A Note on the Alon-Saks-Seymour coloring conjecture Yoomi Rho ¹ Department of Mathematics Yonsei University Seoul, Korea 120-749 rho@math.snu.ac.kr ## Abstract Kahn(see [3]) reported that N. Alon, M. Saks and P. D. Seymour made the following conjecture. If the edge set of a graph G is the disjoint union of the edge sets of m complete bipartite graphs, then $\chi(G) \leq m+1$. The purpose of this paper is to provide a proof of this conjecture for $m \leq 4$ and $m \geq n-3$ where G has n vertices. Let $\chi(G)$ denotes the chromatic number of a graph G, that is the fewest number of stable sets into which the vertices of G can be partitioned. The purpose of this note is to prove the following result which verifies a conjecture of Alon, Saks and Seymour in some cases (see [2] and [3]). **Theorem 1.** Let G be a graph on n vertices and assume that G is the edge disjoint union of m complete bipartite graphs. If $m \le 4$ or $m \ge n-3$, then $\chi(G) \le m+1$. If A and B are disjoint sets, then we denote by $K_{A,B}$ the complete bipartite graph with bipartition of vertices $\{A,B\}$. By $K_{A,B} \uplus K_{C,D}$, we mean the union of graphs $K_{A,B}$ and $K_{C,D}$ having no edges in common. **Lemma 2.** Let $G = K_{A,B} \uplus K_{C,D}$. Suppose $A \cap C \neq \emptyset$. Then $B \cap D = \emptyset$. *Proof.* Let a be a vertex in A and C. Suppose to the contrary that there is a vertex b in $B \cap D$. Then the edge connecting a and b belongs to both $K_{A,B}$ and $K_{C,D}$, a contradiction. Theorem 1 is a consequence of the following Lemmas. ¹The author wishes to acknowledge the financial support of the Korea Research Foundation made in the program year of 2000. **Lemma 3.** Let m be a positive integer and let $G = K_{A_1,B_1} \uplus \cdots \uplus K_{A_m,B_m}$. Suppose A_1, \cdots, A_m are mutually disjoint. Then $\chi(G) \leq m+1$. Proof. Consider the m+1 pariwise disjoint sets $A_1 \cup B_2 \cup B_3 \cup \cdots \cup B_m - B_1 - A_2 - \cdots - A_m$, $B_1 \cup A_2 - B_2 - A_3 - \cdots - A_m$, $(B_1 \cap B_2) \cup A_3 - B_3 - A_4 - \cdots - A_m$, \cdots , $(B_1 \cap \cdots \cap B_{m-1}) \cup A_m - B_m$ and $B_1 \cap \cdots \cap B_m$. As the first set is disjoint from B_1, A_2, \cdots, A_m , no edge connects two vertices of it. Hence one color suffices for its vertices. Similarly each of the above sets requires only one color. Since $A_1 \cup \cdots \cup A_m \cup B_1 \cup \cdots \cup B_m$ is the union of the above sets, $\chi(G) \leq m+1$. The theorem is clearly true for m = 1, and so we start with m = 2. Lemma 4. Let $G = K_{A_1,B_1} \uplus K_{A_2,B_2}$. Then $\chi(G) \leq 3$. *Proof.* By Lemma 2, either $A_1 \cap A_2 = \emptyset$ or $B_1 \cap B_2 = \emptyset$. In any case the lemma follows by Lemma 3. Corollary 5. Let G be a planar graph. If the edge set of a graph G is the disjoint union of the edge sets of m complete bipartite graphs, then $\chi(G) \leq m+1$. *Proof.* As G is a planar graph, $\chi(G) \leq 4$. Hence the corollary follows easily from the above lemma. **Lemma 6.** Let $G = K_{A_1,B_1} \uplus K_{A_2,B_2} \uplus K_{A_3,B_3}$. Then $\chi(G) \leq 4$. *Proof.* By Lemma 2 and Lemma 3, it is enough to consider the cases where exactly one pair of A_1 , A_2 and A_3 intersects. We may assume that A_1 and A_2 intersect, but $A_1 \cap A_3 = A_2 \cap A_3 = \emptyset$. Then B_1 is disjoint from B_2 . Consider the partition $A_1 \cup B_2 \cup B_3 - B_1 - A_2 - A_3$, A_3 , $B_1 \cup A_2 - A_1 - A_3$ and $A_1 \cap A_2$ of $A_1 \cup A_2 \cup A_3 \cup B_1 \cup B_2 \cup B_3$. The lemma follows by a similar method as in the proof of Lemma 3. Lemma 7. Let $G = K_{A_1,B_1} \uplus \cdots \uplus K_{A_4,B_4}$. Then $\chi(G) \leq 5$. *Proof.* Let $V = A_1 \cup \cdots \cup A_4 \cup B_1 \cup \cdots \cup B_4$. By Lemma 2 and Lemma 3, it is enough to consider the following cases. Case (1) A_1 intersects with A_2 , and $A_i \cap A_j = \emptyset$ if $(i,j) \neq (1,2)$: Then B_1 is disjoint from B_2 . $A_1 \cup B_2 \cup B_3 \cup B_4 - B_1 - A_2 - A_3 - A_4$, A_3 , A_4 , $B_1 \cup A_2 - A_1 - A_3 - A_4$, $A_1 \cap A_2$ is a partition of V into 5 stable sets. Case (2) A_1 intersects with A_2, A_3 , and $A_i \cap A_j = \emptyset$ if $(i, j) \neq (1, 2), (1, 3)$: Then B_1 is disoint from B_2, B_3 , and $B_1 \cup A_2 \cup A_3 \cup B_4 - A_1 - B_2 - B_3 - A_4$, $A_4, B_2 \cup B_3 - A_2 - A_3 - A_4, (A_1 - B_2 - A_3) \cup (A_2 \cap B_3 - B_1) - (B_3 - A_2), (A_1 \cup B_2) \cap A_3$ is a partition of V into 5 stable sets. Case (3) $A_1 \cap A_2 \neq \emptyset$, $A_3 \cap A_4 \neq \emptyset$, and $A_i \cap A_j = \emptyset$ if $(i, j) \neq (1, 2), (3, 4)$: Then $B_1 \cap B_2 = \emptyset$ and $B_3 \cap B_4 = \emptyset$. Consider the partition $(A_1 - A_2) \cup (B_2 - A_3 - A_4) \cup (B_3 - B_1 - A_2 - A_4) \cup (B_4 - B_1 - A_2 - A_3), (A_2 - A_1) \cup (B_1 - A_3 - A_4), (A_3 - B_4) \cup (A_4 - B_3), A_1 \cap A_2, A_3 \cap B_4, B_3 \cap A_4$ of V into stable sets. As $A_3 \cap B_4$ or $B_3 \cap A_4$ is empty by Lemma 2, we have only five sets. Case (4) Any two of A_1, A_2, A_3 intersect, but they are disjoint from A_4 : Then B_1, B_2, B_3 are mutually disjoint, and $B_1 \cup A_2 \cup A_3 \cup B_4 - A_1 - B_2 - B_3 - A_4, A_1 \cup B_2 - A_2 - B_3 - A_4, (A_1 \cap A_2) \cup B_3 - A_3 - A_4, A_4, A_1 \cap A_2 \cap A_3$ is a partition of V into 5 stable sets. Case (5) The only nonempty intersections among A_1, A_2, A_3, A_4 are $A_1 \cap A_2 \neq \emptyset$, $A_1 \cap A_3 \neq \emptyset$, $A_2 \cap A_4 \neq \emptyset$: Then $B_1 \cap B_2 = B_1 \cap B_3 = B_2 \cap B_4 = \emptyset$, and $A_1 \cup A_2 \cup B_3 \cup B_4 - B_1 - B_2 - A_3 - A_4$, $B_1 - A_4$, $A_4 - B_2$, $B_2 - A_3$, $A_3 - B_1$ is a partition of V into 5 stable sets. The theorem is clearly true for $m \geq n-1$. Lemma 8. Let $G = K_{A_1,B_1} \uplus \cdots \uplus K_{A_{n-2},B_{n-2}}$. Then $\chi(G) \leq n-1$. *Proof.* Suppose $\chi(G) = n$. Then $G = K_n$, contradicting to the Graham-Pollak theorem (see [1]) which states that K_n cannot be partitioned into fewer than n-1 complete bipartite graphs. **Lemma 9.** Let $G = K_{A_1,B_1} \uplus \cdots \uplus K_{A_{n-3},B_{n-3}}$. Then $\chi(G) \leq n-2$. Proof. Knowing that $\chi(G) \neq n$ suppose $\chi(G) = n-1$. Then $G \uplus K_{1,a} = K_n$ for some $a \leq n-1$, again contradicting to the Graham-Pollak theorem (see [1]). ## References - [1] R.Graham and H.Pollak, On embedding graphs in squashed cubes. In: Y.Alavi, D.R.Lick and A.T. White, editors, Graph Theory and Applications, volume 303 of Lecture Notes in Mathematics, pages 99-110. Springer-Verlag, 1972. - [2] T.Jensen and B.Toft, Graph Coloring Problems, Wiley-Interscience Series, 1995. - [3] J.Kahn, Recent results on some not-so-recent hypergraph matching and covering problems. In: P.Frankl, Z.Füredi, G.O.H.Katona and D.Miklós, editors, Extremal Problems for Finite Sets, volume 3 of Bolyai Society Mathematical Studies. János Bolyai Mathematical Society, 1994.