shown in the table above, the case of complete bipartite graphs Ky, , was
almost completed by Wallace [16] with only one exception.

Open Problem 3 What is the mod sum number of the bipartite graph I, ,,
when 2m < n < 3m — 3 and n is odd?
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Wallace [16], has made the following conjecture concerning the difficulty of
determining the mod sum number of a graph. The conjecture gains validity
from the results of Cairnie and Edwards [3] who proved that the problems
of finding cordial and

k-equitable labellings are NP-complete.

Conjecture 1 Let G = (1, E) be a graph; then, finding the mod sum number
of G is NP-complete.

Observing that the wheel 117, is as a 1-point suspension of the cycle C,, it is
natural, then, to consider t-point suspensions of C,,.

Open Problem 4 What is the mod sum numnber of the t-point suspension
of Cp fort > 27

In conclusion, we mention a broader extension of sum graphs. For any abelian
group (H, ), define a graph G to be a H-sum graph if there exists a labelling
of the vertices of G with distinct non-identity elements of H such that two
vertices v and u are adjacent if and ounly if v * u appears as a label of some
other vertex of G. Notice that a MSG is simply an Z,-sum graph. All
resolved and unresolved problems for sum graphs and mod sum graphs arc
applicable to the case of H-sum graphs.
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