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Abstract

For a given sequence of nonincreasing numbers, d = (du, ... ,dn),
a necessary and sufficient condition is presented to characterize d
when its realization is a unique labelled simple graph. If G is a
graph, we consider the subgraph G’ of G with maximum edges which
is uniquely determined with respect to its degree sequence. We call
the set of E(G)\E(G’') the smallest edge defining set of G. This

definition coincides with the similar one in design theory.

1. Introduction

For a given set of four positive integers, v,k,,A, a t-(v,k,A) design (or
simply a t-design) is an ordered pair (X, B) where X is a v-set and B is a
collection of k-subsets of X (called blocks) such that every t-subset of X
appears in exactly A blocks.

Clearly every 7-regular graph of order n, is a 1-(n,2,7) design where
the edges are the blocks of the 1-design.

Let D be a given t-(v, k, \) design and let S be a subset of blocks of D.
Then we define

Ext(S)={ D | Disat-(v,k,A) design and S C D}.

If Ext(S) = {D}, then S is called a defining set for D and denoted by
d(D). A defining set d(D) with minimum cardinality among the defining
sets of D, is called smallest defining set for D, and is denoted by d,(D).
For example, for a 2-(7,3,1) design (Fano plane or the projective plane of
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order 2): X ={1,...,7},

B = {123,145, 167,246, 257, 347, 356}.
d,(D) = {123,145, 246}.

We note that the d;(D) is not necessarily unique.

Let G = (V,E) be agraph with V = {v;,... ,v,} and E = {e, ... ,en}
of order n and size m, and for any 7,1 < i < n, the degree of v; is denoted
by d;. The maximum and the minimum values of d; of G are denoted by
A(G) and 6(G), respectively. Also, for any vertex v, the set of all vertices
adjacent to v, N(v), is called the neighborhood of v. The nonincreasing
sequence d = (dy, ... ,d,) is called the degree sequence of G.

A nonincreasing sequence d is called graphical if there exists a graph
G with degree sequence d. All sequences in this paper, are graphical.
From the other hand, suppose d is graphical and G is a graph with degree
sequence d, then G is called a realization of d. If every two realizations of
d are isomorphic, then d is called unigraphic [1].

In determining the smallest defining sets of a graph, one needs to char-
acterize all those graphical sequences which have unique realization . We
note that this uniqueness is not meant to be “up to isomorphism”. To
avoid any ambiguity, we give an example : Let d = (m,n,1,...,1), where
m and n are natural numbers, be graphical. Then in the sense of [1] this
d is unigraphic but in the sense of this paper it does not poses a unique
realization.

An edge defining set for a graph G, d(G), is a subset of E such that
if any other graph G’ = (V, E’) contains d(G) having the same degree
sequence as G, then G’ = G. Similar to the case of designs, a defining set
for a graph with smallest cardinality is called a smallest defining set for G
and is denoted by d,(G).

It is easy to see that the definition of defining sets for graphs and designs
coincide if the graph is regular.

A set of two disjoint collections of 2-subsets of V, denoted by T'* and
T-, is called a tradeif they are mutually vertex-balanced, i.e., the frequency
of any vertex v € V appearing in T'* is the same as in 7~. For example,
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let V = {v1,...,ve}, then

T+ = {v1v2,v304,V5V6},
T- = {vav3,v47s,01%},

where vv; = {v;,v;} and T = {T+,T~} is a trade. We note that if in a
graph G = (V, E) such that T+ C E, then by exchanging T+ by T~ in
E, a graph with the same degree sequence of G is obtained. This action
is called the trading-off G by T. If |T*| = |T~| = 2, then T = {T*,T"}
is called a minimal trade. In this paper, by a trade we shall mean the
minimal trade. The concept of “trading-off” has already been utilized in
the literature under different name as “switching”[1].

The concept of defining set for designs is rather complicated and not
much is known about it. For a brief review on trades and defining sets, see

2].
2. Results

In this paper, through Theorem 1, we completely determine the smallest
defining set for any arbitrary graph. In Theorem 1, by a graph, we shall
mean a multigraph with no loop.

Theorem 1. Let G be a graph of size m, and let t(G) denote the number
of edges of a triangle in G (with possible multiple edges) with maximum
number of edges. Then we have |d;(G)| = m — max(A(G), t(G)).

Proof. Let S be an edge defining set of G = (V,E). Then E\S does
not contain T+(T~) of any trade, and hence any two edges of E\S are
adjacent. Therefore, regardless of repeated edges, E\S is either a triangle
or a star, that is K .. This completes the proof.

Remark 1. We note that for any v € V, S, = E(G\{v}) is in fact a
defining set.
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In what follows we confine ourselves to simple graphs, then the definition
of defining set slightly varies. A restricted edge defining set of G (simple)
is a set of edges, S, such that if a simple graph G’ contains S and has the
same degree sequence of G, then G = G’. We denote this kind of defining
set by d.(G) and likewise, d,s(G) is used for the smallest defining set of
restricted kind.

In the following lemma, by trading-off, we mean: For a given graph G =
(V,E), and a trade T = {T*,T~}, suppose that T+* C Eand T-NE = 0.
Then by trading-off G by T, we obtain a simple graph on the same set of
vertices and T~ U (E\T'*) as the set of edges.

Lemma 1. Let G and G’ be two simple graphs of order n having a non-
increasing degree sequence d = (dy,...,d,). Then G’ is obtained from G
by trading-off G by finite number of trades. For a proof, see [3, p.45].

Theorem 2. Suppose G is a simple graph of order n such that §(G) > 1. If

|d-s(G)| = 0, (i.e., there exists only one simple graph with degree sequence
of G), then A(G) =n — 1.

Proof. Let v be a vertex of G with maximum degree and let w be a vertex
of G such that w € N(v)U{v}. Let v € N(w) and v’ € N(v) — {u}. If u' is
not adjacent to u, then G contains T+ = {vu/, wu} which is contradictory
with |d,s(G)| = 0. Therefore, u is adjacent to any v’ € N(v) — {«}. This
implies that A(G) = d(v) < d(u), which is also a contradiction. Thus v is
adjacent to all other vertices of G. This completes the proof.

Corollary. If G is a triangle-free graph of size m, then |d,,(G)| = m —
A(G).

Remark 3. Suppose G is a simple graph of size m. If H is a subgraph of
G with maximum edges such that |d.;(H)| =0, then

|d-s(G)| = m — | E(H)|.
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Finally the following corollary is an immediate consequence of Theorem 2.

Corollary. Let G be a simple graph of size m, then

m— (Agl) < ldra(G)| < m = A

Note. In what follows, Hy = (hi;) will denote a k x k lower triangular
matrix defined as follows:

" 1 i>3j,
71 0 otherwise.

Also, in the following theorem, H* denotes the transpose of H.

Theorem 3. Let d = (di,...,d1,... ,dk,... ,di) be a sequence of the
natural numbers and for every 1 < j < k, 4; is the number of occurrences
k
of d; in the sequence. If Zz’j = n, then d is the degree sequence of a
j=1
unique simple graph of order n if and only if

L -
. dk
Hy |O ik dk-1
o) 2 I ikyp =1 . ,for k even,
—d1
4 :
d
i
~tn -1 |
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and

- - [de
! dr—1
Hup | O I 22| forkodd
z ik = ,for k odd.
0 |—Hi+l .-1-5 agg
dios
. =z
Tk
| - 4 -

Proof. We prove the theorem for k even, and for k¥ odd the proof is similar.
Let G be the only graph with a degree sequence as stated in the state-
ment of the theorem. First by induction on n, we show that

21 dk
12 dr—1
H_é; . =1 . , for k even,
i dg 4
and ) _
. dx
i
! di-1
12
Hk_;l . =1: , for & odd.
: i
ixp a2
i | depa |

For n = 2 or 3, the statement is a triviality. Based on Theorem 2, the
vertices vy,...,v; are adjacent to all the vertices. Now, we omit these
vertices and delete the edges of G which are incident to them. We name
the remaining graph as G;. The degree sequence of G, is as follows:

(de —i1,... ,do —ir,... ,dk —ir,... ,di — i)

v’ v~

iz 1
and this sequence uniquely determines a graph which is G, since otherwise
there would exist two graphs with the same degree sequence as G. Now, if
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8(G1) > 1, then since A(G1) =n — 1 —11, hence d(vy;41) =n—1—14; in
G1, and consequently d(v;, +1) =n— 1 in G, which is a contradiction since
ds < dy. Therefore, 6(G;) = 0 which in turn implies that di = 1. Now by
deleting the isolated vertices of G1, we obtain a graph G2 such that

[V(G2)| = n — (i1 + ik).

Now by induction hypothesis, we have

ia de—1 — %1
i3 di—2 — 1
He2 | . =
2 .
iy deyy — 1
But by di = 1;, we obtain
1 di
(5 di—1
Hy =
2
ik d§+1

The proof for odd %’s is similar.
Now since the degree sequence
(diy-.-,d1y-en 2 diy..nydi)
11} k73

defines a unique simple graph G, hence the degree sequence

(p—l—dk,...,n—l—dj,...,g—l—dl,...,n—l—d)

>

"~ e

‘ik i
determines the unique simple graph G (complement of G). Since d; = n—1,
therefore, we have

Tk n—1—d;
k-1 n—1-— d3
Hgk—l!-{-l . = . y
2 . .
T8} n—1-dgy,
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and hence,

—tn-1) d
ik d2
e I
Therefore, we obtain
T
k42 d;-
ik
+3
ap o 2
-Hg. : =1.
ix '
dy
-(n - 1)
[ D]

It follows that

‘. d
Hy |0 ‘% di-1
o |-m || |7
d
ik

=(n-1)

Now, we prove the second half of the theorem. Suppose that & is even. We
prove the assertion by induction on n. For n = 2, the statement is clear.
By assumption we have

W]

dr
H, | O b di—»
o |-m: || |7
4 :
d;
ik

L —(n=1)
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From the above equality, we conclude that dy = n — 1 and di = ¢;. Now
consider the following sequence

(d2 —d1,... o —isy.or dimt =1, dioy — 1)

D v

2 k-1

One can easily see that

ig

) dre—1 — 01

23 .
Hios | 0 z dr2 — %1

. 7 2£+2 =
O | —Hk_g 2
= .
dy — 41
k-1
—(n =1 =Gy + i)

By induction hypothesis, the above degree sequence determines a unique
graph G;. Therefore, G must be uniquely defined by its degree sequence.

Remark 2. Suppose that G is a simple graph of order n with the following
degree sequence:
(d1y---,d1y.oe ydry. .., di),

where k is even and |d,s(G)| = 0. Then G is constructed as follows: Let H
denote K, +...+i, . We add i; vertices to H and join all of them to #; fixed
vertices of H. Denote these i;. vertices by graph G;, and induced complete
subgraph on ¢; vertices of H by graph H;,. Now add ix_; vertices to the
new graph and join them to all the vertices of H;,. Also we consider i3
vertices of V(H)\V(H;,) and join them to all of ix_; vertices. We denote
these i) vertices by graph G;,_, and the induced complete subgraph on
ip vertices of H by H;,. Similarly, for any j,1 < j < £, Gi_;,, and Hy
are defined, see the following figure.
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k

Clearly, the order of the above mentioned graph is Zij = n, and for
j=1

any j, 1 < j < £, the degrees of any vertices of H;; and Gy, _;,, are

n—1-— Z{;g 1r—¢ and E'Z:l 1, respectively.
By Theorem 3, we have

j-2 J
n—1-— Z’ik-t = dJ and Z‘!;g = dk_j+1.
t=0 t=1

Consequently, the degree sequence of this graph is identical with the degree
sequence of G. It can be easily verified that this graph does not contain
any trade. For k odd, the construction is similar.
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